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Here we report SUPPORT (statistically unbiased prediction utilizing
spatiotemporal information inimaging data), a self-supervised learning
method for removing Poisson-Gaussian noise in voltage imaging data.
SUPPORT is based on the insight that a pixel value in voltage imaging data
is highly dependent on its spatiotemporal neighboring pixels, even when
itstemporally adjacent frames alone do not provide useful information
for statistical prediction. Such dependency is captured and used by a
convolutional neural network with a spatiotemporal blind spot to accurately
denoise voltage imaging data in which the existence of the action potential
inatime frame cannot be inferred by the information in other frames.
Through simulations and experiments, we show that SUPPORT enables
precise denoising of voltage imaging data and other types of microscopy
image while preserving the underlying dynamics within the scene.

Recent advancements in voltage imaging and calcium imaging have
enabled recording of the population activity of neurons at an unprec-
edented throughput, which opens up the possibility of a system-level
understanding of neuronal circuits' . To investigate causality within
neuronal activities, itis essential to record the activities with high tem-
poral precision. Unfortunately, the inherent limitation in the maximum
number of photonsthat canbe collected fromasampleinagiventime

interval dictates the inherent trade-offs between imaging speed and
signal-to-noise ratio (SNR)**. In other words, increasing the temporal
resolutioninfunctionalimaging datainevitably resultsinadecreasein
the SNR. The decrease in SNR not only hinders the accurate detection
oftheneurons’locations but also compromises the timing precision of
the detected temporal events, which nullifies theincrease in temporal
resolution. Fortunately, all functionalimaging data have highinherent
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redundancyinthe sense that each frameinadatasetshares a highlevel
of similarity with other frames apart from noise, which offers an oppor-
tunity to denoise or distinguish the signal from the noise in the data®’.

Denoising is a type of signal processing that attempts to extract
underlying signals from noisy observations based on previous knowl-
edge of the signal and the noise'®. The fundamental property of noise—
randomness—does not allow for exact recovery of the signal, so we can
only reduce statistical variance at the cost of increasing statistical bias
(thatis, an absolute deviation between the mean denoising outcome
and the ground truth). In other words, denoising is a statistical esti-
mation of the most probable value based on our previous statistical
knowledge of the signal and the noise. Unfortunately, for any given
noisy observation, the exact corresponding probability distribution
functions (PDFs) of the signal and the noise are almost never known.
Therefore, all denoising algorithms start with setting the signal model
(that is, PDF of signal) and noise model (that is, PDF of noise), either
explicitly or implicitly, and their accuracy determines the denoising
performance.

The most common approach starts with applying linear trans-
forms, such as the Fourier transform and the wavelet transform, to
noisy observations'"?. Then, a certain set of coefficients that corre-
spondstoasmallvector spaceis preserved, while others are attenuated
toreduce statistical variance. This is based on a signal model in which
the signal is a random variable drawn from the small vector space,
whereas noise is drawn from the entire vector space. An implicit yet
important assumption here is that the basis used for the linear trans-
form maps the signal component sharply onto a relatively small and
known set of coefficients. When the assumption is not met, denoising
leadstoadistortion of signals or anincrease in statistical bias. Such bias
canbereduced by loosening the assumption (forexample, the signal is
drawn from alarger vector space), but then the variance isincreased.

Therefore, building a good signal model that is strong enough
to reject noise while being accurate enough to avoid bias is the most
critical step in denoising. Previous efforts have focused on finding a
handcrafted basis that empirically matches the given data”. Some have
shown higher general applicability than others", but no universal basis
that performs well across different types of data has been found, mainly
because of the differences in their signal models and noise models”.
Thishasledtotheideaofusingabasislearned directly from the dataset
for denoising®'®”. However, these methods still suffer from high bias,
astheirability toreduce variance relies on the strong assumption that
the data can be represented as a linear summation of a small number
oflearned vectors.

Recently, the convolutional network has emerged as a strong
alternative to existing learning-based image denoising algorithms'®.
The highrepresentational power of convolutional networks allows for
learning nearly arbitrary signal models in the image domain, result-
ing in low bias in denoising outcomes without sacrificing variance®.
Owingtoits highrepresentational power and the high inherent redun-
dancyin functional imaging data, convolutional networks have shown
enormous success in denoising functional imaging data’”. As a key
aspect, these methods learn the signal model from noisy dataina
self-supervised manner?* %, so the need for ‘clean’images as the ground
truth for training is alleviated.

Both DeepCAD-RT’ and Deeplnterpolation’ are based on the
assumption that the underlying signal in any two consecutive frames
inavideo canbe considered the same, whereas the noise is independ-
ent when the imaging speed is sufficiently higher than the dynamics
of the fluorescent reporter’’; the networks are trained to predict the
‘current’ frame using the past and future frames as the input. Unfor-
tunately, thisassumption breaks down when theimaging speedis not
sufficiently faster than the dynamics, and the bias in the denoising
outcomeisincreased. This is becoming increasingly prevalent due to
the development of voltage indicators**and calciumindicators with
extremely fast dynamics®. In that regard, the question that naturally

follows is how we can implement an accurate statistical model that
allows us toaccurately predict each pixel value under such conditions.

