Abstract
Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dimensional label-free phase imaging techniques that exploit refractive index as an intrinsic optical imaging contrast. In particular, we discuss artificial intelligence-based analysis methodologies for biomedical studies including image enhancement, segmentation of cellular or subcellular structures, classification of types of biological samples and image translation to furnish subcellular and histochemical information from label-free phase images. We also discuss the advantages and challenges of artificial intelligence-enabled quantitative phase imaging analyses, summarize recent notable applications in the life sciences, and cover the potential of this field for basic and industrial research in the life sciences.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Milestones in light microscopy. Nat. Cell Biol. 11, 1165 (2009).
Lee, K. et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors 13, 4170–4191 (2013).
Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201 (2016).
Popescu, G. Quantitative phase imaging of cells and tissues (McGraw-Hill Education, 2011).
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).
Nomarski, G. Microinterféromètre différentiel à ondes polarisées. J. Phys. Rad. 16, 9S–13S (1955).
Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).
Popescu, G., Ikeda, T., Dasari, R. R. & Feld, M. S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006).
Ikeda, T., Popescu, G., Dasari, R. R. & Feld, M. S. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167 (2005).
Zuo, C. et al. Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020).
Soto, J. M., Rodrigo, J. A. & Alieva, T. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited]. Appl. Opt. 57, A205–A214 (2018).
Baek, Y. & Park, Y. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics 15, 354–360 (2021).
Tian, L. & Waller, L. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express 23, 11394–11403 (2015).
Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739–745 (2013).
Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. für. Mikroskop. Anat. 9, 413–468 (1873).
Skylaki, S., Hilsenbeck, O. & Schroeder, T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 34, 1137–1144 (2016).
Magidson, V. & Khodjakov, A. Circumventing photodamage in live-cell microscopy. Methods Cell. Biol. 114, 545–560 (2013).
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).
Weber, M., Mickoleit, M. & Huisken, J. Light sheet microscopy. Methods Cell. Biol. 123, 193–215 (2014).
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).
Axelrod, D., Burghardt, T. P. & Thompson, N. L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).
Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).
Subedi, N. R. et al. Integrative quantitative-phase and airy light-sheet imaging. Sci. Rep. 10, 20150 (2020).
Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017).
Lee, A. J. et al. Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. Biomed. Opt. Express 12, 6928–6939 (2021).
Ryu, D. et al. Label-free white blood cell classification using refractive index tomography and deep learning. BME Front. 2021, 9893804 (2021).
Kim, G. et al. Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. Light Sci. Appl. 11, 190 (2022). Rapid label-free classification of bacterial species using QPI and deep learning. The framework utilizes a single 3D QPI image to accurately classify different bacterial species, without the need for labeling.
Carrigan, S. D., Scott, G. & Tabrizian, M. Toward resolving the challenges of sepsis diagnosis. Clin. Chem. 50, 1301–1314 (2004).
Barer, R. Interference microscopy and mass determination. Nature 169, 366–367 (1952).
Davies, H. & Wilkins, M. Interference microscopy and mass determination. Nature 169, 541–541 (1952).
Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948). A demonstration of holographic microscopy.
Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693–2703 (1974).
Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997).
Yamaguchi, I., Kato, J.-i, Ohta, S. & Mizuno, J. Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 40, 6177–6186 (2001).
Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am 72, 156–160 (1982).
Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962).
Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011).
Bhaduri, B., Pham, H., Mir, M. & Popescu, G. Diffraction phase microscopy with white light. Opt. Lett. 37, 1094–1096 (2012).
Zheng, G., Shen, C., Jiang, S., Song, P. & Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 3, 207–223 (2021).
Oh, C., Isikman, S. O., Khademhosseinieh, B. & Ozcan, A. On-chip differential interference contrast microscopy using lensless digital holography. Opt. Express 18, 4717–4726 (2010).
Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009).
Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).
Seo, S., Su, T. -W., Tseng, D. K., Erlinger, A. & Ozcan, A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9, 777–787 (2009).
Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9, 889–895 (2012).
