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High-fidelity 3D live-cell nanoscopy through 
data-driven enhanced super-resolution 
radial fluctuation

Romain F. Laine1,2,15,19, Hannah S. Heil    3,19, Simao Coelho    3, 
Jonathon Nixon-Abell    4,5, Angélique Jimenez6, Theresa Wiesner6, 
Damián Martínez3, Tommaso Galgani7,16, Louise Régnier    7, Aki Stubb8,17, 
Gautier Follain8,9, Samantha Webster10, Jesse Goyette    10, Aurelien Dauphin    11, 
Audrey Salles    12, Siân Culley    1,18, Guillaume Jacquemet8,9,13,14, 
Bassam Hajj    7  , Christophe Leterrier    6   & Ricardo Henriques    1,2,3 

Live-cell super-resolution microscopy enables the imaging of biological 
structure dynamics below the diffraction limit. Here we present enhanced 
super-resolution radial fluctuations (eSRRF), substantially improving 
image fidelity and resolution compared to the original SRRF method. 
eSRRF incorporates automated parameter optimization based on the data 
itself, giving insight into the trade-off between resolution and fidelity. We 
demonstrate eSRRF across a range of imaging modalities and biological 
systems. Notably, we extend eSRRF to three dimensions by combining it with 
multifocus microscopy. This realizes live-cell volumetric super-resolution 
imaging with an acquisition speed of ~1 volume per second. eSRRF provides 
an accessible super-resolution approach, maximizing information 
extraction across varied experimental conditions while minimizing 
artifacts. Its optimal parameter prediction strategy is generalizable, moving 
toward unbiased and optimized analyses in super-resolution microscopy.

Over the last two decades, super-resolution microscopy (SRM) devel-
opments have enabled the unprecedented observation of nanoscale 
structures in biological systems by light microscopy1. Stimulated 
emission depletion microscopy2 has led to fast SRM on small fields 

of view with a resolution down to 40–50 nm. In contrast, structured 
illumination microscopy (SIM)3 provides a doubling in resolution 
compared to wide-field (WF) imaging (~120 nm) with relatively high 
speed and large fields of view. Both super-resolution methods rely 
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emission, as would be the case in pinhole-based optical sectioning. 
This combination has been demonstrated before using image split-
ters42, but with limitations associated with spherical aberrations arising 
from the optical geometry. Multifocus microscopy (MFM) provides an 
alternative 3D image acquisition framework, allowing multiple planes 
to be captured simultaneously (for example in this work, nine focal 
planes), while maintaining diffraction-limited image quality in every 
single plane43–46.

Here, we present a new implementation of the SRRF approach, 
termed eSRRF, and highlight its improved capabilities in terms of image 
fidelity, resolution and user-friendliness. In eSRRF, we redefine some 
of SRRF’s original fundamental principles to achieve improved image 
quality in the reconstructions. Our new implementation integrates the 
SQUIRREL engine to provide an automated exploration of the param-
eter space, yielding optimal reconstruction settings. This optimization 
is directly driven by the data itself and outlines the trade-offs between 
resolution and fidelity to the user. By highlighting the optimal param-
eter range and acquisition configurations, eSRRF minimizes artifacts 
and nonlinearity. Therefore, eSRRF improves overall image fidelity 
with respect to the underlying structure. The enhanced performance is 
verified over a wide range of emitter densities and imaging modalities.

We have additionally implemented the capability to achieve full 
3D resolution improvement, bypassing the original SRRF’s 2D capabili-
ties. To do so, we adapted the method to analyze the nearly simultane-
ous multiplane acquisition of MFM, enabling the high-speed volume 
observation of fluorophore fluctuations. Here eSRRF benefits from 
the analysis of temporally coherent axial planes, meaning there is no 
time lag between axial planes. The estimation of radial fluctuations 
in 3D MFM data are based on the same reconstruction principles of 
2D eSRRF, additionally assuming the z-axis point-spread-function 
(PSF) elongation. We also demonstrate a full implementation of 3D 
eSRRF with a comprehensive Fiji plugin and how it can facilitate fast 
3D super-resolution imaging in living cells.

Results
eSRRF provides high-fidelity SRM images
Fluctuation-based SRM methods all suffer from the presence of artifacts 
and/or nonlinearity31. Here, we designed eSRRF with an emphasis on 
limiting reconstruction artifacts and maximizing image quality in the 
reconstruction of super-resolution images. The increased image fidelity 
results from the implementation of several new and optimized routines 
in the radial fluctuation analysis algorithm, introduced through a full 
rewriting of the code. In eSRRF, a raw image time series with fluctuat-
ing fluorescence signals is analyzed (Fig. 1a). First, each single frame 
is upsampled by interpolation (Fig. 1b). Here, in contrast to standard 
SRRF, we introduced a new interpolation strategy, exploiting a full data 
interpolation step based on Fourier transform before the gradient 
calculation. This approach outperforms the cubic spline interpolation 
employed in the original SRRF analysis by minimizing macro-pixel arti-
facts (Extended Data Fig. 1). Second, following the Fourier transform 
interpolation, intensity gradients Gx and Gy are calculated, and the 
corresponding weighting factor W based on the user-defined radius 
R is generated for each pixel. Based on gradient and weighting maps 
and the user-defined sensitivity parameter S (Supplementary Table 3), 
the radial gradient convergence (RGC) is estimated. Thus, in the case of 
eSRRF, this estimation is not just based on a set number of points at a 
specific radial distance as it was handled by the previous implementa-
tion of SRRF, but over the relevant area around the emitter. This area 
and how each point contributes to the RGC metric is defined by the W 
map. This allows us to cover the size of the PSF of the imaging system 
and thus, to exploit the local environment of the pixel of interest much 
more efficiently. Auto- or cross-correlation of the resulting RGC time 
series allows reconstructing a super-resolved image that shows high 
fidelity with respect to the underlying structure (Fig. 1b). Compared 
to the original SRRF, our new eSRRF approach demonstrates a clear 

on complex optical systems to create specific illumination patterns. 
Single-molecule localization microscopy (SMLM) methods such as 
(direct) stochastic optical reconstruction microscopy ((d)STORM)4,5, 
photo-activated localization microscopy6 or DNA point accumula-
tion in nanoscale topology (DNA-PAINT)7,8, take a different approach, 
exploiting the stochastic ON/OFF switching capabilities of certain 
fluorescence-labeling systems. By separating single emitters in time 
and sequentially localizing their fluorescence signal, a near-molecular 
resolution (~10–20 nm) can be achieved; however, this commonly 
requires long acquisition times that range from minutes to days. Image 
processing and reconstruction tools, including multi-emitter fitting 
localization algorithms9,10, Haar wavelet kernel (HAWK) analysis11 or 
deep-learning assisted tools12–14 reduce acquisition times by allowing 
for higher emitter density conditions. Alternatively, fluctuation-based 
approaches such as super-resolution radial fluctuations (SRRF)15, 
super-resolution optical fluctuation imaging (SOFI)16, Bayesian analysis 
of blinking and bleaching17, multiple signal classification algorithm18 
or super-resolution with auto-correlation two-step deconvolution19 
can extract super-resolution information from diffraction-limited 
data (Supplementary Table 1). These fluctuation-based approaches 
only require subtle frame-to-frame intensity variations, rather than 
the discrete blinking events needed in SMLM, and as such, do not 
require high-illumination power densities. Thus, so long as images 
are acquired with a sufficiently high sampling rate to capture spatial 
and temporal intensity variations, these methods are compatible with 
most research-grade fluorescence microscopes. This makes them ide-
ally suited for long-term live-cell SRM imaging20.

