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Spatial single-cell mass spectrometry defines 
zonation of the hepatocyte proteome
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Single-cell proteomics by mass spectrometry is emerging as a powerful 
and unbiased method for the characterization of biological heterogeneity. 
So far, it has been limited to cultured cells, whereas an expansion of the 
method to complex tissues would greatly enhance biological insights. Here 
we describe single-cell Deep Visual Proteomics (scDVP), a technology that 
integrates high-content imaging, laser microdissection and multiplexed 
mass spectrometry. scDVP resolves the context-dependent, spatial 
proteome of murine hepatocytes at a current depth of 1,700 proteins from 
a cell slice. Half of the proteome was differentially regulated in a spatial 
manner, with protein levels changing dramatically in proximity to the 
central vein. We applied machine learning to proteome classes and images, 
which subsequently inferred the spatial proteome from imaging data alone. 
scDVP is applicable to healthy and diseased tissues and complements other 
spatial proteomics and spatial omics technologies.

Mass spectrometry (MS)-based single-cell proteomics (scProteom-
ics) has made tremendous progress within just a few years, and can 
now quantify more than 1,000 proteins in cultured cells1–3. While 
this trajectory is promising, proteome depth, throughput and lack 
of spatial context limit biological use. We have recently introduced 
deep visual proteomics (DVP), a spatial technology that combines 
imaging, cell segmentation, laser microdissection and MS into a single 
workflow to investigate complex tissues with various cell types and 
metabolic niches4. DVP overcomes depth and throughput limitations 
with pooling the required number of cells with similar morphological 
features and staining patterns to identify statistically and analytically 
robust cellular phenotypes (‘biological fractionation’). By its nature, 
it depends on prior knowledge of adequate markers of the cells of 
interest that resolve their heterogeneity. These markers might not 
be available for all subtypes of cells or those tissues that have rapidly 

changing proteome types such as heterogeneous tumors. To address 
this, we here developed single-cell DVP (scDVP), a complementary 
approach that extends scProteomics technologies into the intact 
tissue context.

In this Article, we use scDVP to explore spatial characteristics 
of hepatocyte subsets in mammalian liver—a highly organized and 
functionally repetitive tissue, in which the proteome of hepatocytes 
is determined by paracrine signaling, as well as oxygen and nutrient 
gradients5. These metabolic gradients require distinct functional cell 
states along the portal vein (PV) to central vein (CV) axis. This phenom-
enon of liver zonation has been described by single-cell RNA sequenc-
ing (scRNAseq) for hepatocytes6,7, fluorescence-activated cell sorting 
(FACS) and MS-based proteomics8, and multiplexed imaging9. Despite 
this long and varied background, the extent of spatial heterogeneity 
and proteome variation in hepatocyte remains an open question.
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signal (Extended Data Fig. 1a). To confirm biological ground truth, 
we performed initial experiments on five adjacent shapes per well 
(corresponding to about two complete hepatocyte cell masses), cut 
from randomly chosen locations. With these five shapes, we reached 
a median depth of 1,235 proteins across 230 samples (Extended Data 
Fig. 1b). The results confirmed expected liver biology, for instance, by 
differential expression of the PV marker argininosuccinate lyase (Asl) 
and central Cytochrom P450 2E1 (Cyp2e1, Extended Data Fig. 1c). Using 
zonation anchor proteins to arrange all the samples in pseudo-space 
(Extended Data Fig. 1d), we characterized spatially enriched gene sets 
along the zonation axis. While the protein sets for electron transport 
chain and oxidative phosphorylation (OXPHOS) were among processes 
upregulated in proximity to the PV, biotransformation and oxidations 
by cytochrome P450 were increased proximal to the CV, providing 
positive controls for low-input proteomics (Extended Data Fig. 2 and 
Supplementary Tables S1 and S2).

Multiplex-DIA drastically increases proteome depth
Encouraged by these spatial results, we next asked whether single 
shapes alone could produce deep and interpretable proteomic results. 
To improve sensitivity further, we adopted and optimized elements of 

Results
Robust isolation and characterization of hepatocyte shapes
To map the proteome of mouse hepatocytes at single-cell resolution, 
we established a modular and automated workflow aimed at loss-less 
sample preparation of the initial input cell for injection into the mass 
spectrometer (Fig. 1a). Mice livers were embedded and immediately fro-
zen after cardiac arrest. We fixed 10 µm sections and stained them with 
a one-step protocol marking PVs and CVs, the sinusoidal architecture, 
nuclei and cell membranes (Fig. 1b and Methods). Individual cells were 
segmented by deep learning as before4, and the resulting masks trans-
ferred to a laser microdissection microscope that automatically excised 
and collected individual shapes in 384-well plates. Given hepatocyte 
sizes of 20–30 µm, one shape cut from a 10 µm section corresponds 
to a third or half of a hepatocyte, or approximately 250 pg of protein 
input, equivalent to the protein content of one HeLa cell. We automated 
protein extraction and digestion by reagent addition into the same plate, 
omitting extra transfer steps, followed by peptide separation on the 
Evosep system10 and injection into a trapped ion mobility time-of-flight 
single-cell proteomics (timsTOF SCP) mass spectrometer (Fig. 1a).

To establish an efficient workflow, we applied our scProteomics 
protocol2 and titrated the number of cells required to obtain a robust 
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Fig. 1 | Isolation and characterization of individual hepatocyte shapes in 
situ. a, The scDVP workflow comprised embedding of fresh mouse liver tissue, 
staining and high-content microscopy, AI-guided hepatocyte segmentation, 
cutting and sorting of cells on a laser microdissection microscope, and peptide 
preparation with or without dimethyl labeling. The Δ0 channel contains the 
reference proteome and Δ4 and Δ8 contain two individual samples, which are all 

analyzed by ultra-high-sensitivity mass spectrometry. Created with BioRender.
com. b, Liver painting with four stains. Left: E-cadherin marks PV regions, 
glutamate-ammonia ligase (Glul) surrounds the CV, the cell segmentation 
marker phalloidin, and the sinusoidal and nuclear counterstain WGA. Right: false 
color overlay of all channels: orange, E-cadherin; yellow, WGA, gray, phalloidin; 
turquoise, Glul. Scale bars, 100 μm.
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our scProteomics workflow11. These include addition of the surfactant 
n-dodecyl-β-d-maltoside (DDM) to maximize peptide recovery12, 
lowering the chromatographic flow rate to 100 nl min−1 for increased 
ionization efficiency2 (‘Whisper gradients’ on the Evosep system) and 
achieving higher chromatographic resolution with zero dead volume 
columns (IonOpticks)13. Most importantly, we added a labeled refer-
ence channel for multiplexed data-independent acquisition (mDIA) 
that decouples identification and quantification11 (Fig. 1a).