Su, T. -W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018–16022 (2012).
Zuo, C., Sun, J., Zhang, J., Hu, Y. & Chen, Q. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix. Opt. Express 23, 14314–14328 (2015).
Teague, M. R. Irradiance moments: their propagation and use for unique retrieval of phase. J. Opt. Soc. Am. 72, 1199–1209 (1982).
Teague, M. R. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983).
Tian, L. & Waller, L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica 2, 104–111 (2015).
Chen, M., Tian, L. & Waller, L. 3D differential phase contrast microscopy. Biomed. Opt. Express 7, 3940–3950 (2016).
Kandel, M. E. et al. Phase imaging with computational specificity (PICS) for measuring dry mass changes in sub-cellular compartments. Nat. Commun. 11, 6256 (2020).
Lee, M. et al. Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells. Elife 9, e49023 (2020). Study on dynamics of immunological synapses of CAR-T cells through automatic segmentation of the synapses from label-free QPI images using deep learning.
Goswami, N. et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light Sci. Appl. 10, 176 (2021).
Jo, Y. et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning. Nat. Cell Biol. 23, 1329–1337 (2021). Study on highly multiplexed virtual staining of label-free QPI images using deep learning. The framework transforms a single label-free cellular QPI image into multiple fluorescence-labeled images, providing multiple subcellular specificities simultaneously.
Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).
Isikman, S. O., Bishara, W. & Ozcan, A. Partially coherent lensfree tomographic microscopy. Appl. Opt. 50, H253–H264 (2011).
Isikman, S. O. et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl Acad. Sci. USA 108, 7296–7301 (2011).
Hugonnet, H., Lee, M. & Park, Y. Optimizing illumination in three-dimensional deconvolution microscopy for accurate refractive index tomography. Opt. Express 29, 6293–6301 (2021).
Hugonnet, H., Lee, M. J. & Park, Y. K. Quantitative phase and refractive index imaging of 3D objects via optical transfer function reshaping. Opt. Express 30, 13802–13809 (2022).
Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015).
Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl. 8, 82 (2019).
Fan, S., Smith-Dryden, S., Li, G. & Saleh, B. Reconstructing complex refractive-index of multiply-scattering media by use of iterative optical diffraction tomography. Opt. Express 28, 6846–6858 (2020).
Lee, M., Hugonnet, H. & Park, Y. Inverse problem solver for multiple light scattering using modified Born series. Optica 9, 177–182 (2022).
Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017).
Lee, M. et al. High-resolution assessment of multidimensional cellular mechanics using label-free refractive-index traction force microscopy. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528626 (2023).
Vasdekis, A. E. et al. Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging. Nat. Commun. 10, 848 (2019).
Kandel, M. E., Teng, K. W., Selvin, P. R. & Popescu, G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11, 647–655 (2017).
Lee, C. et al. Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. Lab Chip 21, 494–501 (2021).
Park, J. et al. Quantification of structural heterogeneity in H&E stained clear cell renal cell carcinoma using refractive index tomography. Biomed. Opt. Express 14, 1071–1081 (2023).
Bokemeyer, A. et al. Quantitative phase imaging using digital holographic microscopy reliably assesses morphology and reflects elastic properties of fibrotic intestinal tissue. Sci. Rep. 9, 19388 (2019).
Chetlur, S. et al. cudnn: efficient primitives for deep learning. Preprint at https://doi.org/10.48550/arXiv.1410.0759 (2014).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32, 8026–8037 (2019). Introduction of Pytorch, which enabled efficient access to deep learning frameworks, making it one of the most widely used machine learning libraries in the current era.
Abadi, M. et al. TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016). Introduction of TensorFlow, one of the most extensively utilized machine learning libraries, which has substantially enhanced the usability of machine learning algorithms.
Lim, J. et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express 23, 16933–16948 (2015).
Petrou, M. M. & Petrou, C. Image Processing: the Fundamentals (John Wiley & Sons, 2010).