To this end, we propose SUPPORT (statistically unbiased pre-
diction using spatiotemporal information in imaging data), a
self-supervised denoising method for functional imaging data thatis
robust to fast dynamics in the scene compared to the imaging speed.
SUPPORT is based on the insight that a pixel value in functional imag-
ing datais highly dependent onits spatiotemporal neighboring pixels,
even whenits temporally adjacent frames alone fail to provide useful
information for statistical prediction. By learning and using the spa-
tiotemporal dependence among the pixels, SUPPORT can accurately
remove Poisson-Gaussian noise in voltage imaging data in which the
existence of the action potential in a time frame cannot be inferred
fromtheinformationin other frames. We demonstrate the capability
of SUPPORT using diverse voltage imaging datasets acquired using
Voltronl, Voltron2, paQuasAr3-s, QuasAré6a, zArchonl, SomArchon
and BeRST1. The analysis of the voltage imaging data with simultaneous
electrophysiological recording shows that our method preserves the
shape of the spike while reducing the statistical variance in the signal.
We also show that SUPPORT can be used for denoising time-lapse fluo-
rescence microscopy images of Caenorhabditis elegans (C. elegans), in
which the imaging speed is not faster than the worm’s locomotion, as
well as static volumetric images of Penicillium and mouse embryos.
SUPPORT is exceptionally compelling for denoising voltage imag-
ing and time-lapse imaging data, and is even effective for denoising
calciumimaging data. Finally, we developed software with agraphical
user interface (GUI) for running SUPPORT to make it available to the
wider community.

Results

Central principle of SUPPORT

The central principle of SUPPORT is to perform denoising based on a
statistical prediction model with minimal bias by exploiting all avail-
able information in both spatial and temporal domains (Fig. 1a). A
functional imaging dataset y is considered a realization of a random
variable that is drawn from p (y) = p (X) p (n|x), where x and n are the
clean signal and the zero-mean Poisson-Gaussian additive noise,
respectively (that is, y =x+ n). In this setting, the noise in each
pixel is independent in both time and space (that s, V(i,k) # (j,[),
p(ni) = p(nigln;;) , where i, j and k, [ are temporal and spatial
indices, respectively, where the signal is not (that is, V (i, ./, {),
p (xix) # p (xixlx;1)). The dependency among x;, encodes the spati-
otemporal structure of the datax (that is, p(x)), which can be learned
using astatistical prediction model, whereas the spatiotemporal inde-
pendence of n makes it impossible to predict. The prediction model
canbeimplemented as aneural network that predicts a pixel value x;
using its spatiotemporal neighboring pixel values by solving the fol-
lowing optimization problem?**:

6" =arg mgin DL (fo( Qi) Xix)
ik

where L(-,) is theloss function defined as the LP distance between the
inputs, f denotes the neural network parameterized by 8 and Q;
denotes the spatiotemporal neighboring pixels of y;, excluding
itself. Evaluating this loss function requires the ground truth x, which
isinaccessible, but the zero-mean property of the noise allows us to
replace x; with y; for self-supervised training™:

0* =arg mgin D L(fo(Qip) X;) = arg mein I L(fo( Qi) Yik) -
ik Tk

For the implementation of the network f (Q;), we devised a
network architecture that automatically satisfies the requirements
(Fig.1b,c and Supplementary Figs.1and 2). For the prediction of x;,
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Fig.1|SUPPORT can be applied to functional imaging data with a fast
dynamicsindicator. a, SUPPORT's self-supervised learning scheme and previous
methods that exploit temporally adjacent frames for denoising functional
imaging data with slow and fast dynamics indicators. Functional imaging data
arerepresented by green and red surfaces, which indicate the receptive field and
prediction target area, respectively. b, Noisy frames are fed into the SUPPORT
network and output the denoised image. Red tiles indicate the receptive field of
the SUPPORT network, which uses spatially adjacent pixels in the same frame.

¢, Impulse response of the SUPPORT network on the current frame. The magnified

Fast dynamics indicator

SUPPORT Previous methods

O T (1
Response (a.u.)

O T (1
Response (a.u.)

SUPPORT denoised

0.2625 s 0.2650 s 2.2300s 2.2325s

view is presented on the right side. Response value of the center pixelis O,

which forces the network to predict the center pixel without usingit.d, Invivo
population voltage imaging data. The left shows the raw data and the right shows
the SUPPORT-denoised data. Baseline and activity components are decomposed
from raw data and SUPPORT-denoised data. The baseline component with gray
colormap and activity component with hot colormap are overlaid. Magnified
views of the boxed regions are presented below at the time points near spikes.
Consecutive frames of two spikes (¢=0.2650 and 2.2325s).

its spatiotemporal neighbor Q; ; excluding y; is taken as the input
while preserving the spatialinvariance. The current frame y;is fed into
a convolutional network that has a zero at the center of the impulse
response (Fig. 1b,c); the zero at the center of the impulse response
indicates that the pixel value y; , cannot affect the network’s prediction
of x; x (refs.20,30), whichis attained by convolutionlayers and dilated
convolution layers with zeros at the center of the kernels. These layers
offer a fractal-shaped receptive field that grows exponentially with
depth, enabling the network to integrate information from a large

number of neighboring pixels (Supplementary Fig. 2). In addition,
temporally adjacent frames are fed into a U-Net® to extract the available
information from the temporally adjacent ones (Supplementary
Fig.1). The outputs from the two convolutional networks are integrated
by the following convolutional layers. This architecture ‘forces’ the
network to make a prediction X; ; by usingits spatiotemporal neighbor
Q; « excluding y; « (thatis, X; ¢ = fo(Q;0))-

The major difference between SUPPORT and DeepCAD-RT’ or
Deeplnterpolation’, which can also denoise functional imaging data
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through self-supervised learning, is that DeepCAD-RT and Deepln-
terpolation learn to predict a frame given temporally adjacent other
frames, whereas SUPPORT learns to predict each pixel value by exploit-
ing the information available from both temporally adjacent frames
and spatially adjacent pixels in the same time frame. When theimaging
speed is not sufficiently faster than the dynamics in the scene (Fig. 1a),
the signal at different time points becomes nearly independent (for
example, the existence of the action potential in atime frame cannotbe
inferred fromthe informationinother frames).Insuch a case, the major
assumptions of the signal models in DeepCAD-RT and Deeplnterpola-
tion areviolated, which leads to high biasin the denoising outcome. In
comparison, SUPPORT relies on the spatiotemporal pixel-level depend-
ence of the signal rather than frame-level dependence, and each pixel
value is estimated based on all available information, including its
spatially adjacent pixels in the same time frame.