For scDVP, we constructed a dimethyl-labeled bulk liver reference. 
Our robotic sample preparation setup achieved about 99% labeling 
efficiency in all three channels (Extended Data Fig. 3a). We co-injected 
10 ng of the reference proteome together with the labeled proteomes 
of two single shapes at a mean size of 600 µm2 (Extended Data Fig. 3b).  
This resulted in a doubling of identified proteins with a median num-
ber of 1,712 proteins across three biological replicates and 455 single 
shapes, at twice the previous throughput (Extended Data Fig. 3c).  
A maximum of 2,769 proteins were identified in one shape, and 3,738 
unique proteins were found across all samples (Fig. 2a and Extended 
Data Fig. 3c). Four histone components ranked in the top ten, but we 
also found many transcription factors (Fig. 2a). In contrast, plasma 
proteins produced in hepatocyte were of medium abundance and 
hemoglobin subunits were not detected. This suggests little to no con-
tamination from surrounding blood, a common issue in bulk proteom-
ics (Extended Data Fig. 3d). The number of detected proteins correlated 
logarithmically with the microdissected area (Extended Data Fig. 3e), 
indicating that scDVP requires the highest possible MS sensitivity. 
Data completeness across all samples increased with median intensity 
per protein. Coefficients of variation were less than 50% and strongly 
depended on cell size and position along the zonation axis, reflecting 
biological heterogeneity in the data (Extended Data Fig. 3f,g). We 
hypothesized that the nuclear proportion in the cell slice would cor-
relate with the intensity of these histones. Indeed, shapes with lowest 
histone intensities did not have any evident nuclear signal, while top 
intensities were in shapes with large or two nuclei. In addition to this, 
the intensity of the top four abundant histone proteins was highest in 
arterioles that we cut as technical control structures, and which are 
composed of more than one cell and nucleus (Fig. 2b and Extended 
Data Fig. 3h).

Single-shape proteomes accurately reflect hepatocyte zonation
To test the biological validity of our proteomics data, we first reduced 
dimensionality in a principal component analysis (PCA), which revealed 
that PC1 represented the measured distance of a hepatocyte to PV 

and CV (Fig. 3a,b). Overlays of known liver zonation markers includ-
ing Cyp2e1 and argininosuccinate lyase (Asl) showed opposite visual 
enrichment along PC1 (Extended Data Fig. 4a,b). In contrast, PC2 did 
not correlate with measured distance or hepatocyte zonation markers 
but rather with cytoskeletal components (Extended Data Fig. 4c,d). PC2 
was also the dimension in which portal arterioles, which we excised as 
technical controls, separated from hepatocytes (Extended Data Fig. 4e).

We asked whether single-cell resolution provides any benefit 
over combining adjacent shapes. To this end, we iteratively combined 
shape information and averaged protein levels of cells with the same 
relative location along the zonation axis (‘pseudo-neighbors’). Start-
ing from the combination of as little as two shapes, PC1 continuously 
gained importance as measured by interquartile range and variance 
explained, whereas PC2 and all subsequent components dropped 
in explanatory value (Extended Data Fig. 5). This demonstrates that 
single-cell data retains subtle biological differences compared to the 
excision of larger areas.

On the basis of the distance ratio of PV and CV, we grouped the data 
into 20 spatial bins—approximately the maximum number of cells along 
the zonation axis. Analysis of variance (ANOVA) testing across all bins 
revealed that 49% of all proteins detected in at least half of the samples 
were significantly different between zones (false discovery rate (FDR) 
<0.05; Extended Data Fig. 6a and Supplementary Table S2). Zonation 
was also apparent after spatial sorting at the total proteome level (Fig. 3c  
and Supplementary Table S3) and for known hepatocyte zonation 
markers (Fig. 3d). Only 5.8% of these proteins were expressed equally 
in all zones (multiple testing-adjusted Shapiro–Wilk test, P > 0.05), 
including electron transfer flavoprotein β (Etfb), the electron accep-
tor in mitochondrial fatty acid β-oxidation (Extended Data Fig. 6b).

The first principal component along the zonation axis indicated 
that portal and periportal regions were more similar to one another 
than central and pericentral zones (Fig. 3b). Indeed, the spatial expres-
sion of the top ten significant zonation markers for each portal and 
central regions followed a hockey-stick curve from portal to central 
(Fig.3e), similar to Wnt-controlled transcripts in a scRNAseq dataset6 
and in line with a CV origin of Wnt signaling14. In contrast, this pattern 
was absent for the hits with the highest P values (least zonated hits; 
Extended Data Fig. 6d).

A cross-omics comparison with scRNAseq data6 confirmed the 
directionality of the most prominent zonation markers (Pearson’s 
R = 0.97, Extended Data Fig. 7a,b), while correlation was low across 
all proteins and transcripts (Pearson’s R = 0.12). Notably, a number 
of proteins were regulated only in the RNA or protein dimension, or 
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Fig. 2 | Depth of single-shape proteomes and estimation of the nuclear 
compartment. a, Unique proteins quantified in our scDVP workflow with mDIA 
ranked by signal intensity (two single-shape and a reference proteome  
channels, 31 min Evosep gradient, 15 cm column at 100 nl min−1, dia-PASEF 
with optimized window design, library-dependent search in DIA-NN). Names 
of highest- and lowest-ranking proteins, as well as transcription factors, 

are indicated. b, Left: intensity of the top four histone proteins across all 
samples, including hepatocytes and quality control arteriole structures. 
Colors are specific for the indicated histone subunit. Right: WGA stain of cells 
corresponding to marked data points in the scatter plot. The color scale is signal 
intensity. Scale bar, 10 μm. Data from three mice were pooled.
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even inversely correlated (Extended Data Fig. 7c), such as dimethylgly-
cine dehydrogenase in the choline catabolic pathway. Similarly, when 
we compared our data with a FACS-based hepatocyte proteome8, we 
found slightly lower correlation of markers and better overlap overall 
(Pearson’s R of 0.16 versus 0.12, Extended Data Fig. 7d–f). Members of 
glutathione metabolism had similar spatial distribution in both data-
sets (Extended Data Fig. 7g). This underlines that the scDVP dataset 
provides orthogonal insight into liver physiology instead of merely 
complementing existing datasets.

Enrichment of functional protein sets across the spatial bins con-
firmed that arginine biosynthesis and OXPHOS were highly enriched 
toward the PV (Fig. 3f). When we added subcellular annotations to 
our dataset, we found negligible differences to a bulk mouse liver 
proteome for many compartments including the plasma membrane 
(summed intensity of 10.6% in the library versus 10.7% in this scDVP 
data), highlighting that laser microdissection is suitable to excise the 
entire shape (Fig. 3g and Supplementary Table S6). On a biological 
level, we found only small changes of summed organellar intensities 
across spatial bins (Extended Data Fig. 8 and Supplementary Table S6),  
namely decreasing mitochondrial and endoplasmic reticulum mass 
and increasing Golgi apparatus and nucleoplasm from PV to CV. When 
cross-mapping the scDVP data with the mitochondrial protein library 
Mitocarta 3.0 (ref. 15), the five complexes of OXPHOS decreased col-
lectively by more than 25%, yet mitochondrial proteins related to 
fatty acid metabolism mildly increased conspatially, suggesting dif-
ferential regulation within the same cellular compartment (Fig. 3h). 
Remarkably, these protein sets reach their spatial expression at the 
midpoint between PV and CV in contrast to the hockey-stick distri-
bution of the top ten differentially expressed proteins (Fig. 3e,h), 
suggesting that the mitochondrial compartment is not dependent 
on the Wnt-signaling gradient.