Rivenson, Y., Zhang, Y., Gunaydin, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7, 17141 (2018). An early study on rapid image reconstruction in holographic imaging using deep learning.
Nguyen, T., Xue, Y., Li, Y., Tian, L. & Nehmetallah, G. Deep learning approach for Fourier ptychography microscopy. Opt. Express 26, 26470–26484 (2018).
Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921–943 (2019).
Wu, Y. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704–710 (2018).
Wu, Y. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light Sci. Appl. 8, 25 (2019).
Huang, L. et al. Holographic image reconstruction with phase recovery and autofocusing using recurrent neural networks. ACS Photonics 8, 1763–1774 (2021).
Chen, H., Huang, L., Liu, T. & Ozcan, A. Fourier Imager Network (FIN): a deep neural network for hologram reconstruction with superior external generalization. Light Sci. Appl. 11, 254 (2022).
Pirone, D. et al. Speeding up reconstruction of 3D tomograms in holographic flow cytometry via deep learning. Lab Chip 22, 793–804 (2022).
Xue, Y., Cheng, S., Li, Y. & Tian, L. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica 6, 618–629 (2019).
Dardikman-Yoffe, G. et al. PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. Biomed. Opt. Express 11, 1107–1121 (2020).
Ryu, D. et al. DeepRegularizer: rapid resolution enhancement of tomographic imaging using deep learning. IEEE Trans. Med. Imaging 40, 1508–1518 (2021).
Lim, J., Ayoub, A. B. & Psaltis, D. Three-dimensional tomography of red blood cells using deep learning. Adv. Photonics 2, 026001 (2020).
Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. IEEE International Conference on Computer Vision 2223–2232 (IEEE, 2017).
Yin, D. et al. Digital holographic reconstruction based on deep learning framework with unpaired data. IEEE Photonics J. 12, 1–12 (2019).
Zuo, C., Chen, Q., Qu, W. & Asundi, A. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Opt. Lett. 38, 1724–1726 (2013).
Zhang, Y. et al. PhaseGAN: a deep-learning phase-retrieval approach for unpaired datasets. Opt. Express 29, 19593–19604 (2021).
Chung, H., Huh, J., Kim, G., Park, Y. K. & Ye, J. C. Missing cone artifact removal in odt using unsupervised deep learning in the projection domain. IEEE Trans. Comput. Imaging 7, 747–758 (2021).
Huang, L. et al. Self-supervised learning of hologram reconstruction using physics consistency. Nat. Mach. Intell. 5, 895–907 (2023).
Ulyanov, D., Vedaldi, A. & Lempitsky, V. Deep image prior. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 9446–9454 (IEEE. 2018).
Wang, F. et al. Phase imaging with an untrained neural network. Light Sci. Appl. 9, 77 (2020).
Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Opt. Express 28, 12872–12896 (2020).
Huang, L., Yang, X., Liu, T. & Ozcan, A. Few-shot transfer learning for holographic image reconstruction using a recurrent neural network. APL Photonics 7, 070801 (2022).
Chang, T. et al. Calibration-free quantitative phase imaging using data-driven aberration modeling. Opt. Express 28, 34835–34847 (2020).
Park, D.-Y. & Park, J.-H. Hologram conversion for speckle free reconstruction using light field extraction and deep learning. Opt. Express 28, 5393–5409 (2020).
Chen, L., Chen, X., Cui, H., Long, Y. & Wu, J. Image enhancement in lensless inline holographic microscope by inter-modality learning with denoising convolutional neural network. Opt. Commun. 484, 126682 (2021).
Goy, A., Arthur, K., Li, S. & Barbastathis, G. Low photon count phase retrieval using deep learning. Phys. Rev. Lett. 121, 243902 (2018).
Deng, M., Li, S., Goy, A., Kang, I. & Barbastathis, G. Learning to synthesize: robust phase retrieval at low photon counts. Light Sci. Appl. 9, 36 (2020).
Choi, G. et al. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 27, 4927–4943 (2019).