In particular, SRRF is a versatile approach that achieves live-cell 
SRM on a wide range of available microscopy platforms with commonly 
used fluorescent protein tags21. It is now a widely used high-density 
reconstruction algorithm, as highlighted by an important uptake by 
the scientific community22–25. Since its inception, several adaptations 
of SRRF have been proposed by the community, such as those based 
on a combination with other advanced imaging approaches26–28 or 
on the introduction of additional data preprocessing steps29 (Sup-
plementary Table 2 provides a summary), highlighting the interest in 
and potential impact of the method on the imaging community. The 
positive reception of the original SRRF method can also be attributed 
to its user-friendly and accessible implementation as a plugin for the Fiji 
framework30. In tandem, Andor Technology has also adapted an SRRF 
version for their camera-based imaging systems, including spinning 
disk confocal (SDC), a technology they named SRRF-Stream; however, 
obtaining optimal reconstruction results with any fluctuation-based 
method, including SRRF, can be challenging as they can suffer from 
reconstruction artifacts and lack signal linearity31. In an effort to 
start exploring these, we previously developed an approach for the 
detection and quantification of image artifacts termed SQUIRREL32. 
This tool has rapidly become a gold standard in the quantification 
of super-resolution image quality33 by providing robust measures of 
how well the reconstruction corresponds to an enhanced resolution 
view of the equivalent diffraction-limited image. This comparison in 
turn aids in the identification of reconstruction artifacts. Through its 
image fidelity metrics, SQUIRREL provides an important platform to 
assist in the creation of new algorithms, such as those implementing 
deep-learning-based methods34,35.

Obtaining three-dimensional (3D) SRM in live-cell microscopy 
still remains a challenge for the field; current implementations of 3D 
super-resolution methods come at the expense of a limited axial range 
and long acquisition times, often requiring major technical exper-
tise36–40. Live-cell 3D SRM also generally requires a considerably higher 
illumination dose than two-dimensional (2D) super-resolution images. 
A feature that severely compromises cell health and viability41. Simul-
taneous multi-axial imaging when combined with super-resolution 
techniques, stands as an attractive alternative due to its capacity for 
near-instant volumetric imaging without discarding fluorophore 
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improvement in image quality (Fig. 1c). Although these new implemen-
tations make eSRRF processing computationally more demanding, the 
implementation of OpenCL to parallelize calculations and minimize 
processing time allows the use of all available computing resources 
regardless of the platform47.

To evaluate the fidelity and resolution of eSRRF with respect to the 
underlying structure, we performed analysis of a DNA-PAINT dataset 
with sparse localizations. For DNA-PAINT, standard SMLM localization 
algorithms applied to the raw, sparse data can provide an accurate 
representation of the underlying structure. By temporally binning the 
raw data, we generated a high-density dataset comparable to a typical 
live-cell imaging acquisition. Figure 1c shows the comparison of the 

ground-truth (SMLM), eSRRF, SRRF and equivalent WF data. eSRRF is 
in good structural agreement with the ground truth and shows a clear 
resolution improvement over both the WF and the SRRF reconstruc-
tion. Line profiles reveal that eSRRF resolves features that were only 
visible in the SMLM reconstruction (Supplementary Fig. 1). We also 
estimated image resolution by Fourier ring correlation (FRC)48 and 
decorrelation analysis49. Both provide a quantitative assessment of the 
resolution improvement of the different image reconstruction modali-
ties (Supplementary Table 4). To facilitate a direct resolution compari-
son between SRRF and eSRRF, we obtained and analyzed images from 
a commercially available calibration standard, the Argo-SIM slide50,51. 
This slide contains structures of well-defined dimensions, purposely 
designed to test the resolution performance attainable by an optical 
system. By comparing eSRRF and SRRF analysis of Argo-SIM data, 
a higher resolving capacity of the eSRRF approach compared to its 
counterpart is demonstrated (Extended Data Fig. 2). Furthermore, 
the enhanced image fidelity recovered from eSRRF is quantitatively 
confirmed using SQUIRREL analysis on both simulated and experi-
mental data (Supplementary Fig. 2, Extended Data Fig. 3 and Sup-
plementary Note 1).

eSRRF not only achieves higher fidelity in image reconstruction 
than SRRF, but also provides a robust reconstruction method over 
a wide range of emitter densities. To estimate the range of emitter 
densities compatible with eSRRF, we again use low-density DNA-PAINT 
acquisitions and temporally binned the images with varying numbers 
of frames per bin. By increasing the number of frames per bin, the 
density of molecules in each binned frame increases. While the total 
number of molecules remains consistent throughout, this approach 
allows us to monitor the performance of eSRRF as a function of emitter 
density. Extended Data Fig. 4 presents the results from this analysis 
across the three temporal analyses provided (AVG, TAC2 and VAR; 
Supplementary Note 2 contains details on these temporal analyses). 
For each density range, a specific set of the processing parameters will 
provide the best image quality (Supplementary Table 3 and Supple-
mentary Note 2) allowing access to high-fidelity super-resolved image 
reconstructions across a wide range of experimental conditions. At 
high emitter densities, eSRRF also outperforms the high-density emit-
ter localization algorithm of ThunderSTORM9 even in combination 
with HAWK analysis11 (Supplementary Fig. 3). At the other extreme of 
sparse blinking densities typical of SMLM acquisitions, single-emitter 
fitting still provides unsurpassed localization precision and image 
resolution; however, it requires the processing of a large number of 
images. In this particular case of sparse blink dataset (typical SMLM 
data), eSRRF can provide a fast preview of the reconstructed image 
(Supplementary Fig. 4).

eSRRF’s reconstruction parameter exploration scheme
The decision to use a specific set of parameters for an image reconstruc-
tion is often based on user bias and expertise. This can lead to the inclu-
sion of artifacts in the data32. To alleviate user bias and artifacts, here, 
we developed a quantitative reconstruction parameter search based on 
the concepts introduced by SQUIRREL. For this we compute visual maps 
of the FRC resolution and image fidelity as a function of radius R and 
sensitivity S, exploring the eSRRF reconstruction parameter space. We 
use FRC to determine image resolution and a resolution-scaled Pearson 
(RSP) correlation coefficient as a metric for structural discrepancies 
between the reference and super-resolution images32, here referred 
to as image fidelity. These two metrics do not necessarily correlate. 
The parameter sweep allows to explore trade-offs between FRC reso-
lution and RSP fidelity (Supplementary Video 1) as a consequence of 
reconstruction parameter choice. To balance the two metrics, we use 
an F1 calculation to compute our quality and resolution (QnR) score:

QnR = 2 × RSP × nFRC
RSP + nFRC

SMLM eSRRF SRRF WF

105 fr. 103 fr. 103 fr. 1 fr.

c

eSRRF
SMLM

WF

Gy

Raw

RGC

RGC

stack

b

Stack Frame Pixel

WF eSRRFRawa

Cn
FT int. Gx

Fig. 1 | eSRRF image reconstruction produces high-fidelity images. a, eSRRF 
processing based on a raw data image stack (raw, left) of a microtubule network 
allows to surpass the diffraction-limited WF (middle) image resolution and 
to super-resolve features that were hidden before (eSRRF, right). b, eSRRF 
reconstruction steps. Each frame in the stack is interpolated (Fourier transform 
(FT) interpolation (int.)), from which the gradients Gx and Gy are calculated. 
The corresponding weighting factor map W is created based on the set radius, R. 
Based on this, the RGC is calculated for each pixel to compute the RGC map. The 
RGC stack is then compressed into a super-resolution image by cross-correlation 
(Cn). c, Super-resolved reconstruction images from eSRRF and SRRF obtained 
from 1,000 frames of high-density fluctuation data (12.1 localizations per frame 
and µm2), created in silico from an experimental sparse-emitter dataset (DNA-
PAINT microscopy of immunolabeled microtubules in fixed COS-7 cells, 0.121 
localizations per frame and µm2). The SMLM reconstruction obtained from 
the sparse data and the WF equivalent are shown for comparison. The number 
of frames used for reconstruction is indicated in each column (FRC resolution 
estimate, SMLM 71 ± 2 nm, eSRRF 84 ± 11 nm, SRRF 112 ± 40 nm, WF 215 ± 20 nm). 
Scale bars, 1 µm (a, and insets in c) and 5 µm (c, left). FRC is shown as mean ± s.d.
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Here nFRC is the normalized FRC resolution metric, ranging 
between 0 and 1, with 0 representing a poor resolution and 1 repre-
senting a high resolution. The QnR score ranges between 0 and 1, where 
scores close to 1 represent a good combination of FRC resolution and 
RSP fidelity, whereas a QnR score close to 0 represents a low-quality 
image reconstruction.