Performance validation on simulated data

For the quantitative evaluation of SUPPORT’s performance, we first vali-
dateditonsynthetic voltage imaging data, which were generated using
aNAOMi simulator®’. We generated multiple datasets with aframe rate
of 500 Hz with different spike widths, ranging from1to 9 ms (ref. 33), to
verify how the performance of SUPPORT changes as the dependence
betweentheactivityinadjacent framesis diminished. The simulation
parameters, including spike frequency, df/F,, noise level and level of
subthreshold activity, were chosen to match the experimental voltage
imaging data acquired using Voltron** (Methods). Finally, Poisson and
Gaussian noise were added to the generated videos. Further details can
be found in the Methods section.

We applied SUPPORT, DeepCAD-RT’ and penalized matrix decom-
position (PMD)®to the synthetic datasets and compared the results. The
signals were separated from the backgrounds in the denoised videos
(Methods) to compare their accuracy in recovering the time-varying
signal (Fig.2a and Supplementary Video1). Qualitative comparisons of
theresults from the dataset with a spike width of 3 ms showed that the
denoising outcome from SUPPORT was nearly identical to the ground
truth. DeepCAD-RT successfully reduced the variance in the video, but
also attenuated the neuronal activity. This was expected because the
method was designed for removing noise in calcium imaging data,
which has much slower dynamics. PMD showed better performance
in preserving neuronal activities, in part because it did not discard
the current frame for denoising, but it introduced visible artifacts in
theimages.

To quantify the performance of each denoising method, we calcu-
lated the peak SNR (PSNR) of the denoised videos and calculated the
Pearson correlation coefficient between the voltage traces extracted
fromthe clean video and the denoised video. The voltage traces were
extracted from 116 cells (Methods). In terms of PSNR, all methods
showed substantial enhancements compared to noisy images for
every spike width (Fig. 2b and Supplementary Figs. 3-5): noisy (1 ms,
4.57 dB; 9 ms, 15.43 dB), SUPPORT (1 ms, 35.94 dB; 9 ms, 43.08 dB),
DeepCAD-RT (1 ms,30.90 dB; 9 ms, 39.05 dB) and PMD (1 ms, 32.07 dB;
9 ms, 38.61dB). However, in terms of the Pearson correlation coeffi-
cient, only SUPPORT (1 ms, 0.885; 9 ms, 0.991) showed improvement
compared to noisy images (1 ms, 0.593; 9 ms, 0.942) for every spike
width (Fig. 2c and Supplementary Fig. 6). DeepCAD-RT (1 ms, 0.190;
9 ms, 0.984) and PMD (1 ms, 0.554; 9 ms, 0.983) showed improvement
only when the spike width was larger than 5 and 3 ms, respectively,
which verifies theimportance of exploiting spatially adjacent pixelsin
the same time frame. We note that thisinconsistency between the two
metrics stems from the fact that the Pearson correlation coefficient is
affected only by the time-varying component of the signals, whereas
PSNRis largely determined by the static component.

For further comparison, we analyzed the voltage traces at the
single-pixel (Fig. 2d) and single cell levels (Fig. 2e). Only the single-pixel
voltage traces from SUPPORT retained the spike waveforms (Fig. 2d),

whereas the spikes were buried under the noise level in the single-pixel
voltage traces from the noisy video. DeepCAD-RT and PMD reduced
thevariancein the single-pixel voltage traces, but the spikes were still
not detectable due to the bias introduced by their signal models. The
single cell voltage traces showed similar results (Fig. 2e and Supple-
mentary Figs.7-9), although the difference was less dramatic than the
single-pixel traces, asthe SNR wasimproved by averaging multiple pixel
values. SUPPORT was able to reduce variance without distorting the
waveforms for every spike width. In comparison, the spikes were not
detectable in the results from DeepCAD-RT and PMD when the spike
width was under 3 ms. It should be noted that the performance of both
DeepCAD-RT and PMD was better for larger spike widths, but for differ-
entreasons. DeepCAD-RT estimates the current frame given temporally
adjacent frames, so the prediction becomes more accurate when the
dynamics are slower. PMD attempts to find alow rank approximation
of a given matrix that is supposedly closer to the ground truth, so a
temporally long event is less likely to be ‘ignored’ as its contribution
totheapproximation error is higher.

Denoising single-neuron voltage imaging data

Tovalidate SUPPORT’s capability to denoise experimentally obtained
voltage imaging data while retaining the spikes, we applied SUPPORT
toinvivosingle-neuron voltage imaging data with simultaneous elec-
trophysiological recordings. The dataset contained light-sheet micros-
copy images of a single neuron in the dorsal part of the cerebellum
of a zebrafish expressing Voltronl with simultaneous cell-attached
extracellular electrophysiological recording. Electrophysiological
recordings were takenatasampling rate of 6 kHz, and light-sheet imag-
ing was performed with a frame rate of 300 Hz (ref. 24).