The scDVP data correctly confirmed that proteins participat-
ing in ammonia fixation of the urea cycle were highly expressed in 
portal regions, while those involved in ammonia capture on gluta-
mate were strongly pericentral (Fig. 3i). To our surprise, several other 
signaling-related pathways were also zonated including peroxisome 
proliferator-activated receptor (PPAR) signaling (Fig. 3f and Sup-
plementary Table S5). This was corroborated by prominent central 
expression of enzymes required for peroxisomal degradation of 
very-long-chain fatty acids, and ω-oxidation of dicarboxylic C12 fatty 
acids, enriched in, for instance, coconut oil (Fig. 3j). We conclude that 
the spatial proteome data from single hepatocyte shapes is biologically 
accurate and informative, and furthermore, contains rich biological 
information to be mined.

Spatial context regulates single-cell proteomes
Combining the single-shape proteomes with their inherent spatial 
information and staining intensities, scDVP revealed clear dependence 
of fluorescent intensities with the eight proteome classes established 
above (Fig. 4a,b).

Encouraged by the evident complementarity between extensive 
proteomics and spatial data, we reasoned that the microscopic image 
could contain sufficient information to predict the proteome. To this 
end, we trained a machine-learned (ML) model on 17 features to predict 
the proteome classes from imaging data. We grouped the training 
set into five proteome classes by k-means clustering (Extended Data  
Fig. 9a), and used the information in all imaging channels as predic-
tors (Extended Data Fig. 9b). This model reached an average precision 
of 0.94 (Extended Data Fig. 9c,d), correctly assigning the proteome 
class of almost all cells. Errors occurred exclusively between spatially 
neighboring classes (Fig. 4c).

We tested the model performance on a new section (not used in 
training), from which we measured 60 single-shape proteomes. Visual 
inspection indicated that the predicted classes were correctly located 
in proximity to CV or PV, even in the presence of cutting artifacts  
(Fig. 4d). We used the class probabilities as weights to predict the spatial 
proteome, which accurately approximated overall protein intensi-
ties (R = 0.78 between prediction and measurement, Fig. 4e). When 
predicting the proteome of a larger section for all quantified proteins, 
the ML model correctly assigned the spatial directionality of zonation 
markers, as well as their expected extension into the intermediate zone  
(Fig. 4f ). Thus, the model confirms the accuracy of measured 
single-shape proteomes, and is furthermore a potent predictor of 
spatial proteomes across any imaged areas.

Discussion
Here, we present a single-cell spatial map of the murine liver acquired 
by MS-based proteomics. Our approach successfully combines micro-
scopic imaging data with ultra-high-sensitivity proteomics, build-
ing on four major technological advances: (1) artificial intelligence 
(AI)-assisted segmentation and laser microdissection, (2) multiplex-DIA 
(mDIA), (3) low-flow gradients and (4) the ultra-high sensitivity of a 
timsTOF SCP mass spectrometer.

To date, MS-based scProteomics has been exclusively reported 
for cell suspensions. State-of-the-art workflows currently reach a pro-
teomic depth of up to 2,000 proteins in cultured cells, with about 
250 pg of cellular protein mass. This is similar to the protein material 
in our sliced hepatocytes, taking the section thickness of 10 μm and 
hepatocyte size of 20–30 μm into account. With our scDVP workflow, 
we achieved more than 1,700 proteins per single shape (and up to 
2,700) despite working from sections that were fixed, stained, imaged 
and laser dissected. Laser microdissection successfully separated 
hepatocytes from surrounding material including blood remnants, 
which holds promise for smaller cell types in more complex tissue 
environments. The size of our shapes correlated strongly with the 
number of identified proteins, suggesting that scDVP is currently 
limited by MS sensitivity and will thus profit from continuous techni-
cal developments. We established the scDVP protocol to combine 
one reference channel with two single shapes (effective two-plex) 
and used a 40 samples per day chromatography method. This can be 

Fig. 3 | Single-shape proteomes are accurate descriptors of zonated 
hepatocytes. a, PCA of all hepatocytes. The color overlay corresponds to the 
ratio of measured distance PV over CV in the microscopy image. b, Measured 
distance ratio versus PC1. Relative distance of 0 is at the PV and of 1 is at the CV. 
Black: smoothing curve. c, Heat map of protein expression as z-score per protein 
across all samples. Proteins are ordered according to ANOVA fold change (FC) 
across 20 spatial equidistant bins, summarizing samples with a similar distance 
ratio to PV and CV. The ten top and bottom proteins are given. Only proteins that 
were detected in 70% of all samples are included. d, Protein expression as z-score 
of selected marker proteins, ordered by relative distance to PV and CV. One line 
is one shape measurement. Gray: protein not detected. e, Expression of the top 
20 significant proteins in 20 spatial bins, relative to total expression from portal 
to central. Zonation peak at PV: positive ANOVA fold change (n = 10), and vice 

versa (n = 10). f, Selected gene sets in individual spatial bins versus all others 
bins, depicting normalized enrichment score after gene set enrichment analysis. 
Dot size: significance after multiple testing adjustment. g, The proportion 
of protein signal stratified by subcellular compartment in a bulk mouse liver 
proteome and the scDVP dataset. Percentages refer to mean across spatial bins 
in the scDVP data. h, Relative expression in 20 bins from PV to CV of proteins 
constituting mitochondrial OXPHOS components (C) I–V, and mitochondrial 
lipid metabolism. i, Levels of urea cycle and connected enzymes from portal (left) 
to central (right) bins as log2FC relative to median expression in the two center 
bins. Portal box: active in portal regions. Central box: active in central region.  
j, Levels of peroxisomal enzymes related to very-long chain fatty acid 
degradation, spatially resolved as in g. Data from three mice were pooled.
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further scaled to five-plex (effective four-plex) and 80 samples per day, 
scaling to 320 shapes per day11. Given the more stable core proteome 
compared with single-cell transcriptomes2 and the resulting lower 
required sample number, scDVP experiments encompassing a few 
hundred single shapes could be done in just a few days. Furthermore, 
because of the very low quantities and absence of proprietary reagents, 
marginal costs are extremely low.