Figure 2 shows a representative dataset acquired with COS-7 cells 
expressing Lyn kinase–SkylanS, previously published by Moeyaerd 
et al.52,53. The eSRRF parameter scan analysis (Fig. 2a) shows how RSP 
fidelity and FRC resolution are affected by reconstruction parameters. 
RSP fidelity is high when using low sensitivity and/or low radius. In 
contrast, FRC resolution improves upon increasing the sensitivity 
over a large range of radii. This can be explained by the appearance of 
nonlinear artifacts at high sensitivity leading to low RSP fidelity but 
high FRC resolution. In addition, as the radius increases, the resolution 
of the reconstructed image decreases. The QnR metric map, shown in 
Fig. 2b, demonstrates that a balance can be found that leads to both a 
good resolution and a good fidelity. Figure 2c shows a range of image 
reconstruction parameters: the optimal reconstruction parameter 
set (R = 1.5, S = 4; Fig. 2c,i) and two other suboptimal parameter sets  
(Fig. 2c(ii),(iii)). Figure 2c(ii) shows a low-resolution image, whereas  
Fig. 2c(iii) has a high level of nonlinearity, the result of an inappropri-
ately high sensitivity. While the QnR map can directly highlight optimal 
reconstruction settings by indicating the maximum QnR parameter 
combination, it also provides a window into the effect of reconstruc-
tion parameters on the output images to the user for critical analysis. 

Local variations in background level, emitter density, and sample 
structure across the field of view can cause different reconstruction 
requirements and non-linearities in the QnR maps (Extended Data  
Fig. 5). User evaluation of QnR maps is an important component of 
this optimization strategy, and the parameter optimization tool is 
intentionally not designed to act as a black box. To aid in this evaluation, 
eSRRF lets users browse through the reconstructions associated with 
each QnR map value, enabling researchers to access the link between 
quality metrics and the corresponding variations in the reconstruc-
tion results. This makes eSRRF not only user-friendly but also ensures 
reproducible results with minimized user bias. In theory, this method 
could be used to improve the performance of any other image recon-
struction algorithm. We have, for example, also tested applying the 
proposed parameter optimization to SRRF. Here, we observed that 
even with optimized parameters, SRRF reconstructions were not able 
to exceed the eSRRF performance (Extended Data Fig. 6).

An important aspect of live-cell super-resolution imaging is its 
capacity for observation and quantification of dynamic processes 
at the molecular level. With respect to fluctuation-based methods, 
there are two aspects to be considered when it comes to observing 
fast dynamics. As each super-resolved reconstruction is based on 
processing a stack of hundreds or more images, any dynamic changes 
happening within this frame window will lead to motion blur. On the 
other hand, reducing the number of frames for the super-resolved 
reconstruction can compromise the reconstruction quality. To address 
this aspect and provide an estimate of the optimal frame window, we 
have integrated temporal structural similarity (tSSIM) analysis into the 
eSRRF framework. Here, we calculate the progression of the structural 
similarity54 at the different time points of the image stack relative to 
the first frame (Supplementary Fig. 5). This allows us to identify the 
local molecular dynamics (Supplementary Fig. 6) and estimate the 
maximum number of frames within which the structural similarity is 
retained, meaning that there is no observable movement (Fig. 2d). By 
combining tSSIM with eSRRF, we can determine an optimal number 
of frames required for the reconstruction to recover dynamics, while 
reducing motion-blur artifacts (Fig. 2e). The tSSIM is complemented 
by the parameter optimization tool, which jointly aids in finding the 
optimal radius and sensitivity parameter sets, and allows testing of 
different frame window sizes. This enables the user to identify the 
minimum number of frames to be analyzed or even acquired to ensure 
a good quality reconstruction.

eSRRF works across a wide range of live-cell modalities
Here, we test our approach on a wide range of imaging modalities, 
including total internal reflection fluorescence (TIRF), fast highly 
inclined and laminated optical sheet (HiLO)-TIRF55, SDC56 and lat-
tice light sheet (LLS) microscopy57. We show that eSRRF provides 
high-quality SRM images in living cells (Fig. 3). First, we imaged cultured 
neurons transiently expressing Skylan-NS tagged tubulin. Skylan-NS 
is an element of the photoswitchable fluorophore family, displaying 
a high level of fluorescence fluctuations that are ideal for eSRRF pro-
cessing58. This allowed us to super-resolve the microtubule network  
(Fig. 3a). Traditional SRRF processing cannot tell apart microtubule 
bundles that are close to each other, but eSRRF can (Fig. 3a), even 
though they are tightly packed along the dendrites (Extended Data 
Fig. 5a). eSRRF can also be applied to volumetric datasets as obtained 
for example with LLS microscopy (Supplementary Video 2). Here, 
the eSRRF reconstruction of volumetric image stacks is obtained by 
processing each slice sequentially. Note that this approach can only 
effectively improve the lateral resolution (xy plane), while there is a 
sharpening comparable to deconvolution in the z direction, no reso-
lution improvement over the diffraction-limited images should be 
expected. Figure 3b,c shows the plane by plane eSRRF processing 
of a LLS dataset of the ER in Jurkat cells allowing us to distinguish 
sub-diffraction-limited features along the x direction (Fig. 3b(i)), 
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Fig. 2 | eSRRF provides an automated reconstruction parameter search.  
a–c, Finding the optimal parameters to calculate the RGC. RSP and FRC 
resolution maps as functions of R and S reconstruction parameters for a live-
cell TIRF imaging dataset published by Moeyaert et al.53 (a). COS-7 cells are 
expressing the membrane targeting domain of Lyn kinase–SkylanS and were 
imaged at 33 Hz. Combined QnR metric map showing the compromise between 
fidelity and FRC resolution (b). WF image, optimal eSRRF reconstruction (i), 
R = 1.5, S = 4), low-resolution reconstruction (ii), R = 0.5, S = 1) and low-fidelity 
reconstruction (iii), R = 3.5, S = 5) (c). d,e, Estimating the optimal time window for 
the eSRRF temporal analysis based on tSSIM. The SSIM metric is observed over 
time, after ~200 frames it displays a sharp drop (d). The optimal time window is 
marked by the blue line. A color overlay of two consecutive reconstructed eSRRF 
frames with the optimal parameters and a frame window of 200 frames displays 
notable differences between the structures (marked by i and ii), which would  
lead to motion blurring in case of a longer frame window (e). Scale bars, 20 µm 
(c,e) and 5 µm (e–i(ii)).
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but not in the z direction (Fig. 3c(ii)). While LLS can be seen as a fast 
and live-cell-friendly imaging approach, the sequential acquisition 
of a frame series at each axial plane generally slows down the acqui-
sition to ~2 min per volume (79 × 55 × 35 µm3). Using HiLO-TIRF, the 
fast acquisition rates allowed us to track the ER network tagged with 
PrSS-mEmerald-KDEL in living COS-7 cells at super-resolution level 
(Fig. 3d). Here, a sampling rate of 10 Hz is achieved using rolling window 
analysis of eSRRF (Extended Data Fig. 7 and Supplementary Video 3). 
While TIRF and HiLO-TIRF imaging are set out for fast high-contrast 
imaging in close vicinity to the coverslip surface, SDC excels in fast and 
gentle in vivo imaging. Thus, with SDC imaging, we were able to record 
the dynamic rearrangement of SkylanS-tagged actin in U2OS cells over 
12 h (Fig. 3e and Supplementary Video 4), showcasing the capacity of 
eSRRF to super-resolve living samples at low-intensity illumination. 
SDC also entails imaging far away from the coverslip and deep inside 
challenging samples as spheroids and live organisms, where eSRRF 
achieves enhanced performance as well (Extended Data Fig. 8).

