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Clustered regularly interspaced short palindromic repeats (CRISPR)
screening coupled with single-cell RNA sequencing has emerged as a
powerful tool to characterize the effects of genetic perturbations on the

whole transcriptome at asingle-cell level. However, due to its sparsity

and complex structure, analysis of single-cell CRISPR screening datais
challenging. In particular, standard differential expression analysis methods
are often underpowered to detect genes affected by CRISPR perturbations.
We developed a statistical method for such data, called guided sparse factor
analysis (GSFA). GSFA infers latent factors that represent coregulated genes
or gene modules; by borrowing information from these factors, itinfers

the effects of genetic perturbations onindividual genes. We demonstrated
through extensive simulation studies that GSFA detects perturbation
effects with much higher power than state-of-the-art methods. Using
single-cell CRISPR data from human CD8" T cells and neural progenitor cells,
we showed that GSFA identified biologically relevant gene modules and
specific genes affected by CRISPR perturbations, many of which were missed
by existing methods, providing new insights into the functions of genes
involvedin T cell activation and neurodevelopment.

Thediscovery of CRISPR and development of the CRISPR-Cas9 system
for genomic editing has revolutionized biology"*. A powerful applica-
tion of the CRISPR-Cas9 system is pooled CRISPR screening, where
many genes or genomic sites are edited at the same time to screen
for genes with certain functions. This approach has enabled the dis-
covery of many genes involved in processes such as cell proliferation
and survival,immune responses and drug resistance’™., Technologies
such as CROP sequencing (CROP-seq)° and Perturb sequencing
(Perturb-seq)’ combine the multiplexed CRISPR screening approach
withsingle-cell RNA sequencing (scRNA-seq), providing comprehensive

molecular readouts of the target perturbations within single cells.
Single-cell CRISPR screening technologies have found many appli-
cations in studies of cellular differentiation, immune responses and
regulatory elements® ™.

Nevertheless, the analysis of single-cell CRISPR screening data is
challenging. Standard differential gene expression (DGE) analysis'> ™,
when applied to single-cell screening data, can be underpowered
because of the sparsity and noise inherent to scRNA-seq data, and the
relatively small numbers of cells per perturbation (often hundreds or
less) intypical experiments. Another commonly used analysis method
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is clustering cells based on their transcriptome similarity and then
assessing whether cells with a specific perturbation are enriched or
depleted in any cluster'®”, However, the clustering approach has a
conceptual flaw. Cell clustering patterns may be driven by multiple
biological processes. Evenifa perturbationis associated witha cluster,
itdoes not necessarily mean that the perturbation affects all the genes
or biological processes associated with that cluster, a point we dem-
onstrate with simulations. Thus, this clustering-based approach does
notexplicitly link the perturbations with the affected genes. Given the
limitations of standard DGE and clustering-based analyses, statistical
methods that accommodate the unique features and complexities of
single-cell CRISPR screening data are greatly needed.

Our proposed approach is motivated by the observation that
genetic perturbations typically affect expression, not one gene at
a time, but many related genes simultaneously. Indeed, single-cell
CRISPR experiments often target key regulators such as transcrip-
tion factors, which coordinate the expression of many genes. These
‘gene modules’ can be inferred by matrix factorization and related
techniques'®?. We propose inferring gene modules from scRNA-seq
data and borrowing information across genes to improve the power
of detecting DEGs. Existing factor analysis methods, however, are
not readily applied to single-cell CRISPR screening data because
the factors are not directly linked with genetic perturbation and the
effects of perturbation onindividual genes are not assessed.

In this study, we present guided sparse factor analysis (GSFA), a
framework for analyzing single-cell CRISPR screening data that bridges
factor analysis and differential expression analysis. GSFA assumes
the effects of genetic perturbations are mediated through a set of
gene modules, mathematically represented as latent factors. GSFA
evaluates associations of the genetic perturbations with these latent
factors, providing information on the module-level effects of the
perturbations. Compared with single-gene differential expression
analysis, this factor association analysis may be more sensitive. Indeed,
expression of asingle geneisinfluenced by potentially many sources;
in contrast, latent factors represent main dimensions of variation
of many genes and can be thought of as ‘denoised’ versions of gene
expression. While our approachis formulatedin terms of latent factors,
we still summarize the effects of a perturbation onindividual genes as
the sum of effects mediated by all the factors. We benchmarked our
method through extensive simulation studies and real data applica-
tions. GSFA identifies biologically relevant modules and has better
power to detect differentially expressed genes (DEGs) than alternative
methods, providing insights into the biology of T cell activation and
neuronal differentiation.

Results
Overview of GSFA
GSFAisaBayesian statistical model that unifies factor analysis and esti-
mation of the effects of target perturbations. The input of GSFA consists
of two matrices: anormalized gene expression matrix across cells; and
a‘perturbation matrix’ that records guide RNA (gRNA) perturbations
ineachcell (Fig.1). GSFA assumes that the perturbation of atarget gene
affects certain latent factors, which in turn changes the expression of
individual genes. These assumptionslead toatwo-layer model. Inthefirst
layer, the expression matrix (¥) is decomposed into the product of the
factor matrix (Z) and the weights of genes onfactors (gene loading, W).
In the second layer, GSFA captures the dependency of factors (Z) on
perturbations (G) viaa multivariate linear regression model (Fig. 1).
The main unknowns of the model are the factor matrix (2), the
gene loading on factors (W) and the effects of perturbations on the
factors (f5). We assume a standard normal prior distribution of Zand a
‘spike-and-slab’ prior of 8, assuming that the effects come from either
anormaldistribution or apoint mass at O (ref. 24). This sparse prior of
B encodes the intuition that a genetic perturbation probably affects
only asmall number of factors. For the gene loading matrix W, we also

used asparse prior tolimit the number of genes contributing toafactor,
facilitating the biological interpretation of factors. We evaluated two
choices, the standard spike-and-slab prior and a normal-mixture prior
(Methods), where the effect is sampled from a mixture of two normal
distributions, one ‘foreground’ component capturing true effects and
the other a ‘background’ component absorbing small effects*?. The
normal-mixture prior led to better results in our simulations, so it was
used as our default prior.