Wu, Z. et al. SIMBA: scalable inversion in optical tomography using deep denoising priors. IEEE J. Sel. Top. Signal Process. 14, 1163–1175 (2020).
Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437–1443 (2017).
Liu, T. et al. Deep learning-based super-resolution in coherent imaging systems. Sci. Rep. 9, 3926 (2019). Resolution enhancement of both amplitude and phase images in a holographic imaging system using deep learning.
Yuan, Y. et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 701–710 (IEEE, 2018).
Rizwan, I., Haque, I. & Neubert, J. Deep learning approaches to biomedical image segmentation. Inform. Med. Unlocked 18, 100297 (2020).
Minaee, S. et al. Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523–3542 (2021).
Wang, P., Bista, R., Bhargava, R., Brand, R. E. & Liu, Y. Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis. Opt. Lett. 35, 2840–2842 (2010).
Pal, N. R. & Pal, S. K. A review on image segmentation techniques. Pattern Recognition 26, 1277–1294 (1993).
Nguyen, T. H. et al. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning. J. Biomed. Opt. 22, 36015 (2017).
Kandel, M. E. et al. Multiscale assay of unlabeled neurite dynamics using phase imaging with computational specificity. ACS Sens. 6, 1864–1874 (2021).
Kandel, M. E. et al. Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc. Natl Acad. Sci. USA 117, 18302–18309 (2020).
Lee, J. et al. Deep-learning-based label-free segmentation of cell nuclei in time-lapse refractive index tomograms. IEEE Access 7, 83449–83460 (2019).
Choi, J. et al. Label-free three-dimensional analyses of live cells with deep-learning-based segmentation exploiting refractive index distributions. Preprint at bioRxiv https://doi.org/10.1101/2021.05.23.445351 (2021).
Pirone, D. et al. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry. Nat. Photonics 16, 851–859 (2022).
Hugonnet, H. et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution. Adv. Photonics 3, 026004 (2021).
Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276 (2018).
Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016). An early study on the utilization of deep learning integrated with QPI for label-free cell type classification.
Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci. Adv. 3, e1700606 (2017).
Pavillon, N., Hobro, A. J., Akira, S. & Smith, N. I. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proc. Natl Acad. Sci. USA 115, E2676–E2685 (2018).
Go, T., Kim, J. H., Byeon, H. & Lee, S. J. Machine learning‐based in‐line holographic sensing of unstained malaria‐infected red blood cells. J. Biophotonics 11, e201800101 (2018).
Javidi, B. et al. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy. Opt. Express 26, 13614–13627 (2018).
Kim, G., Jo, Y., Cho, H., Min, H. S. & Park, Y. Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens. Bioelectron. 123, 69–76 (2019).
Ozaki, Y. et al. Label-free classification of cells based on supervised machine learning of subcellular structures. PLoS ONE 14, e0211347 (2019).
Karandikar, S. H. et al. Reagent-free and rapid assessment of T cell activation state using diffraction phase microscopy and deep learning. Anal. Chem. 91, 3405–3411 (2019).
Rubin, M. et al. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set. Med. Image Anal. 57, 176–185 (2019).
Park, S. et al. Label-free tomographic imaging of lipid droplets in foam cells for machine-learning-assisted therapeutic evaluation of targeted nanodrugs. ACS Nano 14, 1856–1865 (2020).
Belashov, A. V. et al. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 37, 346–352 (2020).
Lam, V. et al. Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging. J. Biomed. Opt. 25, 1–17 (2020).
Ryu, D. et al. Label-free 3D quantitative phase imaging cytometry with deep learning: identifying naive, memory, and senescent T cells. J. Immunol. 204, 86.5 (2020).
Singla, N. & Srivastava, V. Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size. Opt. Laser Technol. 130, 106335 (2020).
O’Connor, T., Anand, A., Andemariam, B. & Javidi, B. Deep learning-based cell identification and disease diagnosis using spatio-temporal cellular dynamics in compact digital holographic microscopy. Biomed. Opt. Express 11, 4491–4508 (2020).