In the raw data, both the spatial footprint and temporal traces
of the neuron were severely corrupted by Poisson-Gaussian noise.
We compared temporal traces extracted from the raw video and the
denoised video using SUPPORT, DeepCAD-RT and PMD, along with
the electrophysiological recording. Spike locations from the electro-
physiological recordings were extracted (Methods) and visualized as
black dots foravisual aid (Fig. 3a,b). After denoising with SUPPORT, the
temporal trace showed amuch lower variance compared to the tempo-
ral trace of the raw data while preserving the spikes (Supplementary
Figs. 9 and 10). In comparison, while the temporal variance in the
denoising outcome acquired using DeepCAD-RT was low, the spikes
were no longer visible inthe traces, whichimplies that the signal mod-
eling in DeepCAD-RT substantially increased the bias. The temporal
trace from PMD was nearly identical to that from the raw video, which
indicates that PMD had limited impact on both bias and variance.

After we applied SUPPORT to enhance this data, not only did the
neuronal activity become clearly visible in the images, but the spatial
footprints of the activity also showed high consistency with the cor-
responding neuronal shape (Fig.3cand Supplementary Video 2). Rep-
resentative frames from the raw and denoised datashow that SUPPORT
removed the noise very effectively, while the activity was preserved.

For further comparison, we extracted single-pixel fluorescence
fromthe cellmembrane pixels and found that the average single-pixel
SNR was strongly enhanced with SUPPORT (14.46 dB) compared to
DeepCAD-RT (12.21 dB) and PMD (13.46 dB) (Fig. 3d). The spatiotempo-
ral diagram, which visualizes the voltage transients of each 2 x 2 binned
pixel, also verified that SUPPORT successfully reduced the variance
while preserving the spikes at the pixel level (Fig. 3e).

Next, we tested the capability of SUPPORT to recover subthresh-
old activity of neurons using wide-field microscopy images of asingle
neuron in cortex layer 1 of a mouse brain expressing Voltronl with
simultaneous cell-attached extracellular electrophysiological record-
ing (Fig.4a). Electrophysiological recordings were taken at asampling
rate of 10 kHz, and imaging was performed at a frame rate of 400 Hz.

After denoising with SUPPORT, we found that even a single-pixel
fluorescence trace faithfully reflected the subthreshold signal (Fig. 4b).
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Fig.2|Performance validation onsimulated data. a, Synthetic population correlation coefficient before and after denoising data with different spike
voltage imaging data. From left to right are the clean, noisy, SUPPORT, DeepCAD- widths. Two-sided one-way analysis of variance with Tukey-Kramer post hoc
RT and PMD denoised data. Baseline and activity components are decomposed test was used. n =116 for each test, which represents the number of neurons (NS,
from the data. The baseline component with a gray colormap and activity notsignificant, *P< 0.1, **P < 0.01, **P < 0.001). d, Single-pixel fluorescence
component with a hot colormap are overlaid. Magnified views of the boxed traces extracted from baseline-corrected data. From top to bottom: clean, noisy,
regions are presented underneath with the consecutive frames of the spiking SUPPORT, DeepCAD-RT and PMD denoised data. The left shows each single-pixel
event (t=0.222s).Scale bar, 40 pm. b, PSNR of the baseline-corrected data trace occupies each row. The right shows three representative single-pixel traces
before and after denoising data with different spike widths. Clean data were used visualized with different colors. e, Single cell fluorescence traces near spiking
asthe ground truth for PSNR calculation. ¢, The left shows a box-and-whisker event extracted from baseline-corrected data. From top to bottom: clean, noisy,
plot showing Pearson correlation coefficients before and after denoising data SUPPORT, DeepCAD-RT and PMD denoised data. From left to right: changing

with different spike widths. The right shows aline chart showing average Pearson spike widths of 1,3,5,7and 9 ms.

The average Pearson correlation coefficient, obtained by comparing  image (0.21+ 0.12) (Fig. 4c). The power spectral density of the fluores-
the fluorescence traces with the electrophysiological recordings, of  cencetracesfrom the denoised image was also consistent with that of
SUPPORT (0.51 + 0.18) showed a 0.30 increase compared to theraw  theelectrophysiological recordings.
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Fig.3|Denoising single-neuron voltage imaging data. a, Simultaneous
electrophysiological recording and voltage imaging data. From top to bottom:
electrophysiological recording, raw, SUPPORT, DeepCAD-RT and PMD denoised
data. Detected spikes from electrophysiological recordings are marked with
black dots. Traces from voltage imaging data were extracted using amanually
drawnROL. b, Enlarged view of the greenregionin a. c, Three representative
framesindicated on b with green arrows for raw and denoised data. Baseline and
activity components are decomposed from raw data and denoised data. The
baseline component with agray colormap and the activity component with a hot

colormap are overlaid. Scale bar, 1 um. d, Box-and-whisker plot showing the

SNR for the pixels inside the cell region from raw and denoised data. From left to
right: raw, SUPPORT, DeepCAD-RT and PMD denoised data. Two-sided one-way
analysis of variance with Tukey-Kramer post hoc test was used. n = 70 for each
test, which represents the number of pixels (*P < 0.1, **P < 0.01, **P < 0.001).

e, Spatiotemporal diagram showing the voltage transients of each 2 x 2 binned
pixel with asmall temporal region centered at time pointionb. From left to right:
raw, SUPPORT, DeepCAD-RT and PMD denoised data.