We used a Gibbs sampling algorithm to obtain posterior samples of
the model parameters. For any parameter with asparse prior, the prob-
ability that it was sampled from the sparse component was denoted
asaposterior inclusion probability (PIP). PIPs quantify whether a per-
turbation affects a certain factor or whether a gene has loading on a
factor. Thefactors canthenbeinterpreted, forexample, through gene
ontology (GO) enrichmentanalysis of genesloaded on the factors. How-
ever,whenaperturbation affects multiple factors, it can be difficult to
synthesize its effects across all affected factors. GSFA provides a way
to integrate information over all factors to calculate the total effect
of a target perturbation on individual genes. This total effect is the
product of the perturbation-to-factor effects and the gene-on-factor
loading, summed over all factors (Fig. 1). The significance of the sum-
marized total effect is evaluated using alocal false sign rate (LFSR)”, a
summary of the posterior distribution similar to alocal false discovery
rate (LFDR) (Methods). The number of factors, K, is a user-defined
parameter. We provide guidance on the selection of K based on how
much variance of gene expression is explained by the latent factors
(Supplementary Note 4).

In applying GSFA to scRNA-seq data, we first converted the raw
unique molecular identifier (UMI) counts into deviance residuals®,
a continuous quantity analogous to z-scores. Compared to the com-
monly used log transformation, the deviance residual transformation
improves the downstream analyses, such as feature selection and clus-
tering (Supplementary Note 2.1). In the CRISPR experiments, negative
control gRNAs are oftenintroduced to capture the nonspecific effects
of gRNAs. GSFA allows one to remove nonspecific effects by comparing
target gRNAs versus negative control gRNAs (Methods). GSFA produces
three main outputs (Fig. 1, bottom): the association between genetic
perturbations and factors; the weights of genes on factors measured
by PIPs; and alist of DEGs of each perturbation at a given LFSR cutoff.
In cases where the experiment involves multiple cell types or condi-
tions, GSFA can produce different DEGs for each cell type or condition
separately (Supplementary Note 3.2).

Simulation study demonstrates the advantages of GSFA

We evaluated the performance of GSFA under two settings. In the first
simulation setting, referred to as the ‘normal distribution scenario’,
we generated continuous gene expression levels with anormal error
distribution according to the GSFA model (Methods). Each dataset
consisted of 4,000 cells, 6,000 genes, six types of perturbations
and ten latent factors. Each perturbation occurs in approximately
5% of cells, mimicking real multiplex CRISPR screening assays. The
proportion of genes with nonzero effects on each factor, referred to
as factor density, varies from 5% to 20%. For simplicity, each pertur-
bation is associated with a distinct factor. The second ‘count-based’
simulation setting mimics real scRNA-seq UMI data. We converted
normally distributed expression levels into count data according
to Poisson distributions (Methods). Other simulation parameters
remained the same.

Simulated data allowed us to evaluate model choice, particularly
the prior distribution on gene weights (W) in count-based data. From
our simulations, factors inferred under the spike-and-slab prior some-
times resulted in factors much denser than the ground truth, while
the normal-mixture prior led to sparser gene weights (Extended Data
Fig.1a). Thisjustifies our choice of normal-mixture prior as the default
prior for read count data.
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Fig.1| GSFA model and its application on real data. Top, the input of the GSFA
includes the perturbation matrix and the gene expression matrix. Bottom, the
output of GSFA includes the effects of perturbations on targets (8), the gene

loading matrix (W) and the list of genes affected by each perturbation after
LFSR thresholding. The box shows how the GSFA calculates the total effect of a
perturbation on the expression of individual genes.

To evaluate the performance of GSFA in factor inference, we quan-
tified the correlation between inferred and true factors. Across all
scenarios, inferred factors were highly correlated with true factors
(Fig. 2a,b). GSFA also recovered genes with nonzero loading on the
factors.Indeed, genes with PIPs above 0.95 were generally true genes,
with observed false discovery proportions (FDPs) below 0.1 when the
true factor density was less than 0.2 (Extended Data Fig. 1b,c).

Next, we evaluated the performance of GSFA in detecting the
effects of perturbations on factors. Across all scenarios, GSFA esti-
mated these effects accurately (Fig. 2c,d). A small downward bias of
estimated effects was expected, given the sparse prior we imposed.
We further assessed the calibration of the PIPs of these effects. At a
PIPthreshold of 0.95and atrue factor density level below 0.2, the pro-
portion of falsely detected effects was generally below 0.1 (Extended
DataFig.1d,e).

We then compared the performance of GSFA in detecting genes
affected by perturbations, with commonly used DEG analysis methods:
the Welch’s t-test”; the edgeR quasi-likelihood F-test (edgeR-QLF)"; and
MAST, amethod designed for single-cell analysis*’. GSFA outperformed
the other methods in both sensitivity and specificity under all scenarios
(Fig. 2e and Supplementary Figs.1and 2). In addition, DEGs detected
by GSFA at an LFSR < 0.05 have observed FDPs well below 0.05 in
most cases, while edgeR and ¢-test DEGs show substantial inflation
under the count-based scenarios (Fig. 2f and Extended Data Fig. 1f).

In the GSFA results presented so far, we used the true value of K
(ten), thenumber of factors. We verified that our procedure of selecting

Kledtoanestimated value close to ten, and the results were generally
robust to K (Supplementary Fig. 3).

In addition, we used the simulations to compare GSFA with a
commonly used clustering-based procedure, where one clusters cells
first and then detects associations of perturbations with clusters. We
thought this approach may lead to misleading results. To see this, we
defined a list of likely target genes for each perturbation based on
clustering. Specifically, for each perturbation, we found all clusters
associated with that perturbation, obtained the DEGs of each cluster
by comparing the cluster with the others and finally took the union
of DEGs from all associated clusters of that perturbation to generate
potential target genes. The resulting lists were compared with the
true target genes of the perturbations. We found that this two-step
clustering approach had high false positive rates, often above 50%,
in our simulations (Extended Data Fig. 2). Additionally, the power of
the clustering approach is substantially lower than GSFA (Extended
DataFig. 2). These results highlight the weakness of clustering-based
analysis and the advantages of GSFA.

Finally, we evaluated GSFA under different parameter settings. In
one setting, we introduced a special ‘negative control’ perturbation
and changed the effect sizes of the perturbations on factors to mimic
the nonspecific effects of gRNA perturbation on gene expression (see
Supplementary Table 6 for the effect-size matrix). GSFA adjusted the
nonspecific effects, leading to accurate parameter estimation and
calibrated LSFR (Extended DataFig. 3). In another setting, we allowed
each perturbation to affect multiple factors (Supplementary Table 7).
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We then compared GSFA with a two-step factor analysis procedure,
where one first performs factor analysis on the expression data and
then associates perturbations with factors. This type of procedure has
been used in previous single-cell CRISPR screening data®. To use this
procedure for DEG analysis, we defined the targets of aperturbation as
theunion of allgenesloaded on the factors associated with this pertur-
bation. We found that the false positive rates of the two-step procedure
were substantially higher than the GSFA (Extended DataFig. 4). Inthe
last setting, we used a real scRNA-seq dataset and introduced gRNAs
to perturb gene expression. Instead of using factors, we randomly
chose genes as the targets of the gRNAs. This simulation also demon-
strated that GSFA was better at detecting the target genes of gRNAs than
existing methods (Extended Data Fig. 5).

