
Nature Methods | Volume 20 | October 2023 | 1581–1592 1581

nature methods

https://doi.org/10.1038/s41592-023-02005-8Article

Statistically unbiased prediction enables 
accurate denoising of voltage imaging data

Minho Eom    1,20, Seungjae Han    1,20, Pojeong Park2,20, Gyuri Kim1, 
Eun-Seo Cho    1, Jueun Sim3, Kang-Han Lee4, Seonghoon Kim5,6, He Tian2, 
Urs L. Böhm2,7, Eric Lowet8, Hua-an Tseng8, Jieun Choi    9,10, 
Stephani Edwina Lucia    9,10, Seung Hyun Ryu    11, Márton Rózsa12, 
Sunghoe Chang    13, Pilhan Kim    9,10,14, Xue Han    8, Kiryl D. Piatkevich15,16,17, 
Myunghwan Choi    5,6, Cheol-Hee Kim    4, Adam E. Cohen    2,18, 
Jae-Byum Chang3 & Young-Gyu Yoon    1,10,19 

Here we report SUPPORT (statistically unbiased prediction utilizing 
spatiotemporal information in imaging data), a self-supervised learning 
method for removing Poisson–Gaussian noise in voltage imaging data. 
SUPPORT is based on the insight that a pixel value in voltage imaging data 
is highly dependent on its spatiotemporal neighboring pixels, even when 
its temporally adjacent frames alone do not provide useful information 
for statistical prediction. Such dependency is captured and used by a 
convolutional neural network with a spatiotemporal blind spot to accurately 
denoise voltage imaging data in which the existence of the action potential 
in a time frame cannot be inferred by the information in other frames. 
Through simulations and experiments, we show that SUPPORT enables 
precise denoising of voltage imaging data and other types of microscopy 
image while preserving the underlying dynamics within the scene.

Recent advancements in voltage imaging and calcium imaging have 
enabled recording of the population activity of neurons at an unprec-
edented throughput, which opens up the possibility of a system-level 
understanding of neuronal circuits1–3. To investigate causality within 
neuronal activities, it is essential to record the activities with high tem-
poral precision. Unfortunately, the inherent limitation in the maximum 
number of photons that can be collected from a sample in a given time 

interval dictates the inherent trade-offs between imaging speed and 
signal-to-noise ratio (SNR)4,5. In other words, increasing the temporal 
resolution in functional imaging data inevitably results in a decrease in 
the SNR. The decrease in SNR not only hinders the accurate detection 
of the neurons’ locations but also compromises the timing precision of 
the detected temporal events, which nullifies the increase in temporal 
resolution. Fortunately, all functional imaging data have high inherent 
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follows is how we can implement an accurate statistical model that 
allows us to accurately predict each pixel value under such conditions.

To this end, we propose SUPPORT (statistically unbiased pre-
diction using spatiotemporal information in imaging data), a 
self-supervised denoising method for functional imaging data that is 
robust to fast dynamics in the scene compared to the imaging speed. 
SUPPORT is based on the insight that a pixel value in functional imag-
ing data is highly dependent on its spatiotemporal neighboring pixels, 
even when its temporally adjacent frames alone fail to provide useful 
information for statistical prediction. By learning and using the spa-
tiotemporal dependence among the pixels, SUPPORT can accurately 
remove Poisson–Gaussian noise in voltage imaging data in which the 
existence of the action potential in a time frame cannot be inferred 
from the information in other frames. We demonstrate the capability 
of SUPPORT using diverse voltage imaging datasets acquired using 
Voltron1, Voltron2, paQuasAr3-s, QuasAr6a, zArchon1, SomArchon 
and BeRST1. The analysis of the voltage imaging data with simultaneous 
electrophysiological recording shows that our method preserves the 
shape of the spike while reducing the statistical variance in the signal. 
We also show that SUPPORT can be used for denoising time-lapse fluo-
rescence microscopy images of Caenorhabditis elegans (C. elegans), in 
which the imaging speed is not faster than the worm’s locomotion, as 
well as static volumetric images of Penicillium and mouse embryos. 
SUPPORT is exceptionally compelling for denoising voltage imag-
ing and time-lapse imaging data, and is even effective for denoising 
calcium imaging data. Finally, we developed software with a graphical 
user interface (GUI) for running SUPPORT to make it available to the 
wider community.

Results
Central principle of SUPPORT
The central principle of SUPPORT is to perform denoising based on a 
statistical prediction model with minimal bias by exploiting all avail-
able information in both spatial and temporal domains (Fig. 1a). A 
functional imaging dataset y is considered a realization of a random 
variable that is drawn from p (y) = p (x)p (n|x) , where x and n are the 
clean signal and the zero-mean Poisson–Gaussian additive noise, 
respectively (that is, y = x + n). In this setting, the noise in each  
pixel is independent in both time and space (that is, ∀(i, k) ≠ ( j, l) , 
p (ni,k) = p (ni,k|nj,l) , where i, j and k, l are temporal and spatial  
indices, respectively, where the signal is not (that is, ∀ (i, k, j, l) ,  
p (xi,k) ≠ p (xi,k|xj,l) ). The dependency among xi,k  encodes the spati-
otemporal structure of the data x (that is, p(x)), which can be learned 
using a statistical prediction model, whereas the spatiotemporal inde-
pendence of n makes it impossible to predict. The prediction model 
can be implemented as a neural network that predicts a pixel value xi,k  
using its spatiotemporal neighboring pixel values by solving the fol-
lowing optimization problem20,21:

θ∗ = argmin
θ

∑
i,k

L ( fθ(Ωi,k), xi,k)

where L(∙,∙) is the loss function defined as the Lp distance between the 
inputs, fθ denotes the neural network parameterized by θ and Ωi,k  
denotes the spatiotemporal neighboring pixels of yi,k  excluding  
itself. Evaluating this loss function requires the ground truth x, which 
is inaccessible, but the zero-mean property of the noise allows us to 
replace xi,k  with yi,k  for self-supervised training21:

θ∗ = argmin
θ

∑
i,k

L ( fθ(Ωi,k), xi,k) = argmin
θ

∑
i,k

L ( fθ(Ωi,k), yi,k) .

For the implementation of the network fθ (Ωi,k) , we devised a 
network architecture that automatically satisfies the requirements 
(Fig. 1b,c and Supplementary Figs. 1 and 2). For the prediction of xi,k , 

redundancy in the sense that each frame in a dataset shares a high level 
of similarity with other frames apart from noise, which offers an oppor-
tunity to denoise or distinguish the signal from the noise in the data6–9.

Denoising is a type of signal processing that attempts to extract 
underlying signals from noisy observations based on previous knowl-
edge of the signal and the noise10. The fundamental property of noise—
randomness—does not allow for exact recovery of the signal, so we can 
only reduce statistical variance at the cost of increasing statistical bias 
(that is, an absolute deviation between the mean denoising outcome 
and the ground truth). In other words, denoising is a statistical esti-
mation of the most probable value based on our previous statistical 
knowledge of the signal and the noise. Unfortunately, for any given 
noisy observation, the exact corresponding probability distribution 
functions (PDFs) of the signal and the noise are almost never known. 
Therefore, all denoising algorithms start with setting the signal model 
(that is, PDF of signal) and noise model (that is, PDF of noise), either 
explicitly or implicitly, and their accuracy determines the denoising 
performance.

The most common approach starts with applying linear trans-
forms, such as the Fourier transform and the wavelet transform, to 
noisy observations11,12. Then, a certain set of coefficients that corre-
sponds to a small vector space is preserved, while others are attenuated 
to reduce statistical variance. This is based on a signal model in which 
the signal is a random variable drawn from the small vector space, 
whereas noise is drawn from the entire vector space. An implicit yet 
important assumption here is that the basis used for the linear trans-
form maps the signal component sharply onto a relatively small and 
known set of coefficients. When the assumption is not met, denoising 
leads to a distortion of signals or an increase in statistical bias. Such bias 
can be reduced by loosening the assumption (for example, the signal is 
drawn from a larger vector space), but then the variance is increased.