We confirmed the one-to-one correspondence between the fluo-
rescence trace and the transmembrane potential using wide-field
microscopy images of asingle neuronin the brain slice from mouse cor-
tex layer 2/3 expressing QuasAré6a (ref. 34), which is known to possess

high linearity (Fig. 4e). The one-to-one correspondence became
evident after SUPPORT denoising (Fig. 4f). The average Pearson
correlation coefficient between the fluorescence traces and the elec-
trophysiological recordings increased from 0.18 + 0.11 to 0.65 + 0.22
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Fig. 4 |Recovering subthreshold activity in voltage imaging data. a, Raw

and SUPPORT-denoised images of four neurons in mouse cortex layer 1
expressing Voltronl are shown after baseline correction. Scale bars, 5 pm.

b, Electrophysiological recording and single-pixel traces extracted from raw and
SUPPORT-denoised data. Spike regions are detected from electrophysiological
recording dataand excluded in subthreshold analysis. ¢, The left shows
box-and-whisker plots showing Pearson correlation coefficient between
electrophysiological recording and single-pixel fluorescence tracesin
subthreshold region. The right shows box-and-whisker plots showing average
Pearson correlation coefficients before and after denoising. A two-sided
paired-sample t-test was used: cell 1, n =1,842; cell 2, n = 675; cell 3,n =2,610;
cell4,n =506 and average, m = 4, where nrepresents the number of pixels and m
represents the number of cells. d, Power spectral density of electrophysiological
recording and single-pixel fluorescence traces of raw and denoised data.

e, Raw and SUPPORT-denoised images of eight neurons in the brain slice from
mouse cortex L2/3 expressing QuasAr6a are shown after baseline correction.
Scale bars, 10 pm. f, Relationship between transmembrane potential and dF/F,,.
Average and standard deviation of dF/F, values are calculated for corresponding
voltage values. Average points are drawn as solid lines and areas between
average + standard deviation and average-standard deviation are filled. g, The
left shows box-and-whisker plots showing Pearson correlation coefficient
between electrophysiological recording and single-pixel fluorescence traces in
subthreshold region. The right shows box-and-whisker plots showing average
Pearson correlation coefficients before and after denoising. A two-sided
paired-sample t-test was used: cell 1, n = 3,289; cell 2, n = 3,157; cell 3, n = 3,458;
cell4,n=3,516;cell 5,n=2,214; cell 6,n =599; cell 7, n =1,240; cell 8, n =427 and
average, m = 8, where nrepresents the number of pixels and m represents the
number of cells (**P < 0.01,**P < 0.001).

after denoising (Fig.4g). Theseresults were in line with those from the
simulation (Supplementary Fig. 11).

Additionally, we found that SUPPORT precisely revealed the traces
from single pixels inside the soma (Supplementary Fig. 12) and along

the dendritic branch (Supplementary Figs.13-15and Supplementary
Video 3), which indicates SUPPORT’s suitability for studies involving
voltage dependence along the neuronal processes™. Finally, SUPPORT
was able to denoise in vitro cultured neurons labeled with a synthetic
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n=65,536.c, Traces from raw and SUPPORT-denoised data extracted from
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data and SUPPORT-denoised data. The baseline component with a gray colormap
and the activity component with a hot colormap are overlaid. Boundaries of

20 ROl are drawn with cyanlines. The top shows raw data. The bottom shows
SUPPORT-denoised data. Scale bar, 20 pm. e, Distribution of SNR for pixels inside
the ROIfrom raw and SUPPORT-denoised data, n=5,722.f, Traces for 20 ROI
from raw and SUPPORT-denoised data. The left shows raw data. The right shows
SUPPORT-denoised data. g, Enlarged view of traces from colored regions in fis
plotted. Traces from raw data are overlaid with agray color and denoised dataare
overlaid with corresponding colorinf.
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voltage dye, which indicatesits suitability for designing voltage indica-
tors (Supplementary Fig. 16).

Denoising population voltage imaging data

We applied SUPPORT to voltage imaging data that contained in vivo
population neuronal activity in awake mouse cortex layer 1 express-
ing Voltronl (ref. 24) and zebrafish spinal cord expressing zZArchonl
(ref.27). The mouse dataset was recorded with a wide-field fluorescence
microscope with aframerate of 400 Hz, and the zebrafish dataset was
recorded with alight-sheet fluorescence microscope with aframe rate
of 1kHz (ref. 36).

After applying SUPPORT to the voltage imaging data, we applied
baseline correction (Methods). Despite the high noise level of the
voltage imaging data, the neuronal structures became clearly visible
after denoising (Fig. 5a,d, Supplementary Video 4 and Supplemen-
tary Fig.17). The single-pixel SNR was improved by 9.11 dB on average
(21.58 +1.62 dB for SUPPORT, 12.47 + 0.89 dB for the raw data) for the
mouse dataset (Figs. 5b) and 6.32 dB (19.08 + 2.07 dB for SUPPORT,
12.72 + 0.67 dB for the raw data) for the zebrafish dataset (Fig. 5e). For
further analysis, we extracted the voltage traces from manually drawn
regions of interest (ROI) (Fig. 5¢,f,g). In line with the results from the
simulation and the single-neuron voltage imaging, the variance was
greatly decreased, while the sharp voltage transientsinduced by spikes
were preserved (Supplementary Figs. 18-40).

We also extracted the neurons and corresponding temporal signals
using locaNMF*¢, which is an automated cell extraction algorithm,
fromthe mouse and zebrafish datasets (Methods and Supplementary
Fig.41a,b). Owingto theimprovementin SNR, we were able to automati-
cally segment 42 neurons from the denoised mouse data compared
to 31 neurons from the raw data. For zebrafish data, 27 neurons from
the denoised data and nine neurons fromthe raw data were extracted.
We then measured the F; score between the ground-truth ROl and the
extracted ROl across several intersection-over-union (IoU) threshold
values. We quantified the areaunder F,score across the loU curve, and
there was a 1.6-fold improvement for mouse data (0.31 for denoised
and 0.19 for raw data) and a 2.0-fold improvement for zebrafish data
(0.43for denoised and 0.21 for raw data) (Supplementary Fig.41c). The
extracted neuronal signal from SUPPORT also clearly shows spikes,
while the signal from the raw data shows high variance (Supplemen-
taryFig.41d), whichindicates that SUPPORT facilitates the automated
analysis of large-scale population voltage imaging data.