Through these simulations, we demonstrated that GSFA is a
powerful method toidentify gene modules and specific genes affected
by CRISPR perturbations.

GSFA reveals the downstream effects of T cell regulators

We applied GSFA to a CROP-seq dataset of primary human CD8* T cells™.
The study targeted 20 genes involved in the T cell response, in stimu-
lated and unstimulated T cells, and applied a clustering approach to
characterize the effects of each perturbation. Although the authors
found that perturbations of some genes were correlated with clusters
characterized by T cell activation, many other genes were not associated
with any cluster. Moreover, the study lacked systematic differential
expression analysis to reveal specific genes affected by perturbations.

Whenapplying GSFA, we allowed perturbations to have different
effects onfactorsinstimulated and unstimulated cells (Methods). We
ran GSFA with 20 factors and verified that the results were generally
robust to the number of factors (Supplementary Figs. 4 and 5). We
found 24 associations (PIP > 0.95) between perturbations and factors
in stimulated cells that involved eight gRNA-targeted genes (Fig. 3a
for a subset of factors; full results in Extended Data Fig. 6a). Among
these genes, the effects of ARIDIA, SOCS1and TCEB2were undetected
by clustering analysis in the original study (Fig. 3b). As expected, only
three pairs of associations were detected at PIP > 0.95 in unstimulated
cells (Extended Data Fig. 6b). We also confirmed, with permutation
analysis, that the full GSFA results, including the inferred perturbation
effects and gene loading, were calibrated (Supplementary Fig. 6a-c).
Altogether, these results highlight the power of GSFA to detect broad
effects of target genes on the latent factors.

For comparison, we also ran the model-based understanding
of single-cell CRISPR screening (MUSIC) method® to discover latent
factors. MUSIC first performs topic models, a technique related to
factor analysis, on the expression data; it then correlates the inferred
factors with genetic perturbations across cells. Unexpectedly, almost
allthe perturbations correlated with all 20 topics discovered by MUSIC
(Supplementary Fig. 7). These nonspecific findings made it difficult to
understand the functions of the perturbed genes, so we did not pursue
this analysis further.

To characterize the latent factors from the GSFA, we inspected
the weights of canonical marker genes (Supplementary Table 1 and

Extended Data Fig. 6¢) and performed GO enrichment analysis of genes
loaded onthe factors (Supplementary Table 2). For example, factors 2
and 9 have negative weights for the cell proliferation markers MKI67,
TOPBP1 and CENPF (Fig. 3c), and are enriched for GO terms related to
cell cycle and division (Fig. 3d). Factors 4 and 12 are associated with
markers of T cell activation or resting states (Fig. 3c) and are enriched
for GO terms related to immune responses (Fig. 3d). Together, these
results show that the latent factors discovered by GSFA represent cel-
lular processes.

We note that one perturbation may affect multiple factors repre-
senting related processes. For instance, CDKNIB perturbation is asso-
ciated with two cell cycle-related factors with opposite signs (factors
2and 9; Fig. 3a,c). This makes it difficult to understand its effects. We
thus used GSFA’s differential expression analysis (Fig. 1) to identify
specific downstream genes of the perturbations. We also ran other
DEG analysis methods for comparison, including MAST*°, DESeq2
(ref.12), edgeR-QLF" and two methods tailored to single-cell CRISPR
screening data, scMAGeCK-LR* and SCEPTRE®. Among these meth-
ods, edgeR-QLF showed severe inflation in permuted data (Methods
and Supplementary Fig. 6d-h); thus, it was excluded from further
analysis. In stimulated T cells, GSFA detected more than 100 DEGs at
anLFSR < 0.05for ten gene targets, five of which (ARIDIA, BTLA, DGKZ,
SOCS1 and TCEB2) were poorly characterized by clustering analysis
in the original study’’. Compared with other methods, GSFA consist-
ently detected the most DEGs across these ten targets, sometimes ten
times or more (Fig. 4a). Additionally, the DEGs of all ten target genes
detected by GSFA were enriched for biologically relevant GO terms,
while DEGs detected by other methods showed almost no GO enrich-
ment (Fig. 4b,c).

We further compared the genesidentified by GSFA and MAST, the
method that detected the second highest number of DEGs. Most DEGs
(>70%) from MAST were also discovered using GSFA (Extended Data
Fig.7a).Furthermore, alarge proportion of GSFA-detected genes has
low P values under MAST (Extended Data Fig. 7a). This suggests that
the GSFAresults were generally concordant with existing DEG analysis
methods. By using information from coregulated genes, GSFA detected
more DEGs whose significance fell below the statistical cutoff in the
existing methods.

We next characterized the functions of the ten target genes by
inspecting their effects onmarker genes. GSFA revealed many effects of
the target genes on the markers (Fig. 4d), many of which were missed by
other methods (Fig. 4e for scMAGeCK; Extended Data Fig. 6d-ffor the
others). The estimated effects by GSFA largely agreed with the known
functions of these genes. For instance, targeting of CDS, CBLB and
RASA2 had mostly positive effects on the markers of activated T cells,
and negative or no effects on the markers of resting T cells (Fig. 4d),
whichis consistent with the functions of these genes as negative regula-
tors of T cell activation™.