Therefore, building a good signal model that is strong enough 
to reject noise while being accurate enough to avoid bias is the most 
critical step in denoising. Previous efforts have focused on finding a 
handcrafted basis that empirically matches the given data13. Some have 
shown higher general applicability than others14, but no universal basis 
that performs well across different types of data has been found, mainly 
because of the differences in their signal models and noise models15. 
This has led to the idea of using a basis learned directly from the dataset 
for denoising6,16,17. However, these methods still suffer from high bias, 
as their ability to reduce variance relies on the strong assumption that 
the data can be represented as a linear summation of a small number 
of learned vectors.

Recently, the convolutional network has emerged as a strong 
alternative to existing learning-based image denoising algorithms18. 
The high representational power of convolutional networks allows for 
learning nearly arbitrary signal models in the image domain, result-
ing in low bias in denoising outcomes without sacrificing variance19. 
Owing to its high representational power and the high inherent redun-
dancy in functional imaging data, convolutional networks have shown 
enormous success in denoising functional imaging data7–9. As a key 
aspect, these methods learn the signal model from noisy data in a 
self-supervised manner20–23, so the need for ‘clean’ images as the ground 
truth for training is alleviated.

Both DeepCAD-RT7 and DeepInterpolation9 are based on the 
assumption that the underlying signal in any two consecutive frames 
in a video can be considered the same, whereas the noise is independ-
ent when the imaging speed is sufficiently higher than the dynamics 
of the fluorescent reporter7,9; the networks are trained to predict the 
‘current’ frame using the past and future frames as the input. Unfor-
tunately, this assumption breaks down when the imaging speed is not 
sufficiently faster than the dynamics, and the bias in the denoising 
outcome is increased. This is becoming increasingly prevalent due to 
the development of voltage indicators24–28 and calcium indicators with 
extremely fast dynamics29. In that regard, the question that naturally 
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its spatiotemporal neighbor Ωi,k  excluding yi,k  is taken as the input 
while preserving the spatial invariance. The current frame yi is fed into 
a convolutional network that has a zero at the center of the impulse 
response (Fig. 1b,c); the zero at the center of the impulse response 
indicates that the pixel value yi,k  cannot affect the network’s prediction 
of xi,k  (refs. 20,30), which is attained by convolution layers and dilated 
convolution layers with zeros at the center of the kernels. These layers 
offer a fractal-shaped receptive field that grows exponentially with 
depth, enabling the network to integrate information from a large 

number of neighboring pixels (Supplementary Fig. 2). In addition, 
temporally adjacent frames are fed into a U-Net31 to extract the available 
information from the temporally adjacent ones (Supplementary  
Fig. 1). The outputs from the two convolutional networks are integrated 
by the following convolutional layers. This architecture ‘forces’ the 
network to make a prediction ̂xi,k by using its spatiotemporal neighbor 
Ωi,k  excluding yi,k  (that is, ̂xi,k = fθ(Ωi,k)).

The major difference between SUPPORT and DeepCAD-RT7 or 
DeepInterpolation9, which can also denoise functional imaging data 
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Fig. 1 | SUPPORT can be applied to functional imaging data with a fast 
dynamics indicator. a, SUPPORT’s self-supervised learning scheme and previous 
methods that exploit temporally adjacent frames for denoising functional 
imaging data with slow and fast dynamics indicators. Functional imaging data 
are represented by green and red surfaces, which indicate the receptive field and 
prediction target area, respectively. b, Noisy frames are fed into the SUPPORT 
network and output the denoised image. Red tiles indicate the receptive field of 
the SUPPORT network, which uses spatially adjacent pixels in the same frame.  
c, Impulse response of the SUPPORT network on the current frame. The magnified 

view is presented on the right side. Response value of the center pixel is 0, 
which forces the network to predict the center pixel without using it. d, In vivo 
population voltage imaging data. The left shows the raw data and the right shows 
the SUPPORT-denoised data. Baseline and activity components are decomposed 
from raw data and SUPPORT-denoised data. The baseline component with gray 
colormap and activity component with hot colormap are overlaid. Magnified 
views of the boxed regions are presented below at the time points near spikes. 
Consecutive frames of two spikes (t = 0.2650 and 2.2325 s).
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through self-supervised learning, is that DeepCAD-RT and DeepIn-
terpolation learn to predict a frame given temporally adjacent other 
frames, whereas SUPPORT learns to predict each pixel value by exploit-
ing the information available from both temporally adjacent frames 
and spatially adjacent pixels in the same time frame. When the imaging 
speed is not sufficiently faster than the dynamics in the scene (Fig. 1a), 
the signal at different time points becomes nearly independent (for 
example, the existence of the action potential in a time frame cannot be 
inferred from the information in other frames). In such a case, the major 
assumptions of the signal models in DeepCAD-RT and DeepInterpola-
tion are violated, which leads to high bias in the denoising outcome. In 
comparison, SUPPORT relies on the spatiotemporal pixel-level depend-
ence of the signal rather than frame-level dependence, and each pixel 
value is estimated based on all available information, including its 
spatially adjacent pixels in the same time frame.

Performance validation on simulated data
For the quantitative evaluation of SUPPORT’s performance, we first vali-
dated it on synthetic voltage imaging data, which were generated using 
a NAOMi simulator32. We generated multiple datasets with a frame rate 
of 500 Hz with different spike widths, ranging from 1 to 9 ms (ref. 33), to 
verify how the performance of SUPPORT changes as the dependence 
between the activity in adjacent frames is diminished. The simulation 
parameters, including spike frequency, dF/F0, noise level and level of 
subthreshold activity, were chosen to match the experimental voltage 
imaging data acquired using Voltron24 (Methods). Finally, Poisson and 
Gaussian noise were added to the generated videos. Further details can 
be found in the Methods section.

We applied SUPPORT, DeepCAD-RT7 and penalized matrix decom-
position (PMD)6 to the synthetic datasets and compared the results. The 
signals were separated from the backgrounds in the denoised videos 
(Methods) to compare their accuracy in recovering the time-varying 
signal (Fig. 2a and Supplementary Video 1). Qualitative comparisons of 
the results from the dataset with a spike width of 3 ms showed that the 
denoising outcome from SUPPORT was nearly identical to the ground 
truth. DeepCAD-RT successfully reduced the variance in the video, but 
also attenuated the neuronal activity. This was expected because the 
method was designed for removing noise in calcium imaging data, 
which has much slower dynamics. PMD showed better performance 
in preserving neuronal activities, in part because it did not discard 
the current frame for denoising, but it introduced visible artifacts in 
the images.

To quantify the performance of each denoising method, we calcu-
lated the peak SNR (PSNR) of the denoised videos and calculated the 
Pearson correlation coefficient between the voltage traces extracted 
from the clean video and the denoised video. The voltage traces were 
extracted from 116 cells (Methods). In terms of PSNR, all methods 
showed substantial enhancements compared to noisy images for 
every spike width (Fig. 2b and Supplementary Figs. 3–5): noisy (1 ms, 
4.57 dB; 9 ms, 15.43 dB), SUPPORT (1 ms, 35.94 dB; 9 ms, 43.08 dB), 
DeepCAD-RT (1 ms, 30.90 dB; 9 ms, 39.05 dB) and PMD (1 ms, 32.07 dB; 
9 ms, 38.61 dB). However, in terms of the Pearson correlation coeffi-
cient, only SUPPORT (1 ms, 0.885; 9 ms, 0.991) showed improvement 
compared to noisy images (1 ms, 0.593; 9 ms, 0.942) for every spike 
width (Fig. 2c and Supplementary Fig. 6). DeepCAD-RT (1 ms, 0.190; 
9 ms, 0.984) and PMD (1 ms, 0.554; 9 ms, 0.983) showed improvement 
only when the spike width was larger than 5 and 3 ms, respectively, 
which verifies the importance of exploiting spatially adjacent pixels in 
the same time frame. We note that this inconsistency between the two 
metrics stems from the fact that the Pearson correlation coefficient is 
affected only by the time-varying component of the signals, whereas 
PSNR is largely determined by the static component.