It was shown that SUPPORT could denoise other population volt-
ageimaging datawith different regions and voltage indicators, indicat-
ing its suitability for the routine use of population voltage recordings
(Supplementary Figs. 18-40, 42 and 43). Finally, we observed that
SUPPORT trained onsingle population voltage imaging data accurately
denoised another population voltage imaging data without fine-tuning
(Supplementary Fig. 44), which demonstrates its generalizability.

Denoising voltage imaging data with motion

The signal model of SUPPORT does not assume that objects in the
images remain stationary, which allows for the possibility of denois-
ing image data with motion. To verify this, we applied SUPPORT to
synthetic, semisynthetic and experimental voltage imaging datasets
with motion.

We first applied random rigid translation to the synthetic data-
sets generated using a NAOMi simulator as described in the previous
section. The translation profile was created by drawing a sequence of
random numbers fromazero-mean Gaussian distributionand filtering
the sequence with a low-pass filter with a cut-off frequency of 5Hz to
mimic the motioninduced by respiration and heartbeat. Subsequently,
we applied SUPPORT to the dataset for denoising (Supplementary
Figs. 45 and 46). The traces extracted from the SUPPORT-denoised
video showed reduced variance while maintaining the spikes (Sup-
plementary Fig. 45d). Quantitatively, the SUPPORT-denoised image

showed animprovement of 6.95 dBin the average SNR (31.23 +1.85 dB)
compared to the noisy image (24.28 + 0.02 dB), when motion on a
scalelarger thanthessize of the cellbody was present (Supplementary
Fig. 45e). Additionally, the root-mean-squared error (r.m.s.e.) was
lowered by 0.0087 for the SUPPORT-denoised image (0.0074 + 0.0014)
compared to the noisy image (0.0161 + 3.38 x 107°) (Supplementary
Fig. 45f). We also found that altering the sequence of preprocessing
steps (motion correction, photobleaching correction and SUPPORT)
did not significantly affect the results (Supplementary Fig. 47).

Next, we applied random rigid translation, identical to thatapplied
tothe synthetic data, to the aforementioned in vivo single-neuron volt-
age imaging data with simultaneous electrophysiological recordings
(Fig. 6a—c). We then applied SUPPORT for denoising and aligned the
results for motion correction. The outcome was visually indistinguish-
able fromtheresults obtained by applying SUPPORT to the motionless
data (Fig. 6d).

Quantitatively, using simultaneously recorded electrophysiologi-
cal recordings as ground truth, the SUPPORT-denoised image with
motiononascale comparableto the cellbody size showed a substantial
improvement of 0.46 in the average Pearson correlation coefficient
(0.75 £ 0.12) compared to the rawimage (0.29 + 0.12) (Fig. 6e). Similarly,
whenusing SUPPORT-denoised data without motion as ground truth,
the average Pearson correlation coefficient showed an improvement
of 0.57 for the SUPPORT-denoised image (0.95 + 0.05) compared to the
rawimage (0.38 £ 0.19) (Fig. 6f). Additionally, the SNR was enhanced by
17.04 dBfor the SUPPORT-denoised image (40.05 + 0.44 dB) compared
to the rawimage (23.01 + 0.51 dB) (Fig. 6g).

Finally, we evaluated SUPPORT using a voltage imaging dataset
obtained from an awake mouse hippocampus expressing SomAr-
chon” (Fig. 6h). This dataset contained natural motion with a scale
comparable to the size of the cell body (Fig. 6i,j). Consistent with the
findings from the synthetic and semisynthetic datasets, the variance
was substantially reduced, while maintaining the distinct voltage tran-
sients associated with spikes (Fig. 6k). Furthermore, the single-pixel
SNR showed an average improvement of 3.40 dB (17.30 + 1.38 dB for
SUPPORT, 13.90 + 0.86 dB for the raw data) (Fig. 61).

SUPPORT denoises imaging data of freely moving C. elegans

To assess the broad applicability of SUPPORT, we tested its capability
to denoise three-dimensional time-lapse fluorescence microscopy
images of C. elegans’®, inwhich the differences among the frames came
from the motion of the worm, which was not sampled with a sufficiently
highimaging speed. The nucleiof allneuronsinthe wormwere labeled
using red fluorescent protein mCherry*’ under the H20 promoter. The
volume images with 20 axial slices were recorded with spinning disk
confocal microscopy at avolume rate of 4.75 Hz.

We denoised the video using SUPPORT, DeepCAD-RT and PMD
in a plane-by-plane manner. We first compared the noisy data and
the denoised results for a single axial slice. SUPPORT successfully
denoised the images without any visible artifacts, whereas the denois-
ing outcomes acquired using DeepCAD-RT and PMD suffered from
motion-induced artifacts (Extended Data Fig. 1a and Supplementary
Fig. 48), which again proves the importance of using an appropriate
signal model for denoising. The difference between the SUPPORT
output and the noisy input, which was expected to be white noise, did
appear purely white. However, the difference between the outputs
from DeepCAD-RT and PMD and the noisy input contains low frequency
components that are highly correlated with the structure of theinput
image (Extended Data Fig. 1b).