Our proteomics data from single shapes correctly and accurately 
recapitulates hepatocyte physiology by direction, extent and spatial 
organization of zonation. More than half of quantified proteins were 
significantly different between portal and central zones, in line with 
scRNAseq data6,16 and FACS-based proteomics data8. The fact that 
we detected all of the previously used markers of liver zonation6 sug-
gests that our proteomic depth is sufficient to integrate into other 
omics datasets. This became further apparent on the level of functional 
pathways, including signaling and disease pathways. Interestingly, 
peroxisomal degradation of very-long-chain fatty acids, as well as 
dicarboxylic C12 fatty acids, was enriched in proximity to the CV. Bio-
chemical evidence by radiolabeling experiments support the notion 
that nonmitochondrial fatty acid oxidation localizes to pericentral 
regions17. We report an almost linear decrease of mitochondrial mass 

and OXPHOS subunits along the zonation axis. This is in line with intra-
vital microscopy data showing decreasing mitochondrial membrane 
potential18. A rhythmic expression pattern has been previously shown 
for a large number of liver transcripts and proteins16,19. While we have 
not covered the temporal aspect here, the scDVP approach could con-
tribute to such studies by adding a spatial dimension.

In the previously described DVP workflow, we used pools of cells 
combined on the basis of common features, such as the expression 
intensity of already known markers, or morphology4. This approach 
allows a deep, rapid and robust proteome characterization that accu-
rately represents the underlying biology. By analyzing single cellular 
shapes without prior assumptions, scDVP now removes the depend-
ency on established markers or features. This makes it a promising 
approach in heterogeneous tissues with partially or not defined sub-
types of cells, such as in many tumor tissues. Moreover, scDVP can be 
a method of choice to map proteomic disturbances along gradients of, 
for instance, signaling factors, nutrients or gases, and in physiological 
settings that may create impediments for other omics methods, for 
instance, in extracellular fibrotic scars.

Our results demonstrate that the central challenge of scDVP is the 
sensitivity of the overall workflow. Although we have here reduced the area 
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required for laser microdissection by 100-fold compared with our initial 
DVP report4, we note that one excised hepatocyte shape contains approxi-
mately ten times more protein than the smallest cells of interest, such 
as typical resting lymphocytes20. While the required sensitivity is being 
developed, the original DVP approach using pooled cells of the same type 
is a powerful tool for this kind of problems. We also note recent success in 
drastically scaling down DVP for formalin-fixed and paraffin-embedded 
samples, which are readily available in many clinical settings21.

There have been advances in the quantification of posttrans-
lational modifications from ultra-low-input material, such as from 
1 µg down to the material corresponding to single cell, for instance 
in the enrichment protocol µPhos22. In combination with scDVP, this 
holds promise for single cells, although the biological information in 
single-cell phosphoproteomics data would currently be limited to a 
few high-abundance proteins with high modification stoichiometries. 
Subtle signaling events, such as the liver-dominant Wnt signaling, will 
require additional technological developments for in-depth biological 
description of signaling in single cells by MS.

We have shown that single-cell data can be used to train an accurate 
ML model that predicts the proteome class from visual information 
only. Evidence suggests that morphological features such as nuclear 
vacuolation and texture associate with zonation, and can even serve 
as a progression and stratification marker of nonalcoholic fatty liver 
disease23. Combining such easily available features and extensive pro-
teomic sampling can clearly lead to higher precision of the predictive 
models. Transfer learning might then extend the approach to many 
new areas, as already shown for single-cell transcriptomics data24. 
The modular nature of scDVP, especially the open format from laser 
microdissection to 384-well plates for sample preparation, makes it 
widely applicable and also compatible with other spatial omics tech-
nologies such as spatial transcriptomics, epigenomics25 or multiplexed 
imaging. In conclusion, scDVP is a powerful tool for basic discovery 
science, working in concert with DVP and other omics methods to 
enrich spatial workflows.
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Methods
Mouse experiments and organ collection
Pathogen-free male and female 10-week-old C57BL/6J-rj mice were 
purchased from Janvier and maintained at the appropriate biosafety 
level under constant temperature and humidity conditions with a 12 h 
light cycle. Animals were allowed food and water ad libitum. All experi-
ments were performed on 12- or 13-week-old wild-type mice. These were 
killed by cervical dislocation, and the liver was rapidly excised through 
a ventral opening of the peritoneum. The organ was rinsed in cold 
phosphate-buffered saline (PBS), and the left lateral lobe was divided 
into three pieces. For this study, the distal-caudal quarter was embed-
ded in optimal cutting temperature medium (Sakura Finetek) in 15 mm 
disposable cryomolds (Sakura Finetek) and frozen in isopentane that 
was precooled to dew point in liquid nitrogen. Fully solidified blocks 
were transferred to dry ice, and then to a −80 °C freezer until further 
processing. Animal handling and organ withdrawal were performed 
in accordance with the governmental and international animal wel-
fare guidelines and ethical oversight by the local government for the 
administrative region of Upper Bavaria (Germany), registered under 
ROB-55.2-2532.Vet_02-16-208.

Immunofluorescence staining
Two micrometer polyethylene naphthalate membrane slides were 
pretreated by ultraviolet ionization for 1 h at 254 nm. Without delay, 
slides were consecutively washed for 5 min each in 350 ml acetone and 
7 ml VECTABOND reagent to 350 ml with acetone, and then washed in 
ultrapure water for 30 s before drying in a gentle nitrogen air flow. For 
sectioning, tissue blocks were transferred to a cryostat (Leica CM3050) 
at −18 °C chamber and −15 °C object temperature, and left to equilibrate 
for 30 min. Blocks were then trimmed, and final sections were cut at 
10 µm thickness with a disposable high-profile blade (Leica 818). Frozen 
sections were transferred to pretreated, cold polyethylene naphthalate 
membrane slides, and melted for less than 5 s on a room temperature 
surface. The sections were then fixed in prewarmed 4% paraformal-
dehyde in PBS at 37 °C, then in 95% ethanol at room temperature and 
finally again in 4% paraformaldehyde in PBS at 37 °C. Slides were rinsed 
in PBS and left in 5% BSA–PBS blocking solution for 1 h until staining. 
Sections were stained for 1 h at 37 °C in a humid and dark chamber with 
200 µl of a one-step liver painting in 1% BSA: 1:300 phalloidin coupled 
to Atto-425 (Sigma 66939), 1:200 wheat germ agglutinin (WGA) cou-
pled to Alexa Fluor 488 (Invitrogen, W11261), 1:100 anti-E-cadherin 
coupled to Alexa Fluor 555 (BD 560064), anti-glutamine synthase 
(Abcam, ab176562) and 1:500 anti-rabbit nanobody coupled to Alexa 
Fluor 647 (Chromotek srbAF647-1-100). Slides were washed three 
times for 2 min in PBS in the dark, and mounted with 21 FL ProLong 
Diamond mounting medium (Invitrogen, P36961) and a 22 × 22 mm 
#1.5 coverslip. Slides were stored until imaging in 50 ml tubes with 
desiccating material at 4 °C.