For further comparison, we analyzed the voltage traces at the 
single-pixel (Fig. 2d) and single cell levels (Fig. 2e). Only the single-pixel 
voltage traces from SUPPORT retained the spike waveforms (Fig. 2d), 

whereas the spikes were buried under the noise level in the single-pixel 
voltage traces from the noisy video. DeepCAD-RT and PMD reduced 
the variance in the single-pixel voltage traces, but the spikes were still 
not detectable due to the bias introduced by their signal models. The 
single cell voltage traces showed similar results (Fig. 2e and Supple-
mentary Figs. 7–9), although the difference was less dramatic than the 
single-pixel traces, as the SNR was improved by averaging multiple pixel 
values. SUPPORT was able to reduce variance without distorting the 
waveforms for every spike width. In comparison, the spikes were not 
detectable in the results from DeepCAD-RT and PMD when the spike 
width was under 3 ms. It should be noted that the performance of both 
DeepCAD-RT and PMD was better for larger spike widths, but for differ-
ent reasons. DeepCAD-RT estimates the current frame given temporally 
adjacent frames, so the prediction becomes more accurate when the 
dynamics are slower. PMD attempts to find a low rank approximation 
of a given matrix that is supposedly closer to the ground truth, so a 
temporally long event is less likely to be ‘ignored’ as its contribution 
to the approximation error is higher.

Denoising single-neuron voltage imaging data
To validate SUPPORT’s capability to denoise experimentally obtained 
voltage imaging data while retaining the spikes, we applied SUPPORT 
to in vivo single-neuron voltage imaging data with simultaneous elec-
trophysiological recordings. The dataset contained light-sheet micros-
copy images of a single neuron in the dorsal part of the cerebellum 
of a zebrafish expressing Voltron1 with simultaneous cell-attached 
extracellular electrophysiological recording. Electrophysiological 
recordings were taken at a sampling rate of 6 kHz, and light-sheet imag-
ing was performed with a frame rate of 300 Hz (ref. 24).

In the raw data, both the spatial footprint and temporal traces 
of the neuron were severely corrupted by Poisson–Gaussian noise. 
We compared temporal traces extracted from the raw video and the 
denoised video using SUPPORT, DeepCAD-RT and PMD, along with 
the electrophysiological recording. Spike locations from the electro-
physiological recordings were extracted (Methods) and visualized as 
black dots for a visual aid (Fig. 3a,b). After denoising with SUPPORT, the 
temporal trace showed a much lower variance compared to the tempo-
ral trace of the raw data while preserving the spikes (Supplementary  
Figs. 9 and 10). In comparison, while the temporal variance in the 
denoising outcome acquired using DeepCAD-RT was low, the spikes 
were no longer visible in the traces, which implies that the signal mod-
eling in DeepCAD-RT substantially increased the bias. The temporal 
trace from PMD was nearly identical to that from the raw video, which 
indicates that PMD had limited impact on both bias and variance.

After we applied SUPPORT to enhance this data, not only did the 
neuronal activity become clearly visible in the images, but the spatial 
footprints of the activity also showed high consistency with the cor-
responding neuronal shape (Fig. 3c and Supplementary Video 2). Rep-
resentative frames from the raw and denoised data show that SUPPORT 
removed the noise very effectively, while the activity was preserved.

For further comparison, we extracted single-pixel fluorescence 
from the cell membrane pixels and found that the average single-pixel 
SNR was strongly enhanced with SUPPORT (14.46 dB) compared to 
DeepCAD-RT (12.21 dB) and PMD (13.46 dB) (Fig. 3d). The spatiotempo-
ral diagram, which visualizes the voltage transients of each 2 × 2 binned 
pixel, also verified that SUPPORT successfully reduced the variance 
while preserving the spikes at the pixel level (Fig. 3e).

Next, we tested the capability of SUPPORT to recover subthresh-
old activity of neurons using wide-field microscopy images of a single 
neuron in cortex layer 1 of a mouse brain expressing Voltron1 with 
simultaneous cell-attached extracellular electrophysiological record-
ing (Fig. 4a). Electrophysiological recordings were taken at a sampling 
rate of 10 kHz, and imaging was performed at a frame rate of 400 Hz.

After denoising with SUPPORT, we found that even a single-pixel 
fluorescence trace faithfully reflected the subthreshold signal (Fig. 4b). 
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The average Pearson correlation coefficient, obtained by comparing 
the fluorescence traces with the electrophysiological recordings, of 
SUPPORT (0.51 ± 0.18) showed a 0.30 increase compared to the raw 

image (0.21 ± 0.12) (Fig. 4c). The power spectral density of the fluores-
cence traces from the denoised image was also consistent with that of 
the electrophysiological recordings.
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event (t = 0.222 s). Scale bar, 40 μm. b, PSNR of the baseline-corrected data 
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as the ground truth for PSNR calculation. c, The left shows a box-and-whisker 
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We confirmed the one-to-one correspondence between the fluo-
rescence trace and the transmembrane potential using wide-field 
microscopy images of a single neuron in the brain slice from mouse cor-
tex layer 2/3 expressing QuasAr6a (ref. 34), which is known to possess 

high linearity (Fig. 4e). The one-to-one correspondence became 
evident after SUPPORT denoising (Fig. 4f ). The average Pearson 
correlation coefficient between the fluorescence traces and the elec-
trophysiological recordings increased from 0.18 ± 0.11 to 0.65 ± 0.22 
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after denoising (Fig. 4g). These results were in line with those from the 
simulation (Supplementary Fig. 11).

Additionally, we found that SUPPORT precisely revealed the traces 
from single pixels inside the soma (Supplementary Fig. 12) and along 

the dendritic branch (Supplementary Figs. 13–15 and Supplementary 
Video 3), which indicates SUPPORT’s suitability for studies involving 
voltage dependence along the neuronal processes35. Finally, SUPPORT 
was able to denoise in vitro cultured neurons labeled with a synthetic 
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voltage dye, which indicates its suitability for designing voltage indica-
tors (Supplementary Fig. 16).

Denoising population voltage imaging data
We applied SUPPORT to voltage imaging data that contained in vivo 
population neuronal activity in awake mouse cortex layer 1 express-
ing Voltron1 (ref. 24) and zebrafish spinal cord expressing zArchon1  
(ref. 27). The mouse dataset was recorded with a wide-field fluorescence 
microscope with a frame rate of 400 Hz, and the zebrafish dataset was 
recorded with a light-sheet fluorescence microscope with a frame rate 
of 1 kHz (ref. 36).

After applying SUPPORT to the voltage imaging data, we applied 
baseline correction (Methods). Despite the high noise level of the 
voltage imaging data, the neuronal structures became clearly visible 
after denoising (Fig. 5a,d, Supplementary Video 4 and Supplemen-
tary Fig. 17). The single-pixel SNR was improved by 9.11 dB on average 
(21.58 ± 1.62 dB for SUPPORT, 12.47 ± 0.89 dB for the raw data) for the 
mouse dataset (Figs. 5b) and 6.32 dB (19.08 ± 2.07 dB for SUPPORT, 
12.72 ± 0.67 dB for the raw data) for the zebrafish dataset (Fig. 5e). For 
further analysis, we extracted the voltage traces from manually drawn 
regions of interest (ROI) (Fig. 5c,f,g). In line with the results from the 
simulation and the single-neuron voltage imaging, the variance was 
greatly decreased, while the sharp voltage transients induced by spikes 
were preserved (Supplementary Figs. 18–40).