Our analysis provided insights on the functions of four (out of
five) new genes, ARIDIA, DGKZ, SOCS1 and TCEB2, whose effects were
poorly characterized inthe original study (Fig. 3b). The effect of TCEB2
perturbation on T cell markers is similar to those of other negative

Fig. 2| GSFA performance on simulated data. a, Distributions of the absolute
correlation values between true factors and the factors inferred by GSFA under
the normal setting. The different colors represent different values of true factor
density varying from 0.05to0 0.2. b, Same as in a but under count-based scenarios.
¢, Box plots of absolute effect sizes from perturbation factor regression
estimated by GSFA under the normal setting. The different colors represent
different values of true factor density varying from 0.05 to 0.2. For each box,
n=300 estimates generated from 300 rounds of simulation under the given
setting; the center line of the box represents the median; the lower and upper
hinges of the box correspond to the first and third quartiles; the upper and lower
whiskers extend from the hinge to the largest and smallest values no further than
1.5x the interquartile range from the hinge. d, Same asin cbut under count-based

scenarios. e, Receiver operating characteristic (ROC) curves of DEG discovery
under the count-based setting and three different levels of true factor density;
the four colors correspond to four DEG detection methods. The results shown are
of perturbations with a true association effect of 0.3 on factors. Each curve was
amean representation over 300 datasets generated under the corresponding
setting, with the mean area under the curve (AUC) labeled in colored text. See
Supplementary Figs.1and 2 for results under other settings. f, Distributions of
the observed FDPs among significant DEGs detected using GSFA (LFSR < 0.05)
and other methods (FDR < 0.05) per dataset under the count-based setting and
several true factor densities. The four colors correspond to four DEG detection
methods.
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regulators of T cell responses, such as CD5. DGKZ-affected genes are
enriched with GO terms related to the cell cycle (Fig. 4c) and DGKZ
perturbation led to reduced expression of cell proliferation markers.
These findings are consistent with the knownrole of DGKZinregulating
the cell cycle®. Targeting SOCSI has astrong effect on cell proliferation

markers (Fig. 4d). Accordingly, several genes of the SOCS family have
been reported toinhibit cell-cycle progression*. Targeting of ARIDIA,
achromatin remodeler and potential tumor suppressor®* %, had strong
negative effects on effector markers (Fig. 4d), suggesting its role as a
positive regulator of T cell activation. Indeed, ARID1IA mutations occur
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in many human cancer types and result in limited chromatin accessi-
bility and downregulation of interferon-responsive genes, leading to
poor tumor immunity?®,

Collectively, GSFA revealed detailed transcriptional effects of
genetic perturbations, including four genes largely missed by cluster-
ing or differential expression analysis with other tools. We constructed
aregulatory network to summarize our major findings of the functions
of nine target genes (Fig. 4f). Our results highlight the power of GSFA
inrevealing the detailed molecular effects of genetic perturbationsin
single-cell CRISPR screens.

GSFA reveals the transcriptomic effects of autismrisk genes
We next applied GSFA to CROP-seq data targeting 14 neurodevelop-
mental genes, including 13 autismrisk genes, in LUHMES human neural
progenitor cells®. After CRISPR targeting, cells were differentiated into
postmitotic neurons and sequenced. The authors then projected cells
onto a pseudotime trajectory, which approximates the progression
of neuronal differentiation, and associated the perturbations with
the pseudotime of cells. This analysis revealed the effects of several
target genes on neuronal differentiation. However, it provided limited
information on the molecular processes affected by the target genes
other than pseudotime.

After applying GSFA to this dataset, we first confirmed that GSFA
did not produce false positive findings in permutations (Supplemen-
tary Fig. 8). We found significant effects (PIP > 0.95) of six target genes,
includingADNP,ARIDIB,ASHIL, CHD2, PTEN and SETDS, on at least one
out of 20 latent factors (Fig. 5a for a subset of factors; Extended Data
Fig. 8a for the full results). Among the six genes, the transcrip-
tomic effects of ADNP and SETDS5 were missed in the original
pseudotime-based analysis (Fig. 5b). We characterized these fac-
tors by inspecting the weights of neuronal markers (Supplementary
Table 3 and Extended Data Fig. 8b) and GO enrichment analysis
(Supplementary Table 4). In factor 6, for example, the markers of
mature neurons such as MAP2 and NEFL had positive weights, while
negative regulators of neuron projection, such as /TM2C, had negative
weights (Fig. 5¢), suggesting that factor 6 is positively associated with
neuronal maturation. Indeed, factor 6 is significantly enriched for
gene sets involved in neuronal development (Fig. 5d). Factors 9 and
15, similarly, showed loadings of neuronal markers and were enriched
for relevant GO terms (Fig. 5¢,d).

We next identified the individual genes affected by the perturba-
tions. GSFA detected more than 100 DEGs at LFSR < 0.05 for the same
sixgene targets (Fig. 5e). Compared with other differential expression
analysis methods, GSFA detected the most DEGs for five out of six gene
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Fig. 4| GSFA results of the effects of genetic perturbation on gene expression
in CD8' T cell data. Results are based on stimulated CD8" T cells. a, Number

of DEGs detected under all perturbations using four different methods. The y
axis is log-scaled and the bar height corresponds to count +1 (as the number of
DEGs could be 0); the exact numbers of DEGs are labeled on top of the bars. The
detection threshold for DEGsis LFSR < 0.05 for GSFA and FDR < 0.05 for all other
methods. b, Number of GO Slim ‘biological process’ terms enriched in DEGs
detected using different methods. ¢, Heatmap of selected GO ‘biological process’
terms and their fold enrichment in DEGs (LFSR < 0.05) detected using GSFA
under different perturbations. d, GSFA estimated the effects of perturbations
onmarker genes in stimulated T cells. The sizes of the dots represent LFSR bins;

the colors of the dots represent the summarized effect sizes. e, scMAGeCK
estimated effects of perturbations on marker genes in stimulated T cells. The
sizes of the dots represent the FDR bins; the colors of the dots represent the
scMAGeCK selection scores. f, A target-marker-phenotype regulatory network
summarizing the GSFA results. Significant (LFSR < 0.05) regulatory relationships
between target and marker genes are represented by the colored arrows, with
the red sharp arrows indicating positive regulation of marker genes by the target
genes, and the blue blunt arrows indicating negative regulation. The darkness of
the color represents the relative effect magnitude. Note that the effect directions
here are the opposite of the perturbation effects.

targets (Fig. 5e). Furthermore, DEGs detected using GSFAwere enriched
for the most GO terms across almost all targets (Fig. 5f), many of which
are related to neuronal development or neural signaling (Extended
DataFig. 8c). Like our analysis of the T cell data, we also compared the
actual DEGs found using GSFA and other methods and found general
concordance (Extended Data Fig. 7b).

To understand the functions of these six target genes, we exam-
ined their effects on marker genes for neuron maturation and dif-
ferentiation. GSFA uncovered perturbation effects on several marker
genes across all targets except ARIDIB (Fig. 5g), while other meth-
ods detected fewer differentially expressed markers (Fig. 5h for
scMAGeCK; Extended DataFig. 8d-ffor DESeq2, MAST and SCEPTRE).
GSFA-estimated effects largely validated the known functions of these
genes on neuronal maturation phenotypes®. Targeting of ASHIL and
CHD2 had mostly negative effects on mature neuronal markers and
positive effects on negative regulators of neuron projection (Fig. 5g),
indicating delayed neuron maturation by the repression of these
genes. Knockdown of PTEN showed the opposite effects, suggesting its
opposite role on neuronal differentiation.