High-content imaging
Sections were imaged on an OperaPhenix high-content microscope, 
controlled with Harmony v4.9 software, at 40× magnification, with 
binning of two and a per tile overlap of 10%. At excitation wavelengths 
of 425 nm, 555 nm and 647 nm, an 80% laser intensity were used at an 
illumination time of 100 ms, while in the 488 nm (CFP) channel, 20% and 
20 ms were used. E-cadherin and glutamine synthetase were imaged 
simultaneously, while phalloidin and WGA were imaged consecutively.

Image postprocessing
Acquired images were flat-field corrected using the Harmony soft-
ware. Stitching of image tiles was performed using the ashlar Python 
API (application programing interface)26 with a max shift value of 30. 
Stitched images were exported as .tif files and imported into the Bio-
logical Image Analysis Software (BIAS, Single-Cell Technologies Ltd.)4 
with the packaged import tool. In BIAS, large tif images were first retiled 

to 1,024 × 1,024 px at an overlap of 5%. Hepatocytes were identified 
with a deep neural network for histological cytoplasm segmentation 
on the basis of phalloidin staining at 1.2 input spatial scaling, 40% 
detection confidence and 30% contour confidence. Only contours 
between 135 µm2 and 1,350 µm2 were taken into consideration, and no 
further exclusion criteria were applied. After removal of duplicates and 
false identifications by supervised machine learning, contours were 
exported without additional shape offset together with three calibra-
tion points that were chosen at characteristic tissue positions. Contour 
outlines were simplified by removing 99% of data points. For five-shape 
proteomes, directly adjacent shapes forming a pentagon-like struc-
ture were manually picked. Single shapes were randomly picked and 
every 15–25th shape was assigned to adjacent wells in a 384-well plate. 
Arterioles were manually assigned based on WGA signal, ellipticity and 
proximity to the E-cadherin positive PV.

Laser microdissection
Contour outlines were imported after reference point alignment, and 
shapes were cut by laser microdissection with the LMD7 (Leica) in a 
semi-automated manner at the following settings: power 59, aperture 
1, speed 60, middle pulse count 1, final pulse −1, head current 48–52%, 
pulse frequency 3,282 and offset 100. For the five-shape experiment, 
the microscope was controlled with LMD v8.2, with which five directly 
adjacent shapes were sorted into a low-binding 384-well plate (Eppen-
dorf 0030129547) with one empty well between samples. Single shapes 
were cut and sorted with the software LMD beta 10 after calibration of 
the gravitational stage shift into 384-well plates into all wells, leaving 
the outermost rows and columns empty. A ‘wind shield’ plate was used 
on top of the sample stage to avoid erroneous sorting. Plates were 
sealed, centrifuged at 1,000g for 5 min and then frozen at −20 °C until 
further processing.

Reference peptide preparation for five-shape and 
single-shape proteomes
The proximal part of two biologically independent lobes of the same 
mice as in the scDVP experiments was used to construct a library. The 
tissue embedded in optimal cutting temperature medium was removed 
from −80 °C and directly disintegrated in a plastic bag with a manual 
tissue homogenizer (rubber hammer). Pieces of approximately 1 mm3 
were transferred into a low-binding 96-well plate with magnets (Beat-
Box Tissue Kit, Preomics), covered with 50 µl of 60 mM triethylammo-
nium bicarbonate buffer with 10% acetonitrile (ACN; lysis buffer), and 
lysed in a BeatBox (Preomics) at standard settings for 10 min. Samples 
were then boiled at 96 °C for 20 min, transferred to 1.5 ml low-binding 
tubes, filled up to 500 µl with lysis buffer and sonicated for five times 
30 s on/off cycles. After centrifugation at 2,000g for 1 min, the protein 
concentration in the supernatant was estimated on a NanoDrop, and 
LysC and trypsin were added at a protein-to-enzyme ratio of 1:100. After 
digest for 20 h, samples were acidified to 1% trifluoroacetic acid (TFA), 
centrifuged at 3,000g for 10 min at room temperature, and dried in a 
SpeedVac for 30 min. Digest was filled to 1 ml with buffer A (0.1% formic 
acid (FA)), and desalted on C-18 columns (Waters WAT036820). They 
were activated and equilibrated with 2 ml of methanol, 2 ml of buffer 
B (100% ACN, 0.1% FA) and 2 ml of buffer A, before sample loading. 
Peptides were washed with buffer A two times, eluted in 80% ACN with 
0.2% FA and dried down.

Library fractionation for five-shape proteomes
Peptides were reconstituted in 18 µl buffer A* (0.1% FA, 2% ACN) frac-
tionated on a 30-cm-long 1.9 µm ReproSil C-18 column (PepSep) using a 
100 min high-pH gradient. The concentration of buffer B was increased 
from 3% to 30% in 45 min, to 40% in 12 min, to 60% in 5 min, to 95% in 
10 min, kept constant for 10 min, reduced to 5% in 10 min and kept 
constant for 8 min. The eluted peptides were automatically collected 
into 48 fractions with a concatenation time of 90 s per fraction. The 
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fractions were dried in a SpeedVac, reconstituted in 0.1% FA and directly 
loaded onto Evotips.

Labeling of single-shape reference proteome
Peptides were reconstituted to 0.125 µg µl−1 in 60 mM triethylammo-
nium bicarbonate buffer with 10% ACN, pH 8.5. The peptides were then 
dimethyl labeled with 0.15% light formaldehyde (CH2O) and 0.023 M 
light sodium cyanoborohydrate (NaBH3CN) for 1 h at room tempera-
ture, quenched with 0.13% ammonia and acidified to 1% TFA. After 
drying in a SpeedVac, pellets were reconstituted in 100 µl buffer A, and 
desalted via 5 µg C-18 columns on an AssayMap (Agilent) following the 
standard protocol. The resulting reference peptides were dried, and 
reconstituted to 1 ng µl−1 in buffer A.

Peptide preparation of single shapes and dimethyl labeling for 
multiplexing
Peptides were prepared semi-automated on a Bravo pipetting robot 
(Agilent), similarly to as described previously11. During each incuba-
tion step, plates were tightly sealed with two stacked aluminum lids to 
avoid evaporation (Thermo Fisher Scientific, AB0626). For this, plates 
were removed from the freezer and centrifuged. The wells were then 
washed on the robot with 28 µl of 100% ACN and dried in a SpeedVac 
(Eppendorf) at 45 °C for 20 min. Shapes were then resuspended in 6 µl 
of 60 mM triethylammonium bicarbonate buffer (pH 8.5, Sigma) with 
0.013% DDM (Sigma), and cooked for 30 min at 95 °C in a PCR cycler 
at a lid temperature of 110 °C. After addition of 1 µl of 80% ACN (final 
concentration 10%), samples were incubated for another 30 min at 
75 °C, cooled briefly, and 1 µl with 4 ng LysC and 6 ng trypsin was added. 
The samples were digested for 18 h, and then 1 µl of either intermediate 
(CD2O) or heavy formaldehyde (13CD2O) was added to a final concen-
tration of 0.15%. Without delay, either light (NaBH3CN) or heavy (NaB-
D3CN) sodium cyanoborohydrate were added to 0.023 M to retrieve 
Δ4 and Δ8 dimethyl-labeled single-shape samples. The sealed plate 
was then incubated at room temperature for 1 h, and the reaction was 
quenched to 0.13% ammonia and acidified to 1% TFA.