We also extracted the neurons and corresponding temporal signals 
using localNMF36, which is an automated cell extraction algorithm, 
from the mouse and zebrafish datasets (Methods and Supplementary  
Fig. 41a,b). Owing to the improvement in SNR, we were able to automati-
cally segment 42 neurons from the denoised mouse data compared 
to 31 neurons from the raw data. For zebrafish data, 27 neurons from 
the denoised data and nine neurons from the raw data were extracted. 
We then measured the F1 score between the ground-truth ROI and the 
extracted ROI across several intersection-over-union (IoU) threshold 
values. We quantified the area under F1 score across the IoU curve, and 
there was a 1.6-fold improvement for mouse data (0.31 for denoised 
and 0.19 for raw data) and a 2.0-fold improvement for zebrafish data 
(0.43 for denoised and 0.21 for raw data) (Supplementary Fig. 41c). The 
extracted neuronal signal from SUPPORT also clearly shows spikes, 
while the signal from the raw data shows high variance (Supplemen-
tary Fig. 41d), which indicates that SUPPORT facilitates the automated 
analysis of large-scale population voltage imaging data.

It was shown that SUPPORT could denoise other population volt-
age imaging data with different regions and voltage indicators, indicat-
ing its suitability for the routine use of population voltage recordings 
(Supplementary Figs. 18–40, 42 and 43). Finally, we observed that 
SUPPORT trained on single population voltage imaging data accurately 
denoised another population voltage imaging data without fine-tuning 
(Supplementary Fig. 44), which demonstrates its generalizability.

Denoising voltage imaging data with motion
The signal model of SUPPORT does not assume that objects in the 
images remain stationary, which allows for the possibility of denois-
ing image data with motion. To verify this, we applied SUPPORT to 
synthetic, semisynthetic and experimental voltage imaging datasets 
with motion.

We first applied random rigid translation to the synthetic data-
sets generated using a NAOMi simulator as described in the previous 
section. The translation profile was created by drawing a sequence of 
random numbers from a zero-mean Gaussian distribution and filtering 
the sequence with a low-pass filter with a cut-off frequency of 5 Hz to 
mimic the motion induced by respiration and heartbeat. Subsequently, 
we applied SUPPORT to the dataset for denoising (Supplementary  
Figs. 45 and 46). The traces extracted from the SUPPORT-denoised 
video showed reduced variance while maintaining the spikes (Sup-
plementary Fig. 45d). Quantitatively, the SUPPORT-denoised image 

showed an improvement of 6.95 dB in the average SNR (31.23 ± 1.85 dB) 
compared to the noisy image (24.28 ± 0.02 dB), when motion on a 
scale larger than the size of the cell body was present (Supplementary  
Fig. 45e). Additionally, the root-mean-squared error (r.m.s.e.) was 
lowered by 0.0087 for the SUPPORT-denoised image (0.0074 ± 0.0014) 
compared to the noisy image (0.0161 ± 3.38 × 10−5) (Supplementary  
Fig. 45f). We also found that altering the sequence of preprocessing 
steps (motion correction, photobleaching correction and SUPPORT) 
did not significantly affect the results (Supplementary Fig. 47).

Next, we applied random rigid translation, identical to that applied 
to the synthetic data, to the aforementioned in vivo single-neuron volt-
age imaging data with simultaneous electrophysiological recordings 
(Fig. 6a–c). We then applied SUPPORT for denoising and aligned the 
results for motion correction. The outcome was visually indistinguish-
able from the results obtained by applying SUPPORT to the motionless 
data (Fig. 6d).

Quantitatively, using simultaneously recorded electrophysiologi-
cal recordings as ground truth, the SUPPORT-denoised image with 
motion on a scale comparable to the cell body size showed a substantial 
improvement of 0.46 in the average Pearson correlation coefficient 
(0.75 ± 0.12) compared to the raw image (0.29 ± 0.12) (Fig. 6e). Similarly, 
when using SUPPORT-denoised data without motion as ground truth, 
the average Pearson correlation coefficient showed an improvement 
of 0.57 for the SUPPORT-denoised image (0.95 ± 0.05) compared to the 
raw image (0.38 ± 0.19) (Fig. 6f). Additionally, the SNR was enhanced by 
17.04 dB for the SUPPORT-denoised image (40.05 ± 0.44 dB) compared 
to the raw image (23.01 ± 0.51 dB) (Fig. 6g).

Finally, we evaluated SUPPORT using a voltage imaging dataset 
obtained from an awake mouse hippocampus expressing SomAr-
chon37 (Fig. 6h). This dataset contained natural motion with a scale 
comparable to the size of the cell body (Fig. 6i,j). Consistent with the 
findings from the synthetic and semisynthetic datasets, the variance 
was substantially reduced, while maintaining the distinct voltage tran-
sients associated with spikes (Fig. 6k). Furthermore, the single-pixel 
SNR showed an average improvement of 3.40 dB (17.30 ± 1.38 dB for 
SUPPORT, 13.90 ± 0.86 dB for the raw data) (Fig. 6l).

SUPPORT denoises imaging data of freely moving C. elegans
To assess the broad applicability of SUPPORT, we tested its capability 
to denoise three-dimensional time-lapse fluorescence microscopy 
images of C. elegans38, in which the differences among the frames came 
from the motion of the worm, which was not sampled with a sufficiently 
high imaging speed. The nuclei of all neurons in the worm were labeled 
using red fluorescent protein mCherry39 under the H20 promoter. The 
volume images with 20 axial slices were recorded with spinning disk 
confocal microscopy at a volume rate of 4.75 Hz.

We denoised the video using SUPPORT, DeepCAD-RT and PMD 
in a plane-by-plane manner. We first compared the noisy data and 
the denoised results for a single axial slice. SUPPORT successfully 
denoised the images without any visible artifacts, whereas the denois-
ing outcomes acquired using DeepCAD-RT and PMD suffered from 
motion-induced artifacts (Extended Data Fig. 1a and Supplementary 
Fig. 48), which again proves the importance of using an appropriate 
signal model for denoising. The difference between the SUPPORT 
output and the noisy input, which was expected to be white noise, did 
appear purely white. However, the difference between the outputs 
from DeepCAD-RT and PMD and the noisy input contains low frequency 
components that are highly correlated with the structure of the input 
image (Extended Data Fig. 1b).