Butola, A. et al. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci. Rep. 10, 13118 (2020).
Nissim, N., Dudaie, M., Barnea, I. & Shaked, N. T. Real‐time stain‐free classification of cancer cells and blood cells using interferometric phase microscopy and machine learning. Cytom. Part A 99, 511–523 (2021).
Paidi, S. K. et al. Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia. Biosens. Bioelectron. 190, 113403 (2021).
Işıl, C. A. A. et al. Phenotypic analysis of microalgae populations using label-free imaging flow cytometry and deep learning. ACS Photonics 8, 1232–1242 (2021). High-throughput classification of microalgae species using QPI and deep learning.
Shu, X. et al. Artificial‐intelligence‐enabled reagent‐free imaging hematology analyzer. Adv. Intell. Syst. 3, 2000277 (2021). Rapid label-free classification of white blood cells using QPI and deep learning techniques. The framework achieves accurate classification of various types of white blood cells including subtypes of lymphocytes.
Pirone, D. et al. Identification of drug-resistant cancer cells in flow cytometry combining 3D holographic tomography with machine learning. Sens. Actuators B 375, 132963 (2023).
Mirsky, S. K., Barnea, I., Levi, M., Greenspan, H. & Shaked, N. T. Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytom. Part A 91, 893–900 (2017).
Roitshtain, D. et al. Quantitative phase microscopy spatial signatures of cancer cells. Cytom. Part A 91, 482–493 (2017).
Zhang, J. K., He, Y. R., Sobh, N. & Popescu, G. Label-free colorectal cancer screening using deep learning and spatial light interference microscopy (SLIM). APL Photonics 5, 040805 (2020).
Wang, H. et al. Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light Sci. Appl. 9, 118 (2020).
Ben Baruch, S., Rotman-Nativ, N., Baram, A., Greenspan, H. & Shaked, N. T. Cancer-cell deep-learning classification by integrating quantitative-phase spatial and temporal fluctuations. Cells 10, 3353 (2021).
Rotman-Nativ, N. & Shaked, N. T. Live cancer cell classification based on quantitative phase spatial fluctuations and deep learning with a small training set. Front. Physics https://doi.org/10.3389/fphy.2021.754897 (2021).
Noy, L. et al. Sperm-cell DNA fragmentation prediction using label-free quantitative phase imaging and deep learning. Cytometry A 103, 470–478 (2022).
Liu, T. et al. Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning. Nat. Biomed. Eng 7, 1040–1052 (2023).
Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl. 8, 23 (2019). A key study of virtual staining of label-free QPI images of tissue slides using deep learning. Deep learning enabled the automatic transformation of label-free phase images of tissue slides into stained images, eliminating the need for chemical staining.
Wang, R. et al. Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning. Opt. Lett. 45, 5405–5408 (2020).
Nygate, Y. N. et al. Holographic virtual staining of individual biological cells. Proc. Natl Acad. Sci. USA 117, 9223–9231 (2020). An early study on virtual staining of label-free QPI images of sperm cells using deep learning. By transforming label-free phase images into histochemically labeled images, the study achieves virtual staining of the nucleus and other structures, facilitating rapid evaluation of the quality of individual sperm cells.
Ben-Yehuda, K. et al. Simultaneous morphology, motility, and fragmentation analysis of live individual sperm cells for male fertility evaluation. Adv. Intell. Syst. 4, 2100200 (2022).
Guo, S.-M. et al. Revealing architectural order with quantitative label-free imaging and deep learning. Elife 9, e55502 (2020).
Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).
Angelopoulos, A. N. et al. Image-to-image regression with distribution-free uncertainty quantification and applications in imaging. In Proc. 39th International Conference on Machine Learning, 162, 717–730 (2022).
Borhani, N., Kakkava, E., Moser, C. & Psaltis, D. Learning to see through multimode fibers. Optica 5, 960–966 (2018).
Li, S., Deng, M., Lee, J., Sinha, A. & Barbastathis, G. Imaging through glass diffusers using densely connected convolutional networks. Optica 5, 803–813 (2018).