Peptide loading onto C-18 tips
C-18 tips (Evotip Pure, EvoSep) were activated for 5 min in 1-propoanl, 
washed twice with 50 µl of buffer B (99.9% ACN, 0.1% FA), activated for 
5 min in 1-propanol, and washed twice with 50 µl buffer A (0.1% formic 
acid). Single-shape samples were then loaded automatically with the 
Agilent Bravo robot into 30 µl buffer in the tip that was spun through 
the C-18 disk for a few seconds only. For loading, 10 µl of 1 ng µl−1 refer-
ence peptides (Δ0) were pipetted first, followed by Δ4, and Δ8 samples 
with the same tip. Wells were rinsed with 15 µl buffer A that was also 
loaded onto the tip. After peptide binding, the disk was further washed 
once with 50 µl buffer A and then overlayed with 150 µl buffer A. All 
centrifugation steps were performed at 700g for 1 min, except sample 
loading for 2 min.

For five-shape proteomes, plates were treated as above, with the 
exception of lysis in 4.5 µl 60 mM triethylammonium bicarbonate 
buffer, pH 8.5 without DDM, and consecutive addition of 1 µl LysC and 
1.5 µl trypsin to achieve the same digestion volume as above. Five-shape 
samples were not dimethyl labeled and multiplexed, but acidified 
directly after digest, and loaded manually onto Evotips following the 
protocol described above.

LC–MS/MS analysis of five shapes
Samples were measured with the Evosep One LC system (EvoSep) cou-
pled to a timsTOF SCP mass spectrometer (Bruker Daltonics). The 30 
samples per day method was used with the Evosep Performance column 
15 cm, 150 µm ID (EV1137 EvoSep) at 40 °C inside a nanoelectrospray ion 
source (Bruker Daltonics) with a 10 µm emitter (ZDV Sprayer 10, Bruker 
Daltonics). The mobile phases were 0.1% FA in liquid chromatography 
(LC)–MS-grade water (buffer A) and 99.9% ACN/0.1% FA (buffer B). We 

used a dia-PASEF method with 16 dia-PASEF scans separated into four 
ion mobility windows per scan covering an m/z range from 400 to 1,200 
by 25 Th windows and an ion mobility range from 0.6 to 1.6 V s cm−2 
(‘standard scheme’27). The mass spectrometer was operated in high 
sensitivity mode, with an accumulation and ramp time at 100 ms, capil-
lary voltage set to 1,750 V and the collision energy as a linear ramp from 
20 eV at 1/K0 = 0.6 V s cm−2 to 59 eV at 1/K0 = 1.6 V s cm−2.

LC–MS/MS analysis of single shapes
Samples were measured with the Evosep One LC system (EvoSep) 
coupled to a timsTOF SCP mass spectrometer (Bruker Daltonics). The 
Whisper40 samples per day method was used with the Aurora Elite 
CSI third generation 15 cm and 75 µm ID (AUR3-15075C18-CS IonOp-
ticks, Australia) at 50 °C inside a nanoelectrospray ion source (Bruker 
Daltonics). The mobile phases were 0.1% formic acid in LC–MS-grade 
water (buffer A) and 99.9% ACN/0.1% FA (buffer B). The timsTOF SCP 
was operated with an optimal dia-PASEF method generated with our 
Python tool py_diAID28. The method contained eight dia-PASEF scans 
with variable width and two ion mobility windows per dia-PASEF scan, 
covering an m/z from 300 to 1,200 and an ion mobility range from 0.7 
to 1.3 V s cm−2, as previously used on the same gradient and similar input 
material amount11. The mass spectrometer was operated in high sensi-
tivity mode, with an accumulation and ramp time at 100 ms, capillary 
voltage set to 1,400 V and the collision energy as a linear ramp from 
20 eV at 1/K0 = 0.6 V s cm−2 to 59 eV at 1/K0 = 1.6 V s cm−2.

The labeling efficiency was accessed on the same LC–MS/MS in 
data-dependent acquisition (dda)-PASEF mode with ten PASEF scans 
per topN acquisition cycle. Singly charged precursors were excluded 
by their position in the m/z-ion mobility plane using a polygon shape, 
and precursor signals over an intensity threshold of 1,000 arbitrary 
units were picked for fragmentation. Precursors were isolated with a 
2 Th window below m/z 700 and 3 Th above, as well as actively excluded 
for 0.4 min when reaching a target intensity of 20,000 arbitrary units. 
All spectra were acquired within a m/z range of 100–1,700. All other 
settings were kept as described before.

Spectral library generation
The spectral library was generated on five dda-PASEF single shots 
from 50 ng mouse reference peptide, using the same chromatography 
method as above. Spectra were search with FragPipe v18.0 (ref. 29) 
using MSFragger v3.5, Philosopher v4.4.0 and EasyPQP v0.1.32 against 
a mouse FASTA reference file with 55,319 entries used throughout this 
study, excluding 50% decoys. Standard settings of the DIA_SpecLib_
Quant workflow were used with the following exceptions: N-terminal 
and lysine mass shift of 28.0313 Da were set as fixed modifications, and 
methionine oxidation as variable modification. Carbamidomethylation 
was unselected as samples were not reduced and alkylated. One missed 
cleavage was accepted. The precursor charge ranged from 2 to 4. The 
peptide mass range was set to 300–1,800, and peptide length from 7 
to 30. For DIA-NN compatibility, the column ‘FragmentLossType’ was 
removed in the output library file.