In the consecutive frames shown in Extended Data Fig. 1c, the 
worm’s locomotion is considerably faster than the imaging speed, 
which precludes the accurate prediction of the current frame based 
on adjacent frames. Nevertheless, SUPPORT successfully denoised 
the image without suffering from motion artifacts by incorporat-
ing information from neighboring pixels in the current frame.  
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neurons in mouse cortex L2/3 expressing QuasAr6a, simultaneously recorded 
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expanded view of cell 1 in a at the timings indicated by red arrows in c. From left 
to right: frames at 604, 955, 2,214 and 3,521 ms. From top to bottom: raw video, 
SUPPORT-denoised video without motion and SUPPORT-denoised video with 
motion. Scale bar, 5 μm. c, Line plot showing the x and y direction motions in the 
micrometer scale. d, Electrophysiology trace and single-pixel fluorescence traces 
extracted from the videos. From top to bottom: electrophysiology, raw video, 
SUPPORT-denoised video without motion and SUPPORT-denoised video with 
motion. Scale bar, 500 ms. e, Box-and-whisker plot showing Pearson correlation 
coefficients between fluorescence traces and electrophysiology, before and 
after denoising. ×5 indicates a five times higher motion compared to ×1. n = 5, 

which represents the number of cells. f, Box-and-whisker plot showing Pearson 
correlation coefficients between ground-truth image (SUPPORT-denoised 
image without motion) and images with motion before and after denoising. 
n = 5, which represents the number of cells. g, Box-and-whisker plot showing SNR 
acquired by comparing ground-truth image and images with motion before and 
after denoising. n = 5, which represents the number of cells. h, Representative 
frames of raw video and SUPPORT-denoised videos after baseline correction. The 
images show a neuron expressing SomArchon in the hippocampus of an awake 
mouse. Scale bar, 3 μm. i, Representative frames in h at the timings indicated by 
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scale. k, Traces extracted from a single cell in raw video and SUPPORT-denoised 
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the right. l, Histogram of SNR from the raw video and SUPPORT-denoised video.
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By contrast, DeepCAD-RT and PMD failed to predict the location of each 
cell, which was manifested as motion-induced artifacts in the images. 
The denoising outcome (Extended Data Fig. 1d, Supplementary Fig. 49 
and Supplementary Video 5) demonstrates that SUPPORT can be used 
for denoising not only functional imaging data but also volumetric 
time-lapse images in which the speed of dynamics is faster than the 
imaging speed.

SUPPORT denoises volumetric structural imaging data
To demonstrate the generality of SUPPORT, we evaluated it on denois-
ing volumetric structural imaging data in which no temporal redun-
dancy could be exploited for denoising. SUPPORT was tested on two 
volumetric datasets that contained Penicillium imaged with confocal 
microscopy and mouse embryos imaged with expansion microscopy40. 
Penicillium was imaged with two different recording settings to gener-
ate a pair of low-SNR and high-SNR volumes (Methods).

The volumetric images were denoised with SUPPORT regarding 
each z-stack as a time series. The qualitative analysis showed that 
SUPPORT was able to enhance the signal of volumetric structural 
imaging data, revealing the structures that were hidden by the noise 
(Extended Data Fig. 2a,b,e,f, Supplementary Fig. 50 and Supplementary  
Video 6). The fine structure of Penicillium was recovered with SUPPORT 
(Extended Data Fig. 2d), demonstrating the signal model’s capability 
to learn statistics from a wide range of data. For the quantitative evalu-
ation of SUPPORT with the Penicillium dataset, the Pearson correlation 
coefficients and SNR were measured by regarding the high-SNR image 
as a ground truth for each plane along the z axis (Extended Data Fig. 2c). 
The average Pearson correlation coefficient of SUPPORT (0.76 ± 0.07) 
showed 0.29 increments compared to the low-SNR image (0.47 ± 0.09) 
and the average SNR of SUPPORT (8.65 ± 0.62 dB) showed 5.98 dB incre-
ments compared to the low-SNR image (2.67 ± 0.51 dB). The qualitative 
and quantitative studies showed that SUPPORT is capable of enhancing 
not only time-lapse images but also static volumetric images. Thus, 
SUPPORT can be used in a wide range of biological research involving 
microscopic imaging.

Discussion
SUPPORT, a self-supervised denoising method, has demonstrated its 
ability to denoise diverse voltage imaging datasets acquired using 
Voltron1, Voltron2, paQuasAr3-s, QuasAr6a, zArchon1, SomArchon 
and BeRST1 (Supplementary Table 1). Thanks to its statistical prediction 
model that predicts a pixel value xi,k  by integrating the information 
from its spatiotemporal neighboring pixels Ωi,k  (that is, ̂xi,k = fθ(Ωi,k)), 
it showed high robustness when faced with the fast dynamics in  
the scene. While this design allows SUPPORT to simultaneously achieve 
low bias and low variance, it still leaves room for fundamental improve-
ment, as it does not exploit the information contained in yi,k . The rea-
son yi,k  was not exploited as an input is because it is used as the target 
in place of the ground truth for self-supervised learning; we cannot 
use yi,k  as both the input and the target of the network, as the network 
will simply become an identity function. This means that the cost of 
truly exploiting all available information is to give up the self-supervised 
learning scheme that does not require ground truth.

It should be noted that SUPPORT is specifically designed to remove 
zero-mean ‘stochastic’ noise, which includes Poisson noise and Gauss-
ian noise originating from photons, dark current and sensor readout. 
However, it is not capable of addressing ‘deterministic’ artifacts such 
as motion-induced artifacts, photobleaching or fixed-pattern noise. 
As a result, a specifically designed data processing pipeline is needed 
to process data containing such artifacts (Supplementary Fig. 47).

Denoising time-lapse imaging data in which a C. elegans exhibited 
rapid movement and a single volumetric image demonstrated that 
SUPPORT is not limited to denoising voltage imaging data; it can be 
used for denoising any form of time-lapse imaging data (Supplemen-
tary Figs. 51–58 and Supplementary Videos 7–9) including calcium 

imaging in which the imaging speed is slow compared to the underlying 
dynamics or volumetric structural imaging data. This is an important 
finding, as it indicates that the data do not need to be low rank to be 
denoised using SUPPORT, which is often required by many denoising 
algorithms6,41. Also, SUPPORT could be trained with only 3,000 frames 
(Supplementary Figs. 59 and 60), which would facilitate its general 
usage in many laboratories with common desktop settings, especially 
with our GUI-based SUPPORT (Supplementary Fig. 61). We also note 
that the performance of SUPPORT comes at the typical computational 
cost of 2 days of training time with an NVIDIA RTX 3090 GPU. Overall, 
its self-supervised learning scheme, robustness to fast dynamics, low 
variance in denoising outcomes and compatibility with motion make 
it a versatile tool for processing a wide range of image data. We expect 
that SUPPORT’s core strategy, learning the statistical relationships 
between neighboring entities in an n-dimensional array, will extend 
beyond image denoising and be adapted to process a broader range 
of biological data.
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Methods
SUPPORT network architecture
The architecture of the SUPPORT network consists of two subnetworks: 
two-dimensional (2D) U-Net and the blind spot network. 2D U-Net 
exploits the information of the temporally adjacent frames. The input 
data are first separated into two blocks: (1) temporal neighboring 
frames and (2) the center frame. The temporal neighboring frames are 
concatenated in the channel dimension and passed through 2D U-Net. 
Then, the center frame and the output of 2D U-Net are concatenated 
in the channel dimension and passed through the blind spot network, 
which has a zero at the center of the impulse response. Finally, the 
outputs of 2D U-Net and the blind spot network are concatenated in 
the channel dimension and passed through 1 × 1 convolution layers.  
The overall architecture is illustrated in Supplementary Fig. 1a.

The 2D U-Net31 consists of a 2D encoder, a 2D decoder and skip 
connections from the encoder to the decoder (Supplementary  
Fig. 1b). In the 2D encoder, there are four encoder blocks. Each block 
consists of a 3(x) × 3(y) convolutional layer, followed by a BatchNorm, 
a LeakyReLU and a 2(x) × 2(y) maximum pooling layer. In the decoder, 
there are four decoder blocks, each of which contains a bilinear inter-
polation followed by a 3(x) × 3(y) convolutional layer, a BatchNorm and 
a LeakyReLU. The skip connections link low- and high-level features by 
concatenating feature maps in the channel dimension. We designed 2D 
U-Net to take the previous 30 frames and next 30 frames as the input. 
For denoising structural imaging data, the previous ten frames and 
next ten frames were used as the input.