3D live-cell super-resolution imaging by eSRRF and MFM
3D imaging capability is becoming increasingly important to under-
stand molecular dynamics and interactions within the full context of 
their environment. In particular, obtaining true 3D SRM with improved 
resolution along the axial direction has recently become a key focus 

of development in the field. Fluctuation-based SRM approaches have 
also been extended to 3D, notably SOFI16,42 and more recently, random 
illumination microscopy50, an approach that combines the concepts 
of fluctuation microscopy and the SIM demodulation principle; how-
ever, these and other 3D live-cell super-resolution approaches are still 
considerably hampered by their acquisition speed, a limitation that 
currently has only been surpassed by implementing deep-learning 
approaches59 (Supplementary Table 5). To realize 3D eSRRF, we 
extended the algorithm to calculate the RGC in 3D (Supplementary 
Note 3). Consequently, we can reconstruct a volumetric image with 
enhanced resolution in the axial direction and in the lateral image 
plane. The approach was first validated with simulated 3D data 
(Extended Data Fig. 9). In these data, a woodpile structure can be seen, 
featuring filaments with axial distances ranging from 350 to 600 nm. 
These filaments are populated with single-molecule emitters, whose 
blinking events are set at increasing densities in each dataset. Their 
analysis allowed us to identify that, while at the highest densities only 
filaments crossing at an axial distance of 600 nm could be resolved, 3D 
eSRRF was able to distinguish filaments separated by under 400 nm 
in other density regimes. In practice, we implemented 3D eSRRF with 
an MFM system that is able to detect nine simultaneous axial planes 
on a single camera by using aberration-corrected diffractive optical 
elements45 (Supplementary Fig. 7). By combining MFM and eSRRF, a 
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super-resolved volumetric view (20 × 20 × 3.6 μm3) of the mitochon-
drial network architecture and dynamics in U2OS cells was acquired at 
a rate of ~1 Hz (Fig. 4). The eSRRF processing achieved super-resolution 
in lateral and axial dimensions, revealing sub-diffraction-limited 
structures. Figure 4 shows that eSRRF reveals structures that would 
otherwise remain undetected using conventional MFM (Fig. 4(i),(ii)). 
When compared to deconvolution analysis of the same data, the eSRRF 
reconstruction presents a higher resolution and the capacity to recover 
structural features of the sample that would otherwise remain hid-
den (Fig. 4(i),(ii) and Extended Data Fig. 10). Extending the 3D eSRRF 
processing to the full live-cell time lapse reveals rearrangement of 
the mitochondrial network at a super-resolution level (Fig. 4(iii)). To 
constrain cell damage, we maintained the observation time to ~20 s to 
minimize cellular damage. We were able to extend the observation time 
even more by using an extra dataset in which we reduced the excitation 
intensity by a factor of two. This second experiment achieves slightly 
lower resolution due to the reduced signal in these experimental condi-
tions, while letting us observe mitochondrial network dynamics over 
the course of more than 3 min without observable signs of cell damage 
(Supplementary Video 5).

Discussion
The new eSRRF approach builds on the previous capacity of SRRF, 
considerably improving image reconstruction quality and fidelity, as 
shown here for gold standards such as the Argo-SIM calibration struc-
ture51, simulated data and the nuclear pore complex60. It showcases a 
new analytical engine for calculating the RGC transform, replacing 
the lower quality radiality transform of the original SRRF method. 
These modifications have also allowed us to extend the approach 
into full 3D super-resolution, by combining it with MFM, realizing 
fast 2D and 3D super-resolution imaging in live cells. While the perfor-
mance of eSRRF may be surpassed in spatial or temporal resolution by 
deep-learning-based SRM approaches, these face a very specific set of 
limitations. Such deep-learning methods have been shown to convert 
sparse SMLM data61 or even diffraction-limited images of dynamic 
structures62 into super-resolved time series at rates above 50 Hz. Their 
extension to 3D isotropic volumetric live-cell SRM has demonstrated 
imaging rates of up to 17 Hz59; however, unlike eSRRF, these methods 
require previous knowledge of the dataset and generally require either 
simulated or experimental ground-truth data. These features also mean 
that insufficient, unbalanced or unsuitable data can lead to severe 
image degradation and hallucinations by deep-learning methods that 
are not easy to detect63.

Here, we have introduced a data-driven parameter optimization 
approach that aids users in selecting optimal parameters learned 
directly from the data to be analyzed. These optimal parameters are 
chosen by balancing the need for high reconstruction fidelity together 
with high spatial and temporal resolution. In contrast to the training 
procedures employed in deep-learning approaches, the data-driven 
eSRRF parameter optimization bases its scoring on the direct unsuper-
vised analysis of the data being collected via FRC and RSP calculations. 
As such, an eSRRF analysis is easy and reliable, especially when the data 
being collected have new properties or features that have not been seen 
before. Furthermore, the implemented parameter optimization based 
on the QnR metric directly provides dataset-specific insight into the 
relationship between image fidelity and resolution, enabling the user 
to critically analyze results and take an informed decision on analysis 
settings. By combining the QnR-based parameter sweep with a tempo-
ral window optimization, eSRRF achieves optimal spatial and temporal 
resolution while minimizing reconstruction artifacts and reducing user 
bias. This makes eSRRF a super-resolution method that shows users 
how to best analyze their data and gives them the information they need 
to find the best conditions for live-cell super-resolution imaging that is 
sensitive to phototoxicity. This provides new fundamental principles 
to make live-cell SRM more stable and reliable. While we developed and 
employed these original concepts in eSRRF, we expect this strategy to 
be easily transferable to other super-resolution methods that require 
an analytical component, as is the case for SMLM approaches.

To demonstrate the broad applicability of eSRRF, we showcase its 
application to a wide range of biological samples, from single cells to 
organisms, and imaging techniques from WF, TIRF, light sheet, SDC 
and SMLM imaging modalities. eSRRF shows robust performance 
over the different signal fluctuation dynamics displayed by various 
organic dyes and fluorescent proteins and over a wide range of marker 
densities, recovering high-fidelity super-resolution images even in 
challenging conditions in which single-molecule algorithms will fail. 
The enhanced performance of eSRRF will also benefit modifications of 
the original SRRF method that the community has previously proposed 
(Supplementary Table 2).

While eSRRF provides substantial improvements in image fidel-
ity and resolution compared to the original SRRF implementation, 
there are still important caveats and limitations to consider. One 
limitation of eSRRF is for example the availability of bright, stable and 
live-cell-compatible fluorescent markers with emission characteristics 
that display suitable fluorescence fluctuations. Here, self-blinking 
organic dyes64 and fluorogenic exchangeable HaloTag ligands65 show 

y

a bWF MFM MFM + eSRRF

i)

iii)

0 1

0.5

1.0

z (µm)

In
t. 

(A
U

)

x

x

z

0 1 2

0.5

1.0

dxy (µm)

In
t. 

(A
U

)

ii)

i) ii) iii)

0

18

t(s)

Fig. 4 | eSRRF and MFM allows 3D live-cell super-resolution. a, Live-cell 
volumetric imaging in MFM WF configuration of U2OS cells expressing 
TOM20-Halo, loaded with JF549. b, 3D eSRRF processing of the dataset 
creates a super-resolved volumetric view of 20 × 20 × 3.6 μm3 at a rate of ~1 Hz 
(MFM + eSRRF). The 3D rendering (top); single cropped z-slice (FRC resolution in 
xy, interpolated, 231 ± 10 nm; eSRRF, 74 ± 12 nm) (middle); single cropped y-slice 
(FRC resolution in xz eSRRF, 173 ± 19 nm) (bottom). (i) and (ii) mark the positions 
of the respective line profiles in the xy and z-plane in the MFM (dashed line), 
deconvolved MFM (dotted line; Extended Data Fig. 10) and MFM + eSRRF (solid 
line) images (a,b). The distance of the structures resolved by eSRRF processing 
(marked gray) is 360 nm in the lateral directions (x,y) and 500 nm in the axial 
direction (z). (iii) marks the displayed area of the temporal color-coded projection 
of a single z-slice over the whole MFM (left) and MFM + eSRRF (right) acquisition. 
Scale bars, 2 µm (a,b) and 1 µm (iii). FRC shown as mean ± s.d.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | December 2023 | 1949–1956 1955

Article https://doi.org/10.1038/s41592-023-02057-w

promise as high-performance probes for eSRRF. Furthermore, while 
3D eSRRF still needs specialized hardware, we envision that future 
implementations may become more compatible with readily avail-
able commercial optical systems. In addition, it may be possible to 
explore gentler and faster MFM approaches66. The computational 
complexity of eSRRF makes processing times longer compared to 
SRRF. Additionally, finding the optimal balance between resolution 
and fidelity relies on user evaluation of the parameter space, so there 
is still some subjectivity in selecting final parameters. At low emitter 
densities, single-molecule localization methods can still provide bet-
ter resolution than eSRRF. There are also challenges with observing 
very fast dynamics below the temporal resolution of the image stack 
used for reconstruction. A further machine-learning accelerated ver-
sion of eSRRF is now being developed and available in the NanoPyx 
Python-based framework, which also includes a napari plugin67. Future 
advances could automate the parameter optimization process more 
fully using machine learning. Overall, while current implementations 
still have limitations, the development of eSRRF demonstrates the 
potential for data-driven optimization to improve image reconstruc-
tion quality and accessibility in SRM. eSRRF is currently implemented 
as an open-source GPU-accelerated Fiji plugin, accompanied by a 
detailed user guide (https://github.com/HenriquesLab/NanoJ-eSRRF) 
as well as in napari and Python, making it widely available to the bio-
imaging community.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-02057-w.
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Methods
The imaging conditions and eSRRF-processing parameters for each 
dataset are summarized in Supplementary Table 4.