Spectral search
All 263 files were search together in DIA-NN (version 1.8.1) (ref. 30) against 
the above-generated library, using a mass and MS1 mass accuracy of 15.0, 
scan windows of 9, and activated isotopologues, Match-between-Runs 
(MBR), heuristic protein inference and no shared spectra, in single-pass 
mode. Proteins were inferred from genes. Library generation was set 
as ‘IDs, RT & IM profiling’, and ‘Robust LC (high precision)’ as the quan-
tification strategy. Dimethyl labeling at N-termini and lysins was set as 
fixed modification at 28.0313 Da, and Δ4 or Δ8 were spaced 4.0251 Da or 
8.0444 Da from the reference Δ0 ({–fixed-mod Dimethyl, 28.0313, nK} 
and {–channels Dimethyl, 0, nK, 0:0; Dimethyl, 4, nK, 4.0251:4.0251; Dime-
thyl, 8, nK, 8.0444:8.0444}). Additional settings were {–original-mods}, 
{–peak-translation}, {–ms1-isotope-quant}, {–report-lib-info}.
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Data analysis

	(1)	 RefQuant: to determine the quantities of the precursors in the 
DIA-NN report.tsv file, we utilized the Python-based RefQuant al-
gorithm11. In brief, RefQuant determines the ratio between target 
and reference channels for each individual fragment ion and MS1 
peak that is available. This gives a collection of ratios from which 
RefQuant estimates a likely overall ratio between target and 
reference. The ratio between target and reference was rescaled 
by the median reference intensity over all runs for the given pre-
cursor, thereby giving a meaningful intensity value for the target 
channel. The RefQuant quantification matrix was filtered for ‘Lib.
PG.Q.Value’ <0.01, ‘Q.value’ <0.01 and ‘Channel.Q.Value’ <0.15 
and was then collapsed to protein groups using the MaxLFQ algo-
rithm31 as implemented in the R package iq (version 1.9.6) (ref. 32) 
with median normalization turned off.

	(2)	 Sample filtering and normalization: protein group data 
were then further analyzed in R v4.2.1 operating in RStudio 
v2022.07.2. Samples were excluded if the number of detected 
proteins was below 1.5 or above 3 s.d. from the sample iden-
tification median, or within (806, 3,362) identified proteins, 
resulting into a dropout of 8.9% (41 of 459 samples). Four 
samples were removed due to their outlier position on the PCA, 
see Supplementary Table S3. Eight samples were removed due 
to their cell sizes larger than the BIAS cutoff of 1,350 µm2. This 
resulted in 406 included samples, of which 400 were hepato-
cytes and 6 endothelial structures for validation. After sample 
filtering, data was median normalized to a set of proteins that 
were quantified across all samples (175 proteins quantified in 
100% of included samples; Supplementary Table S3), thus cor-
recting for the dependence of protein numbers on shape size. 
For hepatocyte specific analysis, the arteriole proteomes were 
removed before normalization.

	(3)	 Figure generation: we chose 20 classes for all comparative 
spatial analyses as this matches the approximate number of 
cells from PV to CV, and five classes for machine learning as 
a compromise between meaningful separation and having 
enough samples per class. Proteome bins were based on an 
equidistant split of PC1, distance classes accordingly on a 
split of PV over CV distance ratios, and applied as indicated. 
PCA were performed with the PCAtools v2.8.0 package. 
Limma v3.52.4 was used for statistical testing across pro-
teome bins on a 50%-complete protein data matrix. ‘FDR’ was 
applied for multiple testing correction, and an FDR cutoff of 
5% was considered significant. Heat mapping was performed 
with pheatmap 1.0.12, the completeness of the data matrix is 
indicated in the figure legends. Proteomic gene set enrich-
ment analyses were done with WebGestalt 2019 (ref. 33) in 
an R environment using Kyoto Encyclopedia of Genes and 
Genomes metabolic pathways or Wikipathway as functional 
library and an FDR threshold for reporting of 1. Significance 
was defined as FDR <10%, and normalized enrichment scores 
are reported here. Subcellular localization and mitochondrial 
functional protein sets were retrieved from mouse Mitocarta 
3.0 (ref. 15). Urea cycle and peroxisomal fatty acid degrada-
tion proteins were manually curated. Normality was assessed 
with Shapiro–Wilk’s test, and P values were corrected for 
multiple testing and expressed as FDR. Spatial data from  
xml files was plotted with the package sf v1.0-9. For compari-
sons to scRNAseq data, the dataset of Halpern et al.6 was  
used, for which we binned the proteome data into nine  
equidistant spatial bins as described above. We used the 
dataset by Ben-Moshe et al.8 to compare scDVP data with 
FACS-based proteomics data, binning our samples into eight 
equidistant spatial bins.

Image processing
Image data analysis was done in Python (3.8.11). Image shapes were 
extracted from the stitched tiles using Pillow (9.0.0). For each shape, 
the bounding box was calculated by taking the floor and ceiling of each 
shape coordinate and taking the maximum and minimum in x and y. 
The bounding rectangle was used to crop out the respective region 
of interest of the image. For image with offset extraction, the center 
of each bounding rectangle was calculated and rounded to the next 
integer. An offset of 1,000 was added to each direction to addition-
ally capture the surrounding environment, and the bounding box 
was highlighted. For composite images, each image was exported per 
channel with matplotlib (3.5.1), reloaded, merged with NumPy (1.4.2) 
and saved again. ImageJ was used to manually measure the distance of 
a shape to its proximal PV and CV.

Machine learning
For each shape and in all four channels (cyan fluorescent protein, 
Alexa488, Alexa568 and Alexa647), the mean, median, minimum and 
maximum intensity of each bounding box were calculated, as well as the 
shape area. This feature list was saved with pandas (1.22.3). Proteomics 
data were clustered with a k-means algorithm into five clusters. Next, 
we used a supervised learning approach to classify the proteomic 
clusters based on the feature list. The training was performed using 
the scikit-learn package (1.0.2). Data (n = 408) were randomly split 
in train and test datasets (split of 0.2). For classification, we used a 
RandomForestClassifier (n_estimators=200) and achieved a testing 
accuracy of 0.90. To export probabilities, we used the predict_proba 
functionality of RandomForest. Diagnostic plots were generated using 
the Yellowbrick package (1.5). The random state was set to 23 for train/
test-split and RandomForestClassifier.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE34 partner repository with 
the ID PXD038699. Imaging data has been deposited to BioImages35 
with the accession number S-BIAD596.

Code availability
The R and Python code used to produce the figures can be down-
loaded from the Mann lab Github repository via https://github.com/
MannLabs/single-cell-DVP.
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Extended Data Fig. 1 | Five shape proteomes resolve liver zonation.  
a, Titration of number of shapes (10 µm thick) versus proteome depth achieved 
(n = 3), and measured with the original protocol (single shape, 44 min Evosep 
gradient, 15 cm column at 500 nL/min, dia-PASEF 27 without optimized windows, 
library-dependent search in DIA-NN 30). Boxes are first and third quartile, 
the thick line is median, whiskers are ± 1.5 interquartile range, and outliers are 
indicated as individual points. b, Protein numbers per five shapes across 230 

samples. Line is a smoothing curve. c, Principal component analyses with a color 
overlay of two indicated zonation markers; n.q. not quantified. d, Unbiased k 
means clustering of all samples into four bins. Labeled arrows are the top driver 
proteins of separation. e, Marker expression sorted by central (top) or portal 
(bottom) markers in the indicated k means clusters in d, expressed as z-score of 
log2 transformed protein abundances, and sorted according to summed zonal 
probability across all markers.
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Extended Data Fig. 2 | Statistical analysis of five-shape proteomes. a, Volcano 
plot after an ANOVA over four sorted k means clusters (see Extended Date  
Fig. 1d). Statistically significant proteins (FDR < 0.05, n = 333 of 1652) with an 
absolute fold change of more than 0.5 are labeled. Colors indicate upregulation 
towards portal, or central zones. b, Heatmapping of statistically significant 