Twogenes, ADNPand SETDS, were missed in the pseudotime-based
analysis in the original study (Fig. 5b). The estimated effects of these
genes onneuronal markers by GSFA suggested that repression of ADNP
would lead to delayed neuronal differentiation, whereas SETDS repres-
sion would have the opposite effect (Fig. 5g). These predictions are
consistent with the experimental finding of ADNP* and with the finding
that SETDS knockdownincreases the proliferation of cortical progeni-
tor cells and neural stem cells*.

In conclusion, GSFA allowed us to characterize the transcriptional
effects of six autism spectrum disorder risk genes, including ADNPand
SETDS, whose effects were largely missed in the original study. While
GSFA missed the effect of CHD8 (Fig. 5b), we noticed that all the existing
DEG methodsalsolargely missed its effect (Fig. 5e). We summarized the
inferred target effects of GSFA on selected marker genes and affected
cellular processes in agene regulatory network (Fig. 5i).

Discussion
Single-cell CRISPR screening technologies have enabled efficient read-
outs of transcriptome-level effects of multiple genetic perturbations

inasingle experiment. These technologies offer great opportunities,
but also challenges for effective data analysis. We presented GSFA to
addressthese challenges. GSFA identifies gene modules thatrespond
togenetic perturbations; by summarizing the information fromthese
factors, it infers the effects of perturbations on downstream genes.
When applied to two CROP-seq datasets, the GSFA results shed light
on the molecular mechanisms of regulators of T cell activation and
neuronal differentiation, respectively.

The GSFA model is built on factor analysis*** and is related to
existing factor models. In particular, one could performafactor analy-
sisfirst onexpression dataand then correlate the genetic perturbations
with the inferred factors®. Compared with this two-step approach,
GSFA has several advantages. Wheninferring expression factors, GSFA
uses the genetic perturbation as a prior to improve the estimation
of the factors (hence ‘guided’ in the name of the methos; Methods).
GSFA also offers animportant advantage when a perturbation affects
multiple factors. With each topic representing a somewhat different
process, itis difficult tointerpret the possible effects of perturbations.
GSFA solves the challenge of the two-step procedure by synthesizing
the effects of perturbation over all factors and showed better control of
false discoveriesin simulations. GSFAis alsorelated to a class of factor
modelsin the statistics literature, sometimes called supervised factor
analysis, where the factors depend on covariates of the samples**.
These models can help improve the estimation of latent factors and
have been proposed in bulk gene expression data analysis*®, where
samples have different characteristics or experimental conditions. Nev-
ertheless, existing covariate-dependent factor models were designed
only for factorinference and do not provide estimates of the effects of
covariates (perturbations in our case) for specific genes.

GSFAisageneralstatisticalmodel and in principle can be applied
to any single-cell CRISPR screening dataset. In practice, it is better
suited for some settings than others. GSFA is most powerful when
the perturbations have large effect sizes, affecting the expression of
many genes. In some experiments”, researchers targeted noncoding
elements, whose effects may be small and limited to the expression of
nearby genes. GSFA may not be beneficial in such cases. Another key
consideration is the multiplicity of infection (MOI) in experiments. We
have applied GSFA to the low MOl setting, where a cell usually contains

Fig. 5| GSFA analysis of the CROP-seq data of LUHMES cells. a, Estimated
effects of gene perturbations on selected factors inferred using GSFA. The

size of adot represents the PIP of association; the color represents the effect
size.b, Venndiagram of targets identified from the original pseudotime
association analysis versus from the GSFA. ¢, Loading of neuronal marker genes
onselected factors. The size of adot represents the gene PIP ina factor and

the color represents the gene weight (magnitude of contribution) in a factor.
d, Fold of enrichment of selected GO ‘biological process’ terms enriched in
factors4,9and16 (g < 0.05). Each bar is colored using —log,, P values from

the overrepresentation test (an upper-tailed hypergeometric test), where
overlap of agene set with genes with PIP > 0.95 in the factor was compared
against that of all genes used in the GSFA. e, Number of DEGs detected under all
perturbations using four different methods. The y axisis log-scaled and the bar
height corresponds to count +1 (as the number of DEGs could be 0); the exact

number of DEGs is labeled above the bars. The detection threshold for DEGs is
LFSR < 0.05 for GSFA and FDR < 0.05 for all other methods. f, Number of GO Slim
‘biological process’ terms enriched in DEGs detected using different methods.
g, GSFA estimated effects of perturbations on marker genes. The sizes of the
dotsrepresent the LFSR bins; the colors of the dots represent the summarized
effect sizes. h, scMAGeCK estimated effects of perturbations on marker genes.
Thessizes of the dots represent the FDR bins; the colors of the dots represent the
scMAGeCK selection scores. i, Target-marker-phenotype regulatory network
summarizing the GSFA results. Significant (LFSR < 0.05) regulatory relationships
between target and marker genes are represented by the colored arrows, with
the red sharp arrows indicating positive regulation of marker genes by target
genes, and the blue blunt arrows indicating negative regulation. The darkness of
the color represents the relative magnitude of effect. Note that the direction of
regulation is the opposite of the perturbation effect.
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atmost one gRNA. The high MOl setting may pose unique challenges.
For example, multiple perturbations in a cell may interact nonaddi-
tively, and technical confounders may lead to false discoveries®. Addi-
tionalwork needs to be done to evaluate GSFA in the high MOl setting.

GSFA can be further improved along several directions. GSFA
does not directly model read counts and instead uses deviance resid-
uals converted from count data. We noticed that the LFSRs from
differential expression analysis can be modestly inflated at high
factor density (under m = 0.2). Directly modeling read counts may
improve the calibration of GSFA. Another limitation of GSFA is that
we assume that genetic perturbations affect downstream genes
only through factors. It is possible that the factors may not fully
capture the transcriptional effects; thus, it may be desirable to add
‘direct effect’ terms, where perturbations directly affect the expres-
sion of a gene without acting on any factors. Finally, GSFA uses
Gibbs sampling for inference; replacing this with a more efficient
algorithm, such as variational approximation, may improve
computational efficiency.