Fluorescence microscopy simulations
The field of simulated fluorescent molecule distribution was 
simulated over a 5-nm resolution grid with ImageJ 1.45 f and the 
NanoJ-eSRRF>Fluorescence simulator application. As a ground truth, 
fan pattern emitters were placed on concentric rings with radii increas-
ing by 220 nm steps. On each ring the molecules were separated by 57.5, 
115, 173, 230, 288 and 345 nm, respectively. Each emitter was allowed 
to blink independently with an on/off rate of 100 s−1 and 50 s−1, respec-
tively over the entire acquisition without bleaching (500 frames at 
10-ms exposure). Based on this distribution, the fluorescence image 
with 100 nm pixel size was created by convolution with a Gaussian 
kernel with σ = 0.21 λ/NA, as suggested by Zhang et al.68, where λ is the 
emission wavelength (here 580 nm) and NA is the numerical aperture 
of the microscope (here NA = 1.4). A realistic Poisson photon noise 
and a Gaussian read-out noise were added to the images to simulate 
an experimental dataset.

The diffusing particle datasets were generated as single emitters 
represented by a Gaussian PSF and with Gaussian noise moving at 
a constant speed, with a Python script available as a GoogleCoLabs 
Jupyter notebook on GitHub at https://github.com/HenriquesLab/
NanoJ-eSRRF.

The MFM simulations of stacked lines were performed using a 
custom-written framework NanoJ-TheSims in ImageJ. Ground-truth 
images were provided as 3D stacks on an upsampled grid (5-nm pixel 
size in (xy) and 10-nm slice separation). For 3D multiplane simulations, 
a PSF stack was generated with the ImageJ plugin PSFGenerator69 
using the Born and Wolf model, 1.4 NA, and emission wavelength of 
650 nm, with pixel sizes and plane separations matching the ground 
truth. For each molecule (nonzero pixel) in the ground-truth stack, 
the time for the molecule to undergo permanent photobleaching 
was randomly chosen from an exponential distribution with the rate 
parameter k_bleach. The time series describing transitions between 
on and off states was described as a two-state model, with the time 
spent in each state determined by random selection from exponential 
distributions with rates k_on (off to on) and k_off (on to off). On/off 
transitions were generated until the total length of the time trace 
reached the bleaching time (which was only permitted to occur from 
an on state). For the simulations used here, rate parameters were 
k_bleach = 0.077 s−1, k_on = 0.026 s−1 and k_off = 1.82 s−1. These were 
binned into discrete time traces per the camera settings of exposure 
time = 10 ms and read time = 5 ms, allowing for fractional appearances 
of molecules which undergo a transition within a frame under the 
assumption of an emission rate of 15 photons s−1. For each z plane, an 
image stack of length n frames covering the simulated experiment 
time (typically 100 s) was created and populated with the number 
of emitted photons per molecule per frame from the discrete time 
traces. For 2D simulations, this stack was then convolved with a 2D 
Gaussian. For 3D multiplane simulations, for every molecule appear-
ance, the slice of the PSF stack corresponding to the z position of 
the plane being simulated was multiplied by the number of emitted 
photons and then added onto the upsampled grid, centered on the 
molecule location. For all simulations, Poisson noise was added to 
the stack, the grid binned to 100 nm ‘camera’ pixels and Gaussian 
read noise was added. Based on the resulting nine image planes, 
an MFM image stack was reconstructed and a 3D image stack was 
reconstructed with the following eSRRF parameters: M = 4, R = 3 and 
S = 6, VAR. Deconvolution of the interpolated 3D image stack was 
performed with the ImageJ plugin DeconvolutionLab2 (ref. 70) with 
the PSF used for the simulation and the Richardson–Lucy algorithm 
(40 iterations). To increase the emitter density, the frames were 
binned and averaged.

DNA-PAINT of microtubule network
COS-7 cells (ATCC CRL-1651) were cultured in phenol-free DMEM 
(Gibco) supplemented with 2 mM GlutaMAX (Gibco), 50 U ml−1 peni-
cillin, 50 μg ml−1 streptomycin (Penstrep, Gibco) and 10% fetal bovine 
serum (FBS; Gibco) at 37 °C in a humidified incubator with 5% CO2. Cells 
were seeded on ultraclean71 18-mm diameter thickness 1.5 H coverslips 
(Marienfeld) at a density of 0.3–0.9 × 105 cells per cm2.

Cells were fixed and stained according to previously published 
protocols72. Cells were extracted at 37 °C for 45 s in 0.25% Triton-X 
(T8787, Sigma), 0.1% glutaraldehyde in the cytoskeleton-preserving 
buffer ‘PIPES-EGTA-Magnesium’ (PEM; 80 mM PIPES pH 6.8, 5 mM 
EGTA and 2 mM MgCl2) followed by 10 min in 0.25% Triton-X and 0.5% 
glutaraldehyde in PEM. After a 7-min quenching step with a fresh solu-
tion of 0.1% NaBH4 in phosphate buffer at room temperature, cells were 
permeabilized and blocked for 1.5 h at room temperature in blocking 
buffer (phosphate buffer 0.1 M, pH 7.3, 0.22% gelatin (G9391, Sigma) 
and 0.1% Triton-X-100).

Primary antibody labeling was performed at 4 °C overnight with 
a mix of two anti-α-tubulin mouse monoclonal IgG1 antibodies (DM1A 
(T6199, Sigma) and B-5-1-2 (T5168, Sigma)) diluted 1:300 in blocking 
buffer. After 3 × 10-min washes with blocking buffer, the cells were incu-
bated with a goat anti-mouse antibody conjugated to a DNA sequence 
(P1 docking strand, Ultivue kit) for 1 h at room temperature and diluted 
1:100 in blocking buffer. After incubation, cells were washed with block-
ing buffer for 10 min and 2 × 10 min with phosphate buffer.

DNA-PAINT imaging was performed on an N-STORM microscope 
(Nikon) equipped with 647-nm lasers (125 mW at the optical fiber out-
put). After injection of an 0.25-nM imager strand (I1-ATTO655, Ulti-
vue) in 500 mM NaCl in 0.1 M PBS, pH 7.2, buffer, 50,000 frames were 
acquired at 60% power of the 647-nm laser with an exposure time of 
30 ms per frame to obtain low-density ground-truth data.

Image reconstruction was performed with the ImageJ/Fiji plugins 
NanoJ-SRRF, NanoJ-eSRRF, ThunderSTORM and HAWK. To create data-
sets with increased emitter density, temporal binning was performed by 
summing substacks of the SMLM image sequence. The raw data had an 
average emitter density of 0.121 localizations per frame and µm2, which 
remained constant throughout the whole DNA-PAINT acquisition.

SIM imaging of the Argo-SIM calibration sample
Super-resolution 3D-SIM imaging was performed on a Zeiss ELYRA 
PS.1 microscope (Carl Zeiss) using an αPlan-Apochromat ×100/1.46 
oil immersion objective and an EMCCD Andor 887 1K camera. For 
SIM reconstruction, 15 images (five phases and three rotations) of 
the gradually spaced line pattern on the Argo-SIM calibration slide 
(Argolight) were acquired. SIM image reconstruction was performed 
with the software ZEN Black v.11.0.2.190 (Carl Zeiss).