The blind spot network was designed to efficiently increase the 
receptive field of the network over computation (that is, memory 
and the number of multiply-add operations). A comparison to previ-
ous blind spot network designs20,30 is shown in Supplementary Fig. 2. 
The blind spot network consists of (1) two sequential parts and (2) an 
aggregating part (Supplementary Fig. 1c). There are two sequential 
paths that use convolutional layers with kernel sizes of 3 × 3 and 5 × 5. 
Each sequential path consists of sequential blind spot convolutional 
layers with ‘shortcut connections’ (Supplementary Fig. 1c). The center 
value of the weight of the blind spot convolutional layer is masked as 0 
to make the blind spot property. For the kernel size of 3 × 3, the dilation 
and padding are both set as 2i for the ith layer to preserve blind spot 
properties for each feature after the layer. Similarly, for the kernel 
size of 5 × 5, the padding and dilation are set as 2 × 3i. The shortcut 
connection links the input to the features by adding the input, passed 
by the 1 × 1 convolutional layer, to the intermediate features. In the 
aggregating path, all features after each layer in the sequential paths 
are concatenated in the channel dimension and then passed through 
three 1 × 1 convolutional layers to finally predict the signal. The recep-
tive field of the blind spot network is illustrated in Fig. 1b, which shows 
the fractal-like pattern.

For the data in which structured noise can be predicted from the 
neighboring pixels, options to change the size of the blind spot were 
also implemented (Supplementary Fig. 51). To increase the size of the 
blind spot to p, we added additional dilation and padding of ⌊p/2⌋ for 
the last blind spot convolutional layers of two sequential paths. Also, 
only the final features of two sequential paths, rather than all intermedi-
ate features, were passed through the aggregating path. Overall, we 
adhered to the default network architecture (Supplementary Fig. 1) 
except for the following instances (Supplementary Table 2):

	 (1)	� For structural imaging dataset, we reduced the size of 
temporal (or ‘axial’) receptive field to 21 due to the limited 
availability of the axial slices.

	 (2)	� For dataset with motion, we increased the network capac-
ity by multiplying the number of channels in the U-Net by a 
factor of four.

	 (3)	� For dataset with correlated noise on neighboring pixels, 
we increased the size of the blind spot.

Training SUPPORT network
The network was trained on Pytorch 1.12.1 and CUDA 11.3 with an 
NVIDIA RTX 3090 GPU and an Intel Xeon Silver 4212R CPU. For the loss 
function, the arithmetic average of L1-loss and L2-loss was used. As a 
preprocessing step, each input video was normalized by subtracting 
the average value and dividing by the standard deviation. Patches with 
a size of 128(x) × 128(y) × 61(t) were extracted from the input video 
with an overlap of 61(x) × 61(y) × 1(t). If the spatial dimension of the 
data was smaller than 128, we reduced the patch size to match the 
spatial dimension of the data. Then, random flipping and rotation by 
integer multiples of 90° were used for data augmentation. A batch size 
of 16 was used by default. An Adam optimizer42 with a learning rate of 
5 × 10−4 without weight decay was used for gradient-based optimiza-
tion. To ensure reproducibility, random seeds for all relevant libraries, 
NumPy and PyTorch, were fixed at 0. The network was trained for 
500 epochs, with each epoch containing a loop through all patches 
by default. The loss values were tracked for every gradient update to 
monitor the training procedure. Training SUPPORT for processing 
the zebrafish dataset that had a size of 1,024(x) × 148(y) × 24,000(t) 
took 47 h for 14 million gradient updates. The inference for the same 
dataset took 30 min. We note that overfitting was avoided by using 
1,500 or more frames and training the network over an extended 
period did not lead to overfitting (Supplementary Figs. 60 and 62). 
For both training and inference, we used zero padding to match the 
input and output sizes, which had minimal impact on the results 
(Supplementary Fig. 63).

The dependency of the denoising performance and loss func-
tion was investigated through denoising simulation and experimen-
tal data. The weighted average of L1 and L2 loss, ℒ = αℒ1 + (1 − α) ℒ2, 
with α ∈ {0, 0.3, 0.5, 0.7, 1 }  for simulated data and α ∈ {0, 0.5, 1}  for 
experimental data were used as a loss function (Supplementary  
Figs. 64 and 65).

Synthetic voltage imaging data generation
Simulating synthetic voltage imaging data includes the pipeline of 
first generating clean video (ground truth) and then adding Poisson 
and Gaussian noise. To generate a realistic spatial profile that resem-
bles neurons in a mouse brain, we used a NAOMi32 simulator that was 
originally developed for simulating a two-photon calcium imaging 
dataset. The code was modified to generate voltage transients instead 
of calcium transients as temporal components. We generated five 
different videos with 15,000 frames and a frame rate of 500 Hz with 
different spike widths, ranging from 1 to 9 ms. The constructed volt-
age signals were matched to the parameters of Voltron. Every other 
parameter was set as default apart from increasing the simulated 
field of view twofold. The noisy video was generated by adding Pois-
son and Gaussian noise. To add Poisson noise to the images, we first 
normalized the input images and multiplied them by 1,000, and then 
used each pixel value as the parameter (that is, mean value) of the 
Poisson distribution. Thereafter, Gaussian noise with a mean of 0 and 
a standard deviation of 5 was added to the images. Finally, negative 
values were truncated to 0.

In vivo simultaneous voltage imaging and electrophysiology
The data from simultaneous structured illumination fluorescence imag-
ing and patch-clamp electrophysiological recordings of single-neuron 
activity were recorded with mouse cortex L2/3 pyramidal neurons 
using a digital micromirror device or spatial light modulator with a 
frame rate of 1,000 Hz. Voltron2 and QuasAr6a were expressed using 
in utero electroporation. NDNF-Cre± mice ( JAX catalog no. 028536) of 
6 weeks to 8 months were used for in vivo QuasAr6 voltage imaging. 
All procedures involving animals were in accordance with the National 
Institutes of Health guide for the care and use of laboratory animals and 
were approved by the Institutional Animal Care and Use Committee 
(IACUC) at Harvard University.
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In vitro single-neuron voltage recording
We prepared primary rat hippocampal neurons cultured on a 35 mm 
glass bottom dish (P35G-1.5-14-C, MatTek). At 9 days in vitro, neu-
rons were stained with a voltage-sensitive dye (BeRST1, 2 μM) dis-
solved in an imaging solution containing 140 mM NaCl, 3 mM KCl, 
3 mM CaCl2, 1 mM MgCl2, 10 mM HEPES and 30 mM glucose (pH 7.3) 
for 15 min, and then rinsed with a fresh imaging solution before opti-
cal imaging28. Time-lapse imaging of spontaneous neural activity was 
acquired using an inverted microscope (Eclipse Ti2, Nikon) equipped 
with a ×40 water-immersion objective lens (numerical aperture (NA) 
1.15; MRD7710, Nikon), while maintaining the sample temperature 
at 30 °C. For excitation, an LED (SOLIS-623C, Thorlabs) with a band-
pass filter (ET630/20x, Chroma Technology) was used at an irradi-
ance of 20 mW mm−2 at the sample. Emission was passed through a 
dichroic mirror (T660lpxr, Chroma Technology) and an emission filter 
(ET665lp, Chroma Technology), and was collected by an sCMOS camera  
(Orca Flash v.4.0, Hamamatsu) at a 1-kHz frame rate with 4 × 4 binning 
and subarray readout (361 × 28 pixels) for a duration of 25 s. All the 
animal experiments were performed according to the Institute of Ani-
mal Care and Use Committee guidelines of Seoul National University  
(Seoul, Korea) (SNU-220616-1-2).