In conclusion, single-cell CRISPR screening is apromising technol-
ogy, yetdata analysis from such experiments is challenging. GSFA offers
a powerful new analysis framework, allowing researchers to better
realize the potential of single-cell screening technology.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

GSFA model

The input data of GSFA consist of a gene expression matrix Yy, , with
N cells and P genes, and a perturbation matrix Gy, with N cells
and Mtypes of genetic perturbations. Inall our analyses, the perturba-
tion matrix was binary, that is, G, = 1 if cell i has the m-th type of
perturbation and O otherwise, but this is not strictly required by the
model; for example, Gmight represent the dosage of genetic perturba-
tions. The GSFA model has two main parts: (1) a sparse factor analysis
model that decomposes the expression matrix Y into a factor matrix
Zyxx»Where Kis the number of factors, and asparse gene weight matrix
Wy ; and (2) a multivariate linear model that correlates the factor
matrix Zwiththe perturbation matrix G. Leti,jand kbeindices of cells,
genes and factors, respectively:

Y:ZWT+E,EU-~N(O,([JJ) (€]

Z =GB+ ®,¢y~NO,1) 2)

Eis an N x Presidual matrix with gene-specific variances stored
inaPvector ¢, fis an M x K matrix of perturbation effects on factors,
& is an N x M residual matrix with variance 1and W' is the transpose
of W. Compared with standard factor analysis, our model assumes
that the latent factor Z also depends on the additional covariates G;
hence, our model s a form of ‘guided’ factor analysis.

We assume that each perturbation affects only asmall number of
factors, soweimpose a ‘spike-and-slab’ prior on the effect of perturba-
tionm(1<m<M)onfactork(1<k<K):

l;mk ~ p,,,N(O,d,%,) + 1= pm) 60 3)

where 6, is deltafunction, p,,denotes the proportion of factors affected
by perturbation mand d,, the prior variance of the effect sizes of m.

To limit the number of genes contributing to a factor and facili-
tate the biological interpretation of factors, we alsoimposed asparse
prior on the gene weights. We found in our simulations and real data
analysis that, when analyzing count data, the standard spike-and-slab
prior is sometimes insufficient to impose sparsity (Supplementary
Note 3.1). We think this is due to a well-known problemin count-based
RNA-seq data analysis: because the total read count in a sample is
fixed, activation of some genes indirectly reduces the read counts in
allother genes, resulting in weakly correlated expression across many
genes. Thus, even when afactor affects only a small set of genes, it may
appear tobe correlated with many other genes, making it hard toinfer
sparse factors. So we chose a‘normal mixture’ prior. This prior assumes
that the gene weights in a factor come from a mixture of two normal
distributions withmean O but different variances. The difference with
the spike-and-slab prior is that the ‘background’ component is not
necessarily §,, but rather a distribution with small effects. The prior
weight of genejin the factor k follows:

Wy ~ N (0,02) + (1 - m)N(0,02¢2),0 < ¢ < 1 @)

where m, represents the proportion of genes affected by the factor k
(the foreground’ part), o; the prior effect size variance of factor kand
¢, a scale parameter controlling the relative size of the foreground
and background effects.

The prior distributions for other parameters in the model are
specified in Supplementary Note 1.1.

GSFA modelinference

We inferred the parameters in GSFA using Gibbs sampling, a Markov
chain Monte Carlo (MCMC) algorithm that obtains a sequence of
approximate samples from their posterior distribution given the
observed data. Gibbs sampling is an attractive choice because the

conditional distributions of the main parameters (fand W) and latent
variables (2) have analytical forms. To see this, we first considered
the conditional distribution of W, given data and all other parameters
and variables, P(W1Y, G, Z, B). (For simplicity, we dropped the hyper-
parameters and parametersrelated to the error terms.) Itis easy to see
thatgivenZ, Wdoes not depend on Gand 3, so we have:

P(WY,G,Z,8) = P(WY,2) )

The problem now becomes multivariate linear regression,
Y=ZW"+ E,where Wfollows aspike-and-slab prior. Thisis awell-studied
problem in the statistics literature*”*®, Similarly, we can see that the
conditional distribution of Sis given by:

P(BIY.G.Z W)= P(BIG,Z) (6)

Again, this reduces to a regression problem Z= Gf + @, where 8
follows the normal-mixture prior. Finally, the conditional distribution
of Zisgiven by:

P(ZlY,G.W.B) « P(ZIG.B)P(NZ. W) @

This is also a regression problem Y=ZW" + E, where Z represents
the unknown coefficients, with a normal prior, Z;= N(G8, I), for the
samplei(1<1<N).Wenowsee that the posterior of Znot only depends
on the gene expression matrix Y, but also the perturbations G. In
otherwords, the perturbationsimpose a prior on Z, hence ‘guiding’ the
inference of Zin a certain sense.

To facilitate computation, we also introduced two latent binary
matrices, F,, cand y,,. ., toindicate which distribution the correspond-
ing parameters in Wand  come from. The joint prior distribution of
Wand Ffollows:

P (Fi W)
(8)

= P(WlFi) P (Fi) = N(W:0, % | Fye + (1= Fye)c2]) - )

Thejoint prior distribution of Sand y can then be written as:

P(ﬁmklymk = O)P(ymk = 0) =1 —Pm (9)

P(ﬁmklymk = l)P(mG = 1) = pmN(ﬁmk§0’d31) (10)

The details of the Gibbs sampling steps are described in Supple-
mentary Note 1.2.

Unless mentioned otherwise, for all the datasets in the study,
we ran the MCMC chain for 3,000 iterations and used the last 1,000
iterations to obtain the posterior samples of the parameters.

The posterior distribution allowed us to summarize the probabili-
ties that some effects are nonzero. Specifically, the posterior mean of
Y ives the PIP of B, thatis, the probability of g, beingnonzero as:

PIP (Bu) := Pr (B« # Oldata) = Pr (y, = 1ldata) an)

Similarly, the posterior mean of F gives the PIP of W, defined
as the probability of W coming from the ‘foreground” normal d
istribution-given data:

PIP(Wj) := Pr(Wj, comesfromlargereffect|data) = Pr(Fy = 1|data). (12)

Summarizing the effects of genetic perturbations on
individual genes

While the effects of genetic perturbations are formulated in terms of
factors under the GSFA, the model allows us to infer the effects on
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individual genes. This is similar to the commonly used differential gene
expression analysis, where the expression of genesin cells with certain
perturbation are compared with those without it. Under our model,
the effect of perturbation m on the expression of genej is mediated
through one or more factors. The total effect, denoted as 6,;;, is then
given by the sum of K-mediated effects:

Onj = 2 Bk Wik a3)
3

To sample the posterior distribution of 6,,;, we use the posterior
samples of B, and Wj:

K

O _ (0 14/ O p©
O = 2 B Wi F,

(14)
k=1 e

where superscript (t) denotes the ¢-th posterior sample. While the
posterior distribution of 6,; contains all the information we have, in
practice, it is simpler to use a single summary of how likely 6, is
nonzero. To do this, we used the LFSR, a metric that is analogous to
LFDR but reflects confidence in the sign of effect rather than in the
effect being nonzero?. LSFR has some benefits over the commonly
used FDR approach, and is in fact more conservative than LFDR. The
LFSR of the perturbation effect onindividual genes, 6,;, is given by:
LFSR (8,,7) = min{ Pr (6%, > Oldata),Pr (6 < Oldata)} ~ (15)
By thresholding the LFSR, we can obtain significant DEGs under
each perturbation. In practice, the threshold is LFSR < 0.05.