Live-cell imaging of cultured neurons
Neuronal culture and transfection. All procedures were in agreement 
with the guidelines established by the European Animal Care and Use 
Committee (86/609/CEE) and were approved by the Aix-Marseille 
University ethics committee (agreement no. G13O555). Primary neu-
ronal cell culture was produced by extracting hippocampi from E18 rat 
pups of both sexes from pregnant female Wistar rats ( Janvier Labs). 
Hippocampi were dissected and homogenized by trypsin treatment 
followed by mechanical trituration and seeded on 18-mm diameter, 
round, no. 1.5H coverslips at a density of 30,000 cells cm−2 for 3 h in 
serum-containing plating medium (MEM with 10% FBS, 0.6% added 
glucose, 0.08 mg ml−1 sodium pyruvate and 100 UI ml−1 penstrep). Cov-
erslips were then transferred, cells down, to Petri dishes containing con-
fluent glia cultures conditioned in NB+ medium (neurobasal medium 
supplemented with 2% B27, 100 UI ml−1 penstrep and 2.5 µg ml−1 ampho-
tericin) and cultured in these dishes (Banker method73).

Neurons were transfected with either 1 μg pEGFP–α-tubulin  
(Clontech cat. no. 632349) or pSkylan-NS–α-tubulin at 6–9 d in culture 
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with Lipofectamine (2 µl, Life Technologies). pSkylan-NS–α-tubulin was 
created by exchanging the mScarlet sequence in the mScarlet–α-tubulin 
(Addgene plasmid #8504574) to Skylan-NS (Addgene plasmid #8678558) 
by Gibson assembly75 with a 0.005 U µl−1 T5 exonuclease (M0663S, 
NEB), 0.033 U µl−1 Phusion DNA polymerase (F-553L, Finnzymes) and 
5.33 U µl−1 TAQ DNA ligase (MB42601, NZYTEch) master mix. Live-cell 
imaging was performed 24–48 h later. Before live imaging, neurons 
were transferred to Hibernate medium E (Brainbits), supplemented 
with 2% B27, 2 mM Glutamax and 0.4% d-glucose, and maintained in a 
humid chamber at 36 °C for the duration of the experiments (Okolab).

TIRF microscopy. Live imaging of neurons expressing pSkylan- 
NS–α-tubulin were performed on an inverted microscope ECLIPSE 
Ti2-E (Nikon Instruments) equipped with an ORCA-Fusion sCMOS 
camera (Hamamatsu Photonics K.K., C14440-20UP) and a CFI SR HP 
Apochromat TIRF ×100 oil (NA 1.49) objective. Samples were sequen-
tially illuminated with laser light at 405 nm and 488 nm for 100 ms at 
5% laser power, respectively with an active Nikon Perfect Focus System 
and with the NIS-Elements AR 5.30.05 software (Nikon).

2D-SIM microscopy. Live-imaging experiments of neurons expressing 
pEGFP–α-tubulin were performed on a Nikon N-SIM S structured illu-
mination microscope with a Nikon Ti inverted microscope using a CFI 
Apochromat TIRF ×100 C Oil (NA 1.49) objective and an ORCA-Fusion 
BT camera (Hamamatsu Photonics K.K., C15440-20UP). The sample 
was excited using laser light at 488 nm for 200 ms, at 70% laser power 
and kept at 37 °C using a Tokai Hit STX stage-top incubator with active 
Nikon Perfect Focus System. For each SIM image, nine raw images (three 
phases and three orientations) were acquired and reconstructed using 
NIS-Element 5.30.02 (Nikon).

LLS sample preparation and acquisition
The ER of Jurkat cells (Cellbank Australia Jurkat-ILA1) was stained 
with BODIPY ER-Tracker (Thermo Fisher Scientifc, E34250) and incu-
bated on a poly-l-lysine-coated (P4707, Sigma) 5-mm round coverslip 
at 37 °C. The cells were fixed for 15 min at 37 °C with 4% PFA (15710, 
Electron Microscopy Sciences) in a buffer with 10 mM MES (pH 6.1, 
M3671, Sigma), 5 mM EGTA (E4378, Sigma), 5 mM fresh glucose 
(49159, Sigma-Aldrich), 150 mM NaCl (AJA465, Ajax Finechem) and 
3 mM MgCl2 (pH 7.0, MA029, Chem-Supply) followed by two washing 
steps with the buffer. The LLS data were acquired using a commer-
cially available 3i LLS57 running SlideBook v.6 (Intelligent Imaging 
Innovations). LLSM has two orthogonal objective lenses, a 0.71 NA, 
3.74-mm LWD water-immersion illumination objective and a 1.1 NA, 
2-mm LWD water-immersion imaging objective, matched to the light 
sheet thickness for optimal optical sectioning creating an evenly illu-
minated plane of interest, which enables high spatiotemporal resolu-
tion (230 × 230 × 370 nm in xyz). We used a light sheet under a square 
lattice configuration in dithered mode. Images were acquired with a 
Hamamatsu ORCA-Flash 4.0 camera. Each plane of imaged volume was 
exposed for 10 ms with a 642-nm laser. The sample was imaged on a 
piezo stage with the dithered light sheet moving at 276 nm step size in 
the z axis. To create an eSRRF ‘frame’, a time lapse of 100 frames were 
taken per axial plane at 7.6 mHz per volume (79 × 55 × 35 µm3). After 
eSRRF processing, the images were deskewed with the LLSM Fiji plugin.

Live-cell HiLO-TIRF microscopy
COS-7 cells (ATCC CRL-1651) were grown in phenol red-free DMEM 
supplemented with 10% (v/v) FBS (Gibco), 2 mM l-glutamine (Thermo), 
100 U ml−1 penicillin and 100 µg ml−1 streptomycin (Thermo) at 37 °C 
and 5% CO2. The 25-mm no. 1.5 coverslips (Warner Scientific) were pre-
cleaned by (1) a 12-h sonication in 0.1% Hellmanex (Z805939, Sigma); 
(2) five washes in 300 ml distilled water; (3) a 12-h sonication in dis-
tilled water; (4) an additional round of five washes in distilled water; 
and (5) sterilization in 200-proof ethanol and were allowed to air dry. 

Coverslips were coated with 500 µg ml−1 phenol red-free Matrigel 
(356237, Corning). Cells were seeded at 60% confluency. Transfections 
were performed using Fugene6 (E2691, Promega) according to the man-
ufacturer’s instructions. Each coverslip was transfected with 750 ng 
of PrSS-mEmerald-KDEL to label the ER structure and with 250 ng of 
HaloTag-Sec61b-TA (not labeled with ligand for these experiments).

Imaging was performed using a customized inverted Nikon Ti-E 
microscope outfitted with a live-imaging chamber to maintain tem-
perature, CO2 and relative humidity during imaging (Tokai Hit). The 
sample was illuminated with a fiber-coupled 488-nm laser (Agilent 
Technologies) through a rear-mount TIRF illuminator. Imaging was 
performed such that the TIRF angle was manually adjusted below the 
critical angle to ensure HiLO illuminations and that the ER was captured 
within the illumination plane. The average power density over the full 
illumination field was 123 mW cm−2. Fluorescence was collected using a 
×100 α-Plan-Apochromat 1.49 NA oil objective (Nikon) using a 525/50 fil-
ter (Chroma) placed before an iXon3 EMCCD (DU-897; Andor). Imaging 
was performed with 5-ms exposure times for 60 s. The precise timing 
of each frame was monitored using an oscilloscope directly coupled 
into the system (mean frame rate ≈ 95 Hz).

Spinning disk confocal sample preparation and acquisition
SkylanS–β-actin U2OS cells. U2OS osteosarcoma cells were grown 
in DMEM (Sigma, D1152) supplemented with 10% FBS (S1860, Bio-
west). U2OS cells were purchased from DSMZ (Leibniz Institute 
DSMZ-German Collection of Microorganisms and Cell Cultures, ACC 
785). U2OS cells were transfected with 1 µg SkylanS-(GGGGS)x3–β-actin 
plasmid (Addgene plasmid #128938)76 using Lipofectamine 3000 
(L3000008, Thermo Fisher Scientific) according to the manufac-
turer’s instructions. To image the actin, dynamic, transfected cells were 
plated on high-tolerance glass-bottom dishes (MatTek Corporation, 
coverslip no. 1.7) pre-coated first with poly-l-lysine (10 µg ml−1 for 1 h 
at 37 °C) and then with bovine plasma fibronectin (10 µg ml−1 for 2 h at 
37 °C). The SDC microscope used was a Marianas spinning disk imag-
ing system with a Yokogawa CSU-W1 scanning unit on an inverted Zeiss 
Axio Observer Z1 microscope controlled by SlideBook v.6 (Intelligent 
Imaging Innovations). Images were acquired using a Photometrics 
Evolve, back-illuminated EMCCD camera (512 × 512 pixels) and a ×100 
(NA 1.4 oil, Plan-Apochromat) objective (Carl Zeiss). For long-term 
live-cell imaging, 50-fr substacks were acquired at 10-min intervals 
with a ABBAABB sequence switching between A, 1 ms of 405-nm laser 
activation and B, 25 ms of 488-nm laser excitation.