Li, Y., Xue, Y. & Tian, L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181–1190 (2018).
Kang, I., Pang, S., Zhang, Q., Fang, N. & Barbastathis, G. Recurrent neural network reveals transparent objects through scattering media. Opt. Express 29, 5316–5326 (2021).
Kang, I., Goy, A. & Barbastathis, G. Dynamical machine learning volumetric reconstruction of objects’ interiors from limited angular views. Light Sci. Appl. 10, 74 (2021).
Kellman, M. R., Bostan, E., Repina, N. A. & Waller, L. Physics-based learned design: optimized coded-illumination for quantitative phase imaging. IEEE Trans. Comput. Imaging 5, 344–353 (2019).
Cheng, Y. F. et al. Illumination pattern design with deep learning for single-shot Fourier ptychographic microscopy. Opt. Express 27, 644–656 (2019).
Kim, K., Konda, P. C., Cooke, C. L., Appel, R. & Horstmeyer, R. Multi-element microscope optimization by a learned sensing network with composite physical layers. Opt. Lett. 45, 5684–5687 (2020).
Mengu, D. & Ozcan, A. All-optical phase recovery: diffractive computing for quantitative phase Imaging. Adv. Opt. Mater. 10, 2200281 (2022).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Mengu, D., Luo, Y., Rivenson, Y. & Ozcan, A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 3700114 (2020).
Li, J. et al. Spectrally encoded single-pixel machine vision using diffractive networks. Sci. Adv. 7, eabd7690 (2021).
Sakib Rahman, M. S. & Ozcan, A. Computer-free, all-optical reconstruction of holograms using diffractive networks. ACS Photonics 8, 3375–3384 (2021).
Yan, H. et al. Virtual optofluidic time-stretch quantitative phase imaging. APL Photonics 5, 046103 (2020).
Lee, K. C. et al. Quantitative phase imaging flow cytometry for ultra‐large‐scale single‐cell biophysical phenotyping. Cytometry A 95, 510–520 (2019).
Rodenburg, J. & Maiden, A. Ptychography. in Springer Handbook of Microscopy (eds. P. W. Hawkes & J. C. H. Spence) 819–904 (Springer, 2019).
Park, C., Lee, K., Baek, Y. & Park, Y. Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light modulator. Opt. Express 28, 39649–39659 (2020).
Wu, J.-L. et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl. 6, e16196 (2017).
Lai, Q. T. K. et al. High-speed laser-scanning biological microscopy using FACED. Nat. Protoc. 16, 4227–4264 (2021).
Yip, G. G. K. et al. Multimodal FACED imaging for large-scale single-cell morphological profiling. APL Photonics 6, 070801 (2021).
Acknowledgements
This work was supported by the National Research Foundation of Korea (2015R1A3A2066550, 2022M3H4A1A02074314, RS-2023-00241278), an Institute of Information & Communications Technology Planning & Evaluation (IITP; 2021-0-00745) grant funded by the Korea government (MSIT), a KAIST Institute of Technology Value Creation, Industry Liaison Center (G-CORE Project) grant funded by MSIT (N11230131), the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (HI21C0977, HR22C1605), the US National Science Foundation (NSF) Biophotonics Program, NSF PATHS-UP Engineering Research Center and Koç Group.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
D.H.R., M.J.L., D.R., H.-s.M. and Y.K.P. have financial interests in Tomocube, a company that commercializes holotomography and quantitative phase imaging instruments. A.O. has financial interests in Lucendi and Pictor Labs, companies that commercialize deep learning-enhanced microscopy and sensing systems for water quality and pathology applications, respectively. All other authors declare no competing interests.
Peer review
Peer review information
Nature Methods thanks Keisuke Goda, Jianglei Di and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Park, J., Bai, B., Ryu, D. et al. Artificial intelligence-enabled quantitative phase imaging methods for life sciences. Nat Methods 20, 1645–1660 (2023). https://doi.org/10.1038/s41592-023-02041-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-023-02041-4