proteins in a. The blocks are separate by negative, or positive fold change.  
Protein expression as z-score of log2 transformed protein abundances.  
c,d, Five top significant terms (FDR < 0.05) after over-representation analysis 
enriched in peri-portal (c) or peri-central regions (d). See Supplementary table S2 
for further reference.
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Extended Data Fig. 3 | Performance overview of single-shape proteomes. 
a, Labeling efficiency of 10 ng mouse liver peptide samples. Mean efficiency 
by intensity is stated in the bar (n = 5, mean and individual measurements). 
b, Density distribution of shape areas across all measured and included 
hepatocytes, split by visually distinguished mono- (N = 191) and binucleated 
(N = 99) hepatocytes. Vertical lines and numbers above are mean sizes in the 
respective group. c, Number of proteins per sample (N = 455). The dotted line is 
the median, the fine pricked line is the sample exclusion cutoff of median minus 
1.5 standard deviations. Samples were measured from left to right. Shape type 
indicates whether the samples was included for the final analysis. d, Levels of 
plasma proteins in the scDVP dataset. Hba, Hbb and Hbd were not detected.  
e, Association between the area of the cut shape, and number of proteins.  

Line is a log10 regression curve. Symbols indicate whether sample was 
included or discarded for analysis, for exclusion criteria see Methods section. 
f, Percentage of proteins quantified, binned into four groups, versus log10 
transformed median intensities in the respective bin. Data completeness is 
defined as percentage of samples across all samples in which a particular protein 
was quantified in. g, Coefficient of variation (CV) in bins of similarly sized shapes 
(color coded), and spatial bins with similar distance ratio to portal and central 
vein, that is similar zonation profile. h, Levels of four histone proteins shown in 
Fig. 2b by number of nuclei in the isolated shapes. Binuc: binucleated (N = 99); 
Mono: mononucleated (N = 191); NoNuc: no nucleus (N = 101). Boxes are first and 
third quartile, the thick line is median, whiskers are ± 1.5 interquartile range, and 
outliers are indicated as individual points.
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Extended Data Fig. 4 | Dimensionality reduction of single shape data.  
a, Color overlay is expression level of the portal marker Asl, or b, the central 
marker Cyp2e1. c, PC2 versus measured distance ratio portal over central vein 

for all shapes. d, Top 10-leading edges as Eigenvectors (arrows) with proteins. e, 
Arterioles were cut as quality controls (see Methods section), and separate from 
hepatocytes on PC2 (n = 6).
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Extended Data Fig. 5 | Information aggregation from single shapes. 
 a, Principal component analysis after averaging of close-by cells, as measured by 
relative position along the portal to central vein zonation axis. Ratios over every 

sub-plot indicate concatenation ratio (1:x averages x cells). b, Interquartile range 
(IQR) of principal components 1 – 5 at given concatenation ratio. c, Variance 
explained by the indicated principal component at given concatenation ratio.
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Extended Data Fig. 6 | Functional analysis of single shape data. a, Volcano plot 
after ANOVA across 20 spatially guided bins. Color overlay specifies adjusted p 
value, the top 40 significant proteins are labeled. b, Score and multiple testing-

adjusted p value of a Shapiro-Wilk normality test. Lowest proteins are labeled.  
c, Relative expression normalized to 1 for each contributing protein (n = 10) of the 
least significant Shapiro-Wilk hits in b, from portal to central distance-guided bins.
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Extended Data Fig. 7 | Comparison of scDVP to existing scRNAseq data (a-c) 
and FACS-based proteomics data (d-g). a, Abundance normalized to 1 across 
9 bins in Halpern et al. 6 (marker expression-guided bins), and this scDVP data 
(spatial bins). b, Intensity correlation of all hits (opaque dots, color according to 
cluster) and markers (black dots). Linear regression as dashed line, with Pearson 
correlation coefficient given over the figure. Grey line is the 45 degree line.  
c, Correlation coefficient for targets across all bins, with multiple testing 
adjusted p value. Top hits on either side are labeled in dark red, and marker 
proteins in orange. d, Abundance normalized to 1 across 8 bins in Ben-Moshe 

et al. 8 (marker expression-guided bins), and this scDVP data (spatial bins). 
e, Intensity correlation of all hits (opaque dots, color according to cluster) and 
markers (black dots). Linear regression as dashed line, with Pearson correlation 
coefficient given over the figure. Grey line is the 45 degree line. f, Correlation 
coefficient for targets across all bins, with multiple testing adjusted p value. 
Top hits on either side are labeled in dark red, and marker proteins in orange. 
g, A significant hit after gene set enrichment analysis on Pearson correlation 
coefficients, with normalized abundance of protein levels as heatmap colors.
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Extended Data Fig. 8 | Changes in subcellular compartment composition 
across space. Spatial bins are mean single shape data in 20 equidistant bins from 
portal to central vein. Ordinate values are z-transformed proportions of summed 

signal intensities per compartment. Pearson’s R was calculated on z scores from 
a linear model. Blue line is the linear regression line with the 95% confidence 
interval in grey.
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Extended Data Fig. 9 | Machine learning (ML) accurately predicts proteome class. a, k means clustering, dividing all samples into five classes that inform the ML. 
b, Feature importance of the ML model, relative to the highest contributor. c, Receiver-Operating-Characteristics for each class. The individual Area Under the Curve 
(AUC) is given in the graph. d, Precision-recall-curve for the five classes.

http://www.nature.com/naturemethods






 


	Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome

	Results

	Robust isolation and characterization of hepatocyte shapes

	Multiplex-DIA drastically increases proteome depth

	Single-shape proteomes accurately reflect hepatocyte zonation

	Spatial context regulates single-cell proteomes


	Discussion

	Online content

	Fig. 1 Isolation and characterization of individual hepatocyte shapes in situ.
	Fig. 2 Depth of single-shape proteomes and estimation of the nuclear compartment.
	Fig. 3 Single-shape proteomes are accurate descriptors of zonated hepatocytes.
	Fig. 4 Combining imaging and proteome data for a ML model.
	Extended Data Fig. 1 Five shape proteomes resolve liver zonation.
	Extended Data Fig. 2 Statistical analysis of five-shape proteomes.
	Extended Data Fig. 3 Performance overview of single-shape proteomes.
	Extended Data Fig. 4 Dimensionality reduction of single shape data.
	Extended Data Fig. 5 Information aggregation from single shapes.
	Extended Data Fig. 6 Functional analysis of single shape data.
	Extended Data Fig. 7 Comparison of scDVP to existing scRNAseq data (a-c) and FACS-based proteomics data (d-g).
	Extended Data Fig. 8 Changes in subcellular compartment composition across space.
	Extended Data Fig. 9 Machine learning (ML) accurately predicts proteome class.