To culture cells on polyacrylamide gel, U2OS cells expressing 
endogenously tagged paxillin-GFP22 were cultured as described in the 
previous section. Cells were left to spread on ∼9.6 kPa polyacrylamide 
gel and were imaged using a SDC microscope with a ×63 objective 
(NA 1.15 water, LD C-Apochromat) objective (Zeiss) and an acquisition 
time of 100 ms. One hundred frames were used for the eSRRF recon-
struction. The parameter sweep option as well as SQUIRREL analyses 
(resolution-scaled error and RSP values), integrated within eSRRF, were 
used to define the optimal reconstruction parameters.

The spheroids were based on MCF10DCIS.com (DCIS.com) 
lifeact-RFP cells77 cultured in a 1:1 mix of DMEM (D1152, Sigma) and F12 
(51651C, Sigma) supplemented with 5% horse serum (16050-122; GIBCO 
BRL), 20 ng ml−1 human EGF (E9644; Sigma-Aldrich), 0.5 mg ml−1 hydro-
cortisone (H0888-1G; Sigma-Aldrich), 100 ng ml−1 cholera toxin (C8052-
1MG; Sigma-Aldrich), 10 μg ml−1 insulin (I9278-5ML; Sigma-Aldrich) 
and 1% (v/v) penstrep (P0781-100ML; Sigma-Aldrich). Parental DCIS.
com cells were provided by J.F. Marshall (Barts Cancer Institute, 
Queen Mary University of London). To form spheroids, DCIS.com cells 
expressing lifeact-RFP were seeded as single cells, in standard growth 
medium, at low density (3,000 cells per well) on growth factor-reduced 
Matrigel-coated glass-bottom dishes (coverslip no. 0; MatTek). After 
12 h, the medium was replaced by a normal growth medium supple-
mented with 2% (v/v) growth factor-reduced Matrigel and 10 µg ml−1 of 
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FITC-collagen (type I collagen from bovine skin, C4361, Merck). After 
3 d, spheroids were fixed with 4% PFA for 10 min at room temperature 
and imaged using a SDC microscope. The microscope used, as well as 
the image processing, are as described in the previous section.

Zebrafish (Danio rerio) housing and experimentation were 
performed under license MMM/465/712-93 (issued by the Min-
istry of Agriculture and Forestry, Finland). Transgenic zebrafish 
embryos expressing mcherryCAAX in the endothelium (genotype 
Tg(KDR:mcherryCAAX)) were cultured at 28.5 °C in E3 medium (5 mM 
NaCl, 0.17 mM KCl, 0.33 mM CaCl2 and 0.33 mM MgSO4). At 2 d after 
fertilization, embryos were mounted in 0.7% low-melting-point agarose 
on glass-bottom dishes. Agarose was overlaid with E3 medium sup-
plemented with 160 mg l−1 tricaine (E10521, Sigma). Imaging was per-
formed at 28.5 °C using a SDC microscope. The microscope used, as well 
as the image processing, are as described in the previous section with 
the exception that 150 frames were used for the eSRRF reconstruction.

Multifocus microscopy sample preparation and acquisition
HeLa cells (ATCC CRM-CCL-2) were cultured in complete medium 
(DMEM (11880, Thermo Fisher Scientific) + 1% Glutamax + 1% penstrep 
supplemented with 10% FBS (26140079, Thermo Fisher Scientific)) and 
transfected with TOM20 (translocase of outer mitochondrial mem-
brane) fused to HaloTag. TOM20–HaloTag was labeled with Janelia 
fluor 549 HaloTag ligand (GA1110, Promega) by incubating the dye at 
10 nM in DMEM medium for 15 min at 37 °C. MFM imaging was per-
formed in DMEM without phenol red medium. The MFM setup used 
was described in detail by Hajj et al.44, where excitation was performed 
with the 555 nm line of a Lumencor Spectra light engine and imaging 
was performed using a Nikon Plan Apo ×100 oil immersion objective 
with NA 1.4. Images of all nine focal planes were captured on an Andor 
DU-897 EMCCD camera at a rate of 20 ms per frame. The focus offset 
dz was 390 nm between consecutive focal planes.

The 3D image registration was performed based on multicolor 
fluorescent beads (TetraSpeck Fluorescent Microspheres kit; T14792, 
Invitrogen), immobilized on a coverslip. Images of the beads were 
recorded while axially displacing the sample with a z-step size of 60 nm.

To overlay and align the nine focal planes, a calibration table was 
created based on the bead images with the NanoJ-eSRRF plugin tool 
‘Get spatial registration from MFM data’ (NanoJ-eSRRF>Tools>Get 
spatial registration from MFM data). This spatial registration was 
applied to the live-cell MFM data during the 3D eSRRF processing (a 
detailed manual can be found at https://github.com/HenriquesLab/ 
NanoJ-eSRRF/wiki).

To extract the shape of the MFM PSF in the different focal 
planes (Supplementary Fig. 7), the 3D PSF was extracted from 
the bead reference with the respective NanoJ-eSRRF plugin tool 
(NanoJ-eSRRF>Tools>Extract 3D PSF from stack).

Deconvolution was performed with the classic maximum likeli-
hood estimation algorithm in the Huygens Professional v.21.10 (Scien-
tific Volume Imaging, The Netherlands, http.//svi.nl). The 3D-rendered 
images were created with napari78.

Estimation of image resolution
To estimate the image resolution based on FRC with the NanoJ-SQIRREL 
ImageJ plugin32, the raw time-series image stacks were split into even 
and odd frames. The independent image sequences were analyzed 
with SRRF, eSRRF or ThunderSTORM and based on the resulting pairs 
of processed images, the resolution was estimated by FRC reporting 
the mean and s.d. of the resolution in equally sized subregions of the 
image. Image resolution was also assessed by decorrelation analysis 
with the ImageJ plugin ImageDecorrelationAnalysis49.

Statistics and reproducibility
Figures show representative data from 4 (Fig. 1, Extended Data Fig. 2 
and Supplementary Fig. 1), 55 (Fig. 2a–c), 2 (Figs. 2d,e and 3b–e and 

Extended Data Figs. 5a, 7 and 8a), 3 (Figs. 4 and 3a, Extended Data  
Figs. 3, 5b and 10 and Supplementary Figs. 2, 3, 4 and 6), 24 (Extended 
Data Figs. 1 and 8b), 8 (Extended Data Fig. 4), 90 (Extended Data  
Fig. 6), 6 (Extended Data Figs. 1 and 8c) and 7 (Extended Data Fig. 9) 
independent experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets are available on Zenodo at https://doi.org/10.5281/
zenodo.6466472 (ref. 79).