In the consecutive frames shown in Extended Data Fig. 1c, the
worm’s locomotion is considerably faster than the imaging speed,
which precludes the accurate prediction of the current frame based
on adjacent frames. Nevertheless, SUPPORT successfully denoised
the image without suffering from motion artifacts by incorporat-
ing information from neighboring pixels in the current frame.
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Fig. 6 | Denoising voltage imaging data with motion. a, Representative
frames of raw video and SUPPORT-denoised videos without and with motion
after baseline correction. Motion was synthetically applied to the images of
neurons in mouse cortex L2/3 expressing QuasAréa, simultaneously recorded
with electrophysiology. Scale bars, 5 pm. b, Representative frames of a spatially
expanded view of cell 1in aat the timings indicated by red arrows in c. From left
toright: frames at 604, 955, 2,214 and 3,521 ms. From top to bottom: raw video,
SUPPORT-denoised video without motion and SUPPORT-denoised video with
motion. Scale bar, 5 pm. ¢, Line plot showing the xand y direction motions in the
micrometer scale. d, Electrophysiology trace and single-pixel fluorescence traces
extracted from the videos. From top to bottom: electrophysiology, raw video,
SUPPORT-denoised video without motion and SUPPORT-denoised video with
motion. Scale bar, 500 ms. e, Box-and-whisker plot showing Pearson correlation
coefficients between fluorescence traces and electrophysiology, before and
after denoising. x5indicates a five times higher motion comparedtoxl.n=35,

Single pixel SNR (dB)

which represents the number of cells. f, Box-and-whisker plot showing Pearson
correlation coefficients between ground-truth image (SUPPORT-denoised

image without motion) and images with motion before and after denoising.
n=5,whichrepresents the number of cells. g, Box-and-whisker plot showing SNR
acquired by comparing ground-truth image and images with motion before and
after denoising. n =5, which represents the number of cells. h, Representative
frames of raw video and SUPPORT-denoised videos after baseline correction. The
images show a neuron expressing SomArchon in the hippocampus of an awake
mouse. Scale bar, 3 pm. i, Representative frames in h at the timings indicated by
red arrowsinj. From left toright: frames at 2,018,17,203, 29,618 and 50,025 ms.
Scalebar, 5 um. j, Line plot showing x and y directional motions in the micrometer
scale. k, Traces extracted froma single cell in raw video and SUPPORT-denoised
video. Temporally expanded traces from the brown area on the left are shown on
theright. 1, Histogram of SNR from the raw video and SUPPORT-denoised video.
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By contrast, DeepCAD-RT and PMD failed to predict the location of each
cell, which was manifested as motion-induced artifacts in the images.
The denoising outcome (Extended DataFig.1d, Supplementary Fig. 49
and Supplementary Video 5) demonstrates that SUPPORT can be used
for denoising not only functional imaging data but also volumetric
time-lapse images in which the speed of dynamics is faster than the
imaging speed.

SUPPORT denoises volumetric structural imaging data

To demonstrate the generality of SUPPORT, we evaluated it on denois-
ing volumetric structural imaging data in which no temporal redun-
dancy could be exploited for denoising. SUPPORT was tested on two
volumetric datasets that contained Penicillium imaged with confocal
microscopy and mouse embryosimaged with expansion microscopy*’.
Penicilliumwasimaged with two different recording settings to gener-
ate a pair of low-SNR and high-SNR volumes (Methods).

The volumetric images were denoised with SUPPORT regarding
each z-stack as a time series. The qualitative analysis showed that
SUPPORT was able to enhance the signal of volumetric structural
imaging data, revealing the structures that were hidden by the noise
(Extended Data Fig.2a,b,e,f, Supplementary Fig. 50 and Supplementary
Video 6). Thefine structure of Penicillium was recovered with SUPPORT
(Extended Data Fig. 2d), demonstrating the signal model’s capability
tolearnstatistics fromawide range of data. For the quantitative evalu-
ation of SUPPORT with the Penicillium dataset, the Pearson correlation
coefficients and SNR were measured by regarding the high-SNR image
asagroundtruthfor each plane alongthe zaxis (Extended DataFig. 2c).
The average Pearson correlation coefficient of SUPPORT (0.76 + 0.07)
showed 0.29 increments compared to the low-SNRimage (0.47 + 0.09)
and the average SNR of SUPPORT (8.65 + 0.62 dB) showed 5.98 dBincre-
ments compared to the low-SNRimage (2.67 + 0.51 dB). The qualitative
and quantitative studies showed that SUPPORT is capable of enhancing
not only time-lapse images but also static volumetric images. Thus,
SUPPORT canbe used in awide range of biological research involving
microscopicimaging.

Discussion

SUPPORT, a self-supervised denoising method, has demonstrated its
ability to denoise diverse voltage imaging datasets acquired using
Voltronl, Voltron2, paQuasAr3-s, QuasAré6a, zArchonl, SomArchon
and BeRST1 (Supplementary Table 1). Thanks to its statistical prediction
model that predicts a pixel value x;; by integrating the information
fromits spatiotemporal neighboring pixels Q; ; (thatis, X; x = fo(Q; 1)),
it showed high robustness when faced with the fast dynamics in
the scene. While this design allows SUPPORT to simultaneously achieve
low bias and low variance, it still leaves room for fundamental improve-
ment, asit does not exploit the information contained in y; . Therea-
son y; , was notexploited asaninputis becauseit is used as the target
in place of the ground truth for self-supervised learning; we cannot
use y;x asboththeinputandthetarget of the network, as the network
will simply become an identity function. This means that the cost of
truly exploitingall available informationis to give up the self-supervised
learning scheme that does not require ground truth.