Applying GSFA to single-cell CRISPR screening data
When applied to real data, GSFA first transforms the count data using
deviance residual transformation (Supplementary Note 2.1). GSFA
also allows us to adjust for the nonspecific effects of gRNAs through
negative control gRNAs. Briefly, the effect of a perturbation m on the
factor k, By, is adjusted as B/, = B — Box, Where By is the effect of
negative control gRNAs on the factor k. The total effect of pertur-
bation mon genejis now 6, = LB Wik- With these adjustments, we
can still obtain the posterior samples of the perturbation-to-factor
and perturbation-to-gene effects, and do the LFSR control as before.
We verified that this procedure corrects for nonspecific effects of
gRNAs in simulations, and used it in our analysis of both real datasets.
For more information about GSFA implementation and running
time, see Supplementary Note 5and Supplementary Table 5.

Alternative DGE methods

For comparison, we applied the following DGE methods to simulated or
real data: (1) two-sided Welch’s t-test” using the t.test() functionin the
R base package stats; (2) edgeR-QLF"using the glmQLFit() and
glmQLFTest() functions in the R package edgeR v.3.32.1; (3) DESeq2
(ref.12) using the DESeq() functionin the R package DESeq2v.1.30.1; (4)
MAST?°, astatistical method tailored for scRNA-seq data, using the zIm()
andlrTest() functionsintheR package MAST v.1.16.0; (5) scMAGeCK-LR*,
alinearregression-based approachtailored to single-cell CRISPR screen-
ing data, using the scmageck_Ir() functionin the R package scMAGeCK
v.1.2.0. We did not include scMAGeCK-RRA because it is not designed
to test all genes™; (6) SCEPTRE®, a statistical method that analyzes
single-cell CRISPR screens via conditional resampling, using the run_
sceptre_high_moi() functionin the R package sceptre v.0.1.0.

Simulation study

We simulated single-cell CRISPR screen data using the GSFA model
with either continuous gene expression levels or discrete gene count
data as the output. We simulated under N=4,000 cells, P= 6,000
genes, M = 6 types of perturbations and K =10 underlying factors:

(1) normal model. Continuous gene expression levels generated
under the following model:

G ~Bern(0.05), oy ~N(0,1) - Z=GB + ® 16)

Wi ~TN(0,0.5) + (1 — )80, Ej ~N(O,1) » ¥ = ZW' + E a7)
where m represents the proportion of genes loaded on any factor
and varies from 0.05, 0.1 to 0.2 under different simulation scenarios;
(2) count model. To sample the read count data, we assumed that
each cell had alibrary size or scaling factor L, sampled from a normal
distribution with mean 5 x 10°. The count of a genej would then be
sampled fromaPoisson distribution with its mean determined by the
continuous gene expression level y;and the scaling factor L;:
L~ N(s x 10°, 105) - ¢; ~ Poisson (L,- exp (1/5 x10° + y,,)) (18)
The sampled counts are converted to deviance residuals (Sup-
plementary Note 2.1), then centered and scaled so that each gene has
variance 1before being provided as input for GSFA.
We set the effect-size matrix S to the following form, so that each
perturbation affects a distinct factor and the effect sizes vary from
0.1t0 0.6:

010 0 0 0 000O0O
0020 0 0 00O0O0O
0 003 0 O O00000O0
- 0 0 0040 0O0O0O0O
0O 0 0 00500000

0O 0 0 0 0060000

These effect sizes were chosen so that the perturbations explained
about 0.2% to 8% of the total variance of each factor.

Wegenerated 300 random datasets under each of the six scenarios
(normal/count-based and 7 =0.05, 0.1, 0.2) for GFSA analysis. For
each dataset, Gibbs sampling was performed for 3,000 iterations and
the posterior means of parameters were computed from the last
1,000 iterations.

We evaluated the results according to whether the factors were
recovered and whether the genes affected by a perturbation were
identified. Due to the interchangeability of factors in matrix factori-
zation (equation (1)), we mapped each of the true factors to the GSFA
inferred factor that was maximally correlated with using the absolute
Pearson correlation. The correlations of the true and inferred factors
were thenassessed. To evaluate the identification of genes affected by
perturbations, we defined the ground truth as the genes with nonzero
weights on the factors affected by a perturbation.

We also evaluated GSFA under additional parameter settings.
The first setting was designed to mimic the nonspecific effects of
gRNAs. We added one perturbation as a negative control and allowed
all perturbations to have acommon effect on one factor (factor 5).
The effect-size matrix is shownin Supplementary Table 6. The second
setting mimicked amore complex relationship between perturbations
and factors. Under this setting, each of six perturbations affected
three out of ten factors. For simplicity, we used a common effect size
of 0.4 for all perturbation effects (see Supplementary Table 7 for
the effect-size matrix). In the last setting, we created simulation
data using real scRNA-seq data without explicitly introducing latent
factors (Supplementary Note 6). Details of how other methods were
runinthe simulations are also provided in Supplementary Note 6.

GSFA analysis of the CD8" T cell CROP-seq dataset
Raw cellranger outputs of the CD8* T cell CROP-seq study'® were down-
loaded from the Gene Expression Omnibus (accession no. GSE119450).
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We merged resting and stimulated T cells from two donors using the
Rpackage Seurat v.4.0.1(ref. 49). We first filtered cells that contained
fewer than 500 expressed genes or more than 10% of the total read
counts from mitochondrial genes, keeping 14,278 stimulated T cells
and 10,677 unstimulated T cells. Next, we transformed the raw counts
into deviance residuals for all genes in all cells, kept the top 6,000
genes ranked using deviance statistics (Supplementary Note 2.1),
then regressed out the unique UMI count, library size and percent-
age of mitochondrial gene expression from the reduced deviance
residual matrix. The resulting matrix was then scaled so that each gene
had variancel.