In vivo simultaneous calcium imaging and electrophysiology
A craniotomy over V1 was performed, and neurons were infected with 
adeno-associated virus (AAV2/1-hSynapsin-1) encoding jGCaMP8f. At 
18–80 days after the virus injection, the mouse was anesthetized, the 
cranial window was surgically removed and a durotomy was performed. 
The craniotomy was filled with 10–15 μl of 1.5% agarose, and a D-shaped 
coverslip was secured on top to suppress brain motion and leave access 
to the brain on the lateral side of the craniotomy. The mice were then 
lightly anesthetized and mounted under a custom two-photon micro-
scope. Two-photon imaging (122 Hz) was performed of L2/3 somata 
and neuropil combined with a loose-seal, cell-attached electrophysi-
ological recording of a single neuron in the field of view. Temporally 
fourfold downsampling was held to the data to reduce the sampling 
rate before the analysis. After excluding some outlier recordings with 
a low correlation between calcium signal and action potentials, an 
ROI was manually drawn around the neuron, and fluorescence traces 
were extracted from the mean signal of the ROI in the temporal stack. 
All surgical and experimental procedures were conducted in accord-
ance with protocols approved by the IACUC and Institutional Biosafety 
Committee of Janelia Research Campus.

Volumetric structural imaging of Penicillium
For the volumetric structural imaging of Penicillium, the specimen 
was imaged using a point-scanning confocal microscopy system 
(NIS-Elements AR v5.11.01, C2 Plus, Nikon) equipped with a ×16 0.8 NA 
water dipping objective lens (CFI75 LWD 16X W, Nikon). The imaging 
was performed using a 488 nm excitation laser with a laser power of 
0.075 mW for the low-SNR image and a laser power of 1.5 mW for the 
high-SNR image. The frame rate was 0.5 Hz for 1,024 × 1,024 pixels with 
a pixel size of 0.34 μm and each volume consisted of 1,000 z-slices with 
a z-step size of 0.1 μm.

Expansion microscopy of mouse embryos
Mouse embryos were isolated on day 15.5 of pregnancy in C57BL/6J mice 
and fixed with ice-cold fixative (4% paraformaldehyde in 1× phosphate 
buffered saline) for a day at 4 °C. Fixed mouse embryos were embedded 
in 6% (w/w) low-gelling-temperature agarose and then sliced to a thick-
ness of 500 µm with a vibratome. Embryo slices were then processed 
for anchoring, gelation, Alexa Flour 488 NHS-ester staining, digestion, 
decalcification and expansion according to the previously described 
whole-body ExM protocol40. Following a 4.1-fold expansion of the 
embryo slices in the hydrogel, the sample was attached to cover glass 
and imaged using a confocal microscope (Nikon Eclipse Ti2-E) with a 

spinning disk confocal microscope (Fusion v.2.1.0.34, Dragonfly 200; 
Andor, Oxford Instruments) equipped with a Zyla 4.2 sCMOS cam-
era (Andor, Oxford Instruments) and a ×10 0.45 NA air lens (Plan Apo 
Lambda, Nikon). The z-stack images were obtained with a z-step size of 
1 μm for intestine and bone, and 0.5 µm for tail. All animal experiments 
involving mouse embryos conducted for this study were approved by 
the IACUC of KAIST (KA-2021-040).

In vivo calcium imaging of zebrafish brain
For zebrafish experiments, transgenic larval zebrafish (Danio rerio) 
expressing GCaMP7a calcium indicator under control of GAL4-UAS 
system and huc promoter (Tg(huc:GAL4);Tg(UAS:GCaMP7a))43–45 with a 
Casper (mitfa(w2/w2);mpv17(a9/a9))46 mutant were imaged at 3–4 days 
postfertilization.

The larvae were paralyzed by bath incubation with 0.25 mg ml−1 
of pancuronium bromide (Sigma-Aldrich) solution for 2 min (ref. 47). 
After paralysis, the larvae were embedded in agar using a 2% low melting 
point agarose (TopVision) in a Petri dish. The dish was filled with stand-
ard fish water after solidifying the agarose gel. Specimens were imaged 
using a point-scanning confocal microscopy system (NIS-Elements 
AR v.5.11.01, C2 Plus, Nikon) equipped with a ×16 0.8 NA water dipping 
objective lens (CFI75 LWD 16X W, Nikon). The imaging was performed 
using a 488 nm excitation laser (0.15–0.75 mW). All animal experiments 
involving zebrafish conducted for this study were approved by the 
IACUC of KAIST (KA-2021-125).

Imaging spontaneous neurotransmission
Primary cultures of rat hippocampal neurons were obtained from 
embryonic day 18 Sprague-Dawley fetal rats and plated onto glass cover-
slips that were precoated with poly-d-lysine. Neurons were transfected 
with SF.iGluSnFR A184V (Addgene catalog no. 106199) or iGABASnFR 
F102G (Addgene catalog no. 112160) using calcium-phosphate method, 
along with SynapsinI-mCherry to serve as a presynaptic bouton marker. 
Transfected hippocampal neurons at day 16 in vitro were placed in a per-
fusion chamber (Chamlide, LCI) and mounted onto the 35 °C heating 
stage of an inverted microscope (IX71, Olympus) equipped with a ×40 
oil-immersion objective lens (UPlanApo, ×40/1.00). The imaging was 
conducted in Tyrode’s solution (136 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 
2 mM MgCl2, 10 mM glucose, 10 mM HEPES; pH 7.4; 285–290 mOsm) 
containing 1 μM tetrodotoxin to block action potential firing. A total 
of 12 trials were obtained, each consisting of 500 frames captured at a 
frame rate of 100 Hz (iGluSnFR) or 50 Hz (iGABASnFR), using an Andor 
Sona-2BV11 sCMOS camera (Andor) driven by MetaMorph Imaging 
Software (Molecular Devices) with a binning of 2 and a cropped mode of 
110 × 110 pixels. All the animal experiments were performed according 
to the Institute of Animal Care and Use Committee guidelines of Seoul 
National University (SNU-220525-4).

Baseline and activity decomposition of voltage imaging data
For visualization, the data were decomposed into the underlying base-
line and neuronal activity. The baseline estimation was performed using 
the temporal moving average. Window length was chosen in accord-
ance with the recording rate for the data. For the data that only required 
photobleaching correction, b-spline fit was used to estimate baseline 
without using the moving average (Fig. 5a). For the positive-going volt-
age indicators (zArchon1, QuasAr6a, paQuasAr3-s, SomArchon), the 
activity component was acquired by subtracting the estimated baseline 
from the data. For the negative-going voltage indicators (Voltron1, 
Voltron2), the activity component was acquired by subtracting the 
data from the estimated baseline.

Spike detection for F1 score calculation
To calculate spike detection accuracy, we measured the F1 score 
for a given dF/F0 threshold. The spikes were detected through the 
following steps: (1) calculating dF/F0 from the fluorescence trace,  
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(2) hard-thresholding the dF/F0 trace and (3) finding local maximum 
locations. The dF/F0 threshold refers to the threshold value used in 
step (2). In simulated data, clean voltage traces were used to obtain 
ground-truth spike locations. In experimental data, electrophysi-
ological recordings were used as the ground truth. For subthresh-
old analysis, we calculated Pearson correlation coefficients between 
electrophysiological recording and single-pixel voltage traces in the 
subthreshold regime.

Cell detection in neuronal populations imaging data
For voltage imaging data, the SGPMD-NMF pipeline was applied to 
detect ROI and corresponding temporal signals, which is available on 
GitHub (https://github.com/adamcohenlab/invivo-imaging). In the 
pipeline, detrending based on b-spline fitting and demixing based 
on localNMF were used without additional denoising. For the mouse 
cortex data, detrended data was flipped before the demixing step by 
subtracting the data from the maximum value of the data, since the 
data were recorded with Voltron1, which is a negative-going voltage 
indicator. After extraction, we removed nonneuronal spatial com-
ponents with the following simple heuristics: (1) reject if the number 
of pixels in the component is smaller than α, (2) reject if the width or 
height of the component is larger than β and (3) reject if the width/
height is not in (γ, δ).