Code availability
eSRRF is available as a supplementary software or can be accessed from 
the GitHub page at https://github.com/HenriquesLab/NanoJ-eSRRF. 
This resource is fully open-source and includes a Wiki manual.
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Extended Data Fig. 1 | Comparison of interpolation methods in the 
reconstruction of SRRF images. The presence of macro-pixel artifacts is 
apparent in both the spatial (left column), and frequency domain (right column) 
and for AVG (upper row) and VAR temporal analysis reconstruction (lower row) 

for all interpolation methods apart from the FFT-based interpolation. Data 
shown corresponds to live COS-7 cells expressing PrSS-mEmerald-KDEL acquired 
using HiLO-TIRF. Scale bars 2 µm.
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Extended Data Fig. 2 | Direct comparison of the resolution performance of 
SRRF, eSRRF and SIM with an ARGO-SIM calibration slide. a Fluorescence 
image of the gradually spaced line pattern on the ARGO-SIM calibration slide 
which displays line pairs with a distance increase of 30 nm per column. b Image 
sections of the area marked by red dashed outline across pattern #5 to #9 
(120–240 nm line spacings) of a diffraction-limited (WF) image and the respective 

super-resolved reconstructions achieved by SRRF (TRA, M = 2, R = 0.6, A = 2, 
nfr = 5000), eSRRF (AVG, M = 2, R = 1, S = 2, nfr = 5000) and SIM processing,  
c Intensity profiles across pattern #5 and #6 (as indicated by red line in b) allow 
to resolve the line pair #5 with a distance of 120 nm only in the case of eSRRF and 
SIM reconstruction, while these lines are not distinguishable in the case of SRRF 
processing and for the WF data. Scale bar: 5 µm.
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Extended Data Fig. 3 | SQUIRREL comparison of SRRF and eSRRF. eSRRF of the actin network (GFP-UtrCH expression, 100 frames at 33 frames/s) in live COS-7 cells 
shows an improved fidelity with a retained FRC resolution range. The dataset was published before in Culley et al.21.
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Extended Data Fig. 4 | Temporal analyses of SMLM data as a function of 
the density of emitters in the raw data images. The reconstructed images 
are shown in increasing emitter density from left to right. The corresponding 

average nearest-neighbor distance in the binned raw data is stated in each panel. 
The wide-field and SMLM equivalents are shown on the left for comparison.  
Scale bar 1 µm.
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Extended Data Fig. 5 | Super-resolution imaging of a living cell presenting 
tubulin bundles within a cultured neuron with SIM and eSRRF. a The 
microtubule network in a cultured neuron expressing Tubulin-eGFP can 
be visualized with SIM at a resolution level (WF-FRC: 253 ± 74 nm, SIM-FRC: 
202 ± 47 nm) which allows to resolve microtubule bundles in single dendrites. 
b In cultured neuron expressing Skylan-NS-Tubulin imaged using TIRFM 
successful eSRRF processing requires user intervention in eSRRF parameter 
selection due to the local variability and nonlinearity of the QnR map. Especially 
in large field-of-view images, distinct structural features and variability 

in marker density result in different optimal parameters for eSRRF super-
resolution processing. For example, in this 100 µm × 60 µm image of the 
microtubule network regions i & ii display a QnR maximum (marked by the red 
square) at different positions within the parameter sweep map (left to right: 
R = 3.0–7.5 in steps of 0.5, top to bottom: S = 1–6 in steps of 1). Furthermore, the 
QnR map can be nonlinear and especially in the case of pronounced secondary 
QnR maxima (marked by black squares in iii & iv) user intervention is required to 
judge which parameter set yields the best compromise of resolution and fidelity. 
Scale bar in a&b 5 µm, inset i-iv) scale bars 2 µm.
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Extended Data Fig. 6 | Finding optimal parameters for SRRF with the 
parameter sweep. a RSP and normalized FRC resolution maps as functions of 
ring Radius (R) and number of Axes in the ring (A) reconstruction parameters for 
SRRF image reconstruction of the gradually spaced line pattern on the ARGO-
SIM calibration slide. b The compromise between fidelity and FRC resolution is 
represented in the respective QnR metric map. c Wide-field image, optimal SRRF 

reconstruction (i, R = 0.8, A = 8, QnR=0.94), reconstruction with high resolution, 
but with patterning artifacts (ii, R = 0.6, A = 2, QnR=0.89) and low fidelity, low 
resolution reconstruction (iii, R = 1.6, A = 8, QnR=0.67) of an image section with 
pattern #5 (120 nm), #6 (150 nm) and #7 (180 nm). d The line profiles across the 
SRRF reconstructions i, ii, and iii show that pattern #5 can’t be resolved by any of 
the parameter sets.
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Extended Data Fig. 7 | Increasing temporal sampling by rolling window 
analysis. a Super-resolved temporal image stack is reconstructed by analyzing 
consecutive frame windows (linear analysis). A rolling window analysis with a 
frame gap of less than the window size, similar to what has been implemented 
for SIM80,81, allows to increase the temporal sampling rate and can translate into a 
higher temporal resolution without sacrificing spatial resolution. b This allows to 
visualize dynamic rearrangement of the endoplasmic reticulum (ER, red arrow) 

acquired by live-cell HiLO-TIRF of COS-7 cells expressing PrSS-mEmerald-KDEL at 
a frame rate of 1 Hz with a 100 frame-window linear eSRRF analysis. c The rolling 
window analysis with a frame gap of 10 frame allows to increase the temporal 
sampling to 10 Hz, thus, revealing the substeps of the ER tubule formation 
or rearrangement (red arrow), image section width 3 µm, FRC resolution 
(mean ± standard deviation): eSRRF: 143 ± 56 nm, Scale bar 2 µm.
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Extended Data Fig. 8 | eSRRF enhances spinning-disk confocal imaging deep 
inside fixed and live cells, spheroid and organisms. a U2OS cells expressing 
endogenously tagged paxillin were plated on 9.6 kPa polyacrylamide (PAM) 
gels and were imaged live using a spinning-disk confocal (SDC, resolution 
estimate: FRC = 573.0 ± 7.2 nm) and processed with eSRRF (resolution estimate: 
FRC = 197 ± 34 nm). b DCIS.com lifeact-RFP cells forming a spheroid in 3D 
matrigel in the presence of fluorescently labeled collagen I. Samples were fixed 
and imaged using a spinning-disk confocal microscope (resolution estimate: 
FRC(Actin)= 569 ± 59 nm/FRC(Collagen I) = 583 ± 14 nm) and processed 
using eSRRF (resolution estimate: FRC(Actin)= 229 ± 97 nm/FRC(Collagen 
I) = 130 ± 36 nm). Representative fields of view highlighting the spheroids’ middle 

and bottom planes are displayed. c Zebrafish embryos expressing mcherryCAAX 
in the endothelium were imaged live using a spinning-disk confocal. Vessels 
located at different parts of the embryo were imaged. For all panels, the eSRRF 
reconstructed images (resolution estimate: FRC(top) = 194 ± 37 nm/FRC(middle) 
= 393 ± 23 nm/FRC(bottom)= 307 ± 60 nm) and the original spinning disk images 
are displayed (resolution estimate: FRC(top) = 641 ± 82 nm/FRC(middle)= 
573.9 ± 5.7 nm/FRC(bottom)= 575.9 ± 7.9 nm). The ROI zoom-ins are marked by 
white squares and the line profile position is marked in the eSRRF zoom-in by a 
white line. Intensity profiles of the diffraction-limited SDC data (dashed line) and 
eSRRF reconstruction are plotted in the panel on the very right. Scale bars 25 μm.
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Extended Data Fig. 9 | 3D eSRRF on a simulated woodpile structure dataset 
at different emitter densities. a A woodpile structure with filaments along 
the x- and y-axis with varying axial distances ∆z served as a ground truth 3D 
architecture. b From a simulated fluorescence imaging stacks at nine focal 
planes based on the ground truth architecture (white lines) a 3D view as directly 
observed in a MFM can be rendered. c 3D eSRRF processing of the simulated 
datasets allows to enhance the lateral and axial resolution. d Representative 
image frames with a width of 5 µm of simulated datasets generated at five 

different emitter densities ranging over two orders of magnitude from an average 
next neighbor distance dNN of 469 nm to 5 nm. e-h Axial profiles of filaments 
crossing at a distance ∆z of 350 nm (e), 400 nm (f), 500 nm (g) and 600 nm 
(h) for a sum of all simulated images (black dashed line), a deconvolved 3D 
reconstruction (black solid line) or eSRRF reconstructions of image stacks with 
very low (red), low (orange), medium (yellow), high (cyan) and very high (green) 
emitter densities. Scale bar 500 nm.
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Extended Data Fig. 10 | Deconvolved 3D image stack of U2OS cells expressing TOM20-Halo, loaded with JF549 acquired with MFM. a 3D rendering, b single z-slice 
and c single cropped y-slice. i) and ii) are the line profiles in x,y and z-plane displayed in Fig. 4. Scale bars 2 µm.
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