The gRNA perturbation datawere binarized, with gRNAs target-
ing the same gene deemed as the same type of perturbation. The
scaled gene expression and perturbation matrices were used asinput
for GSFA. To capture potentially different effects of CRISPR perturba-
tion under resting and stimulated conditions, we used the modified
GSFA model with two cell groups (Supplementary Note 3.2), stratify-
ing all cells according to their stimulation states (unstimulated: O,
stimulated: 1). By inspecting how the percentage of gene expression
explained varied with the number of latent factors, we chose 20 fac-
torsinour analysis (Supplementary Note 4 and Supplementary Fig. 4).
We verified that the main results of the GSFA in terms of DEGs found
for each perturbed gene were generally robust to the number of fac-
tors (Supplementary Fig. 5). Gibbs sampling was performed for 4,000
iterations and the posterior means of parameters were computed
fromthelast1,000 iterations.

We assessed the calibration of the GSFA results using permutation.
We created ten permutation sets on the stimulated and unstimulated
cells separately. In each permutation set, the cell labels were permuted
independently of the perturbation conditions and GSFA was run on
each of these datasets. The calibration was assessed in a few ways. We
checked the distribution of PIPs of the perturbation effects on factors
(B) and the distribution of LSFRs from the inferred perturbation to
gene effects. We expected PIPs to be close to O and LSFRs close to1in
the permutationresults. We also assessed the empirical Pvalues of the
correlations between perturbations and inferred factors. Because we
did not expect any correlation between the two under permutation,
any deviation of Pvalues from the null distribution would indicate that
GSFA incorrectly borrowed information from perturbations to infer
factors, a potential problem that would inflate the results.

GSFA analysis of LUHMES CROP-seq dataset

Raw cellranger outputs of the LUHMES neural progenitor cell CROP-seq
study®’ were downloaded from the GEO (accession no. GSE142078).
We merged all three batches of LUHMES CROP-seq raw data together
using the R package Seurat v.4.0.1 (ref. 49), and filtered cells with a
library size over 20,000 or more than 10% of the total read counts from
mitochondrial genes, keeping 8,708 cells. Similarly, we transformed the
raw count matrix into areduced deviance residual matrix with the top
6,000 genes ranked according to the deviance residual (Supplemen-
tary Note 2.1). Differences in experimental batch, unique UMI count,
library size and percentage of mitochondrial gene expression were all
regressed out. Running the GSFA was the same as before, except that
there was only one cell group and Gibbs sampling was run for 3,000
iterations. We also verified that it was reasonable to use 20 factors and
that the results were insensitive to this number (Supplementary Figs.
4 and 5). We then assessed the results of the calibration of GSFAin the
same way as we did with the T cell analysis.

Running alternative methods on CD8" T celland LUHMES
CROP-seq data

Forboth stimulated T cellsand LUHMES CROP-seq data, we performed
alternative DGE analyses for comparison. We applied edgeR-QLF",
DESeq?2 (ref.12) and MAST*° directly to the scRNA-seq raw count data,
contrasting cells with each perturbation from those without, for all the

genes selected for GSFA. For the LUHMES dataset, the experimental
batchwasincluded as one of the covariates in these three tests. We also
applied scMAGeCK-LR* to the transformed and corrected CROP-seq
data (described above).

We applied SCEPTRE* (using the R package sceptre v.0.1.0) to the
scRNA-seqraw count data. Weincluded the unique UMI count, library
size and percentage of mitochondrial gene expression as covariates
in the stimulated T cell data. For the LUHMES dataset, experimental
batch was also included as one of the covariates. We used the default
parameter settings in the run_sceptre_high_moi() function under the
two-sided test setting.

For all these methods, FDR was computed using the Benjamini-
Hochberg procedure for genes under each perturbation; significant
DEGs were obtained under an FDR cutoff of 0.05.

To assess the calibration of the differential expression test
P values from these methods, we carried out permutation tests for
each DGE method by randomly shuffling the cell labels independent of
the perturbation conditions. For the T cell dataset, shuffling occurred
within the stimulated cells. We generated ten permuted datasets and
performed the DGE methodsin the same way as before.

We applied MUSIC? (using the R package MUSIC v.1.0) directly to
the scRNA-seq raw count data, following its own data preprocessing
procedure. We varied the number of topics from 4, 5, 6 up to 20 top-
ics, and observed similar patterns. We finally chose 20 topics so that
the results could be comparable to the GSFA (fitted using 20 factors).
To obtain the perturbation effects on inferred topics, we adapted
the MUSIC’s Diff_topic_distri() function to obtain the ¢-test statistics
and then further computed empirical P values by generating 10,000
permutations of the perturbation conditions.

GO enrichment analysis

GO overrepresentation analyses were performed using the
WebGestaltR() functioninthe R package WebGestaltR v.0.4.4 (ref. 50)
with default parameters and the functional category for enrichment
analysis set to the GO Slim ‘biological process’ category (geneontology _
Biological_Process_noRedundant). To interpret the GSFA-inferred
factors (gene modules), genes with weight PIP > 0.95 were treated
as the foreground, while all genes used in the GSFA were treated as
the background in the overrepresentation analysis. To interpret
DEGs discovered under each perturbation using GSFA or other DGE
methods, genes with an LSFR < 0.05 (or FDR < 0.05) were treated as
the foreground, while all genes evaluated were treated as the back-
ground in the overrepresentation analysis.

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Both CROP-seq datasets used in this study are publicly available
and were downloaded from the GEO (accession nos. GSE119450 and
GSE142078).Source data are provided with this paper.

Code availability

The R package implementing the GSFA is freely available at https://
github.com/xinhe-lab/GSFA. The source code used in our study is
deposited at https://github.com/xinhe-lab/GSFA_paper.
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Extended Data Fig. 2| Simulation results of two-step clustering analysis vs.
GSFA. Panel a) shows Normal based simulation. The first row of Panel a) shows
the false positive rates of the discovered DEGs across different factor density
settings. The second row shows the power of detecting associations of a guide
witha cluster or factor. The clustering method here is based on K-means. For each
box, n =300 estimates generated from 300 rounds of simulation under the given

setting; the center line of the box represents the median; the lower and upper
hinges of the box correspond to the first and third quartiles; the upper/lower
whisker extends from the hinge to the largest/smallest value no further than
1.5*inter-quartile range from the hinge. Panel b) Same as in a) but under the
count-based setting. Clustering analysis was done using Seurat.
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