For mouse cortex data, only the first heuristic was used, with α set 
as 10, where the size of the neurons was small in the data. For zebrafish 
data, all heuristics were used, with α = 100, β = 50, γ = 0.5 and δ = 1.5 
(Supplementary Fig. 41).

Cellpose48 was applied to a single frame image of SUPPORT- 
denoised video to detect cells (Supplementary Fig. 55). All parameters 
were set to default except ‘flow’ and ‘cellprob’, which were set by empiri-
cal values that best fit the data.

Real-time intravital imaging in anesthetized mouse
H2B-GFP ( Jackson Laboratory, Stock No. 006069) and mTmG  
( Jackson Laboratory, stock no. 007676) mice were purchased from 
the Jackson Laboratory. Flowing red blood cells in various tissues of 
the offspring of H2B-GFP crossbred with mTmG were imaged using 
a confocal and two-photon microscope (IVM-CMS, IVIM Technology 
Inc.). For real-time intravital imaging, mice were anesthetized using 
an intramuscular injection of a mixture of Zoletil (20 mg kg−1) and 
Xylazine (11 mg kg−1). Red blood cells fluorescently labeled by far-red 
fluorophore DiD (Thermo Fisher) were intravenously injected through 
the tail vein. To image ear skin, the right ear of the anesthetized mouse 
was gently attached to transparent coverslip with saline water49–51. 
To image kidney, a 15 mm incision was made on both the skin and the 
retroperitoneum and then the kidney was gently exteriorized with 
round forceps. The exposed kidney surface was covered by transparent 
coverslip52,53. A wet gauze soaked in warm saline was placed between 
the kidney and the underlying tissue to reduce motion artifacts54–56. 
To image muscle, a 10 mm incision was made on thigh skin and then 
muscle was exposed and covered by transparent coverslip57. A high NA 
water-immersion objective lens (CFI75 Apochromat 25XC W, NA 1.1, 
Nikon) was used, and 488, 561 and 640 nm lasers were used to excite 
green fluorescent protein (GFP), mT and DiD, respectively. All animal 
experiments involving live anesthetized mice conducted for this study 
were approved by the IACUC of KAIST (KA-2021-058, KA-2022-010).

Performance metrics
SNR, PSNR and r.m.s.e. were used as metrics to evaluate the pixel-level 
consistency between SUPPORT-denoised images and ground-truth 
images. The r.m.s.e. between the signal x and the reference signal y is 

defined as r.m.s.e.(x, y) = √𝔼𝔼 [(x − y)2], where 𝔼𝔼 denotes the arithmetic 

mean. The SNR between the signal x and the reference signal y is defined 

as SNR(x, y) = 10log10
𝔼𝔼[x]2

r.m.s.e.(x,y)2
. The PSNR between the signal x and the 

reference signal y is defined as PSNR(x, y) = 10log10
max(x)2

r.m.s.e.(x,y)2
. 

The Pearson correlation between the signal x and the reference signal 

y is defined as R = 𝔼𝔼𝔼(x−μx)(y−μy)]
σxσy

 where μx and μy are the mean values of 

signal x and y, respectively, and σx and σy are the standard deviations 
of signal x and y, respectively. As a measure of the performance of 
denoising experimental voltage imaging data, SNR was used with 
modification, as the ground truth was not available. The SNR of the 
signal x is defined as SNR (x) = 10log10

max(x)
σx

. Metrics were calculated 
after baseline correction.

For the population voltage imaging data, we measured the perfor-
mance of cell extraction. After cell detection using localNMF, we first 
calculated IoU between all pairs of extracted components and manu-
ally segmented cells. The cell extraction was given as correct if the IoU 
between the extracted component and the manual segmentation was 
higher than the threshold. Then, the F1 score (that is, harmonic mean 
of precision and recall) was calculated.

Comparison with other denoising algorithms
We used the publicly available implementations of PMD (https://github.
com/ikinsella/trefide), DeepCAD-RT (https://github.com/cabooster/
DeepCAD-RT), NOSA58 (https://github.com/DavideR2020/NOSA) and 
Volpy59 (https://github.com/flatironinstitute/CaImAn).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The dataset of one-photon epifluorescence imaging with targeted 
illumination of QuasAr6a expressing mouse cortex L2/3 neurons 
simultaneously recorded with patch clamp can be downloaded from 
https://zenodo.org/record/8176722. The dataset of one-photon epif-
luorescence imaging with targeted illumination of Voltron2 expressing 
mouse cortex L2/3 neurons simultaneously recorded with patch clamp 
can be downloaded from https://zenodo.org/record/8176722. The 
dataset of wide-field fluorescence imaging of SomArchon expressing 
mouse hippocampus neurons can be downloaded from https://zenodo.
org/record/8176722. The dataset of confocal imaging of volumetric 
structural imaging of Penicillium can be downloaded from https://
zenodo.org/record/8176722. The dataset of confocal imaging of volu-
metric structural imaging of Alexa fluor 488 NHS-ester stained mouse 
embryos can be downloaded from https://zenodo.org/record/8176722. 
The dataset of in vivo single-neuron simultaneous calcium record-
ing of jGCaMP8f and electrophysiology can be downloaded from the 
DANDI (https://dandiarchive.org/dandiset/000168?search=jgcam
p8m&pos=1). The dataset of confocal imaging of GCaMP7a express-
ing zebrafish neurons can be downloaded from (https://zenodo.org/
record/8176722). The datasets from previous publications are publicly 
available, and the corresponding links can be found in each respective 
publication. Source data are provided with this paper.

Code availability
Code for Pytorch implementation of SUPPORT is available online at 
GitHub repository (https://github.com/NICALab/SUPPORT).
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Extended Data Fig. 1 | SUPPORT denoises freely moving Caenorhabditis 
elegans imaging data. a, Images of freely moving C. elegans. From left to right: 
Noisy, SUPPORT, DeepCAD-RT, and PMD denoised data. Inset shows the intensity 
profile along the dashed line. Magnified views of the boxed regions are presented 
underneath. b, Pixel-wise difference between denoised data and noisy data. 
Squared norm of Fourier transform of each difference are shown in the lower 
images. Inset shows the logarithm of the squared norm of Fourier transform 

against the distance to the origin. c, Magnified views of the red boxed region in 
a at consecutive neighboring time points. Magenta lines were set on the left side 
of the brightest neuron in the noisy data. From top to bottom: Noisy, SUPPORT, 
DeepCAD-RT, and PMD denoised data. d, Noisy volume and denoised volume are 
depth coded and presented. Magnified views of the boxed regions are presented 
on the right.
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Extended Data Fig. 2 | SUPPORT denoises volumetric structural imaging 
data. a, Representative axial slice from low-SNR, SUPPORT-denoised, high-SNR 
volumes of Penicillium. b, Magnified views of the yellow boxed region in a at 
multiple axial locations. Axial location of a corresponds to 3.37 μm. c, Box-and-
whisker plot showing Pearson correlation coefficient and signal-to-noise ratio 
for axial slices. A two-sided paired-sample t-test is used, N = 381, which represents 

the number of planes along the z-axis (***: p-value < 0.001). d, Intensity profiles 
of the cyan dashed line in a. e, Example frame of bone of a mouse embryo after 
expansion for the raw data (top) and denoised image using SUPPORT (bottom).  
f, Raw (top) and denoised image (bottom) of intestine of a mouse embryo.  
e-f, Length scales are presented in pre-expansion dimensions.
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