Itshould be noted that SUPPORT is specifically designed to remove
zero-mean ‘stochastic’ noise, whichincludes Poisson noise and Gauss-
ian noise originating from photons, dark current and sensor readout.
However, it is not capable of addressing ‘deterministic’ artifacts such
as motion-induced artifacts, photobleaching or fixed-pattern noise.
Asaresult, aspecifically designed data processing pipelineis needed
to process data containing such artifacts (Supplementary Fig. 47).

Denoising time-lapse imaging datainwhicha C. elegans exhibited
rapid movement and a single volumetric image demonstrated that
SUPPORT is not limited to denoising voltage imaging data; it can be
used for denoising any form of time-lapse imaging data (Supplemen-
tary Figs. 51-58 and Supplementary Videos 7-9) including calcium

imagingin which theimaging speedis slow compared to the underlying
dynamics or volumetric structural imaging data. This is animportant
finding, as it indicates that the data do not need to be low rank to be
denoised using SUPPORT, which is often required by many denoising
algorithms®*., Also, SUPPORT could be trained with only 3,000 frames
(Supplementary Figs. 59 and 60), which would facilitate its general
usage in many laboratories with common desktop settings, especially
with our GUI-based SUPPORT (Supplementary Fig. 61). We also note
that the performance of SUPPORT comes at the typical computational
cost of 2 days of training time with an NVIDIA RTX 3090 GPU. Overall,
its self-supervised learning scheme, robustness to fast dynamics, low
variance in denoising outcomes and compatibility with motion make
itaversatile tool for processing awide range of image data. We expect
that SUPPORT’s core strategy, learning the statistical relationships
between neighboring entities in an n-dimensional array, will extend
beyond image denoising and be adapted to process a broader range
of biological data.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

SUPPORT network architecture

Thearchitecture of the SUPPORT network consists of two subnetworks:
two-dimensional (2D) U-Net and the blind spot network. 2D U-Net
exploitstheinformation of the temporally adjacent frames. Theinput
data are first separated into two blocks: (1) temporal neighboring
framesand (2) the center frame. The temporal neighboring frames are
concatenated in the channel dimension and passed through 2D U-Net.
Then, the center frame and the output of 2D U-Net are concatenated
inthe channel dimension and passed through the blind spot network,
which has a zero at the center of the impulse response. Finally, the
outputs of 2D U-Net and the blind spot network are concatenated in
the channel dimension and passed through 1 x 1 convolution layers.
The overall architectureis illustrated in Supplementary Fig. 1a.

The 2D U-Net® consists of a 2D encoder, a 2D decoder and skip
connections from the encoder to the decoder (Supplementary
Fig. 1b).In the 2D encoder, there are four encoder blocks. Each block
consists of a3(x) x 3(y) convolutional layer, followed by aBatchNorm,
aLeakyReLUanda2(x) x 2(y) maximum pooling layer. In the decoder,
there are four decoder blocks, each of which contains a bilinear inter-
polation followed by a3(x) x 3(y) convolutional layer, aBatchNorm and
aLeakyReLU. Theskip connections link low- and high-level features by
concatenating feature maps in the channel dimension. We designed 2D
U-Net to take the previous 30 frames and next 30 frames as the input.
For denoising structural imaging data, the previous ten frames and
next ten frames were used as the input.

The blind spot network was designed to efficiently increase the
receptive field of the network over computation (that is, memory
and the number of multiply-add operations). A comparison to previ-
ous blind spot network designs***° is shown in Supplementary Fig. 2.
The blind spot network consists of (1) two sequential parts and (2) an
aggregating part (Supplementary Fig. 1c). There are two sequential
paths that use convolutional layers with kernel sizes of 3x 3and 5 x 5.
Each sequential path consists of sequential blind spot convolutional
layers with ‘shortcut connections’ (Supplementary Fig.1c). The center
value of the weight of the blind spot convolutional layer is masked as O
to make the blind spot property. For the kernel size of 3 x 3, the dilation
and padding are both set as 2' for the ith layer to preserve blind spot
properties for each feature after the layer. Similarly, for the kernel
size of 5 x 5, the padding and dilation are set as 2 x 3'. The shortcut
connection links the input to the features by adding the input, passed
by the 1 x 1 convolutional layer, to the intermediate features. In the
aggregating path, all features after each layer in the sequential paths
are concatenated in the channel dimension and then passed through
three1x1convolutional layers to finally predict the signal. The recep-
tive field of the blind spot networkisillustrated in Fig. 1b, which shows
the fractal-like pattern.

For the datain which structured noise can be predicted from the
neighboring pixels, options to change the size of the blind spot were
alsoimplemented (Supplementary Fig. 51). To increase the size of the
blind spot to p, we added additional dilation and padding of |p/2| for
the last blind spot convolutional layers of two sequential paths. Also,
only thefinal features of two sequential paths, rather than allintermedi-
ate features, were passed through the aggregating path. Overall, we
adhered to the default network architecture (Supplementary Fig. 1)
except for the following instances (Supplementary Table 2):

(1) Forstructural imaging dataset, we reduced the size of
temporal (or ‘axial’) receptive field to 21 due to the limited
availability of the axial slices.

(2) For dataset with motion, we increased the network capac-
ity by multiplying the number of channels in the U-Net by a
factor of four.

(3) For dataset with correlated noise on neighboring pixels,
we increased the size of the blind spot.

Training SUPPORT network

The network was trained on Pytorch 1.12.1 and CUDA 11.3 with an
NVIDIARTX 3090 GPU and an Intel Xeon Silver 4212R CPU. For the loss
function, the arithmetic average of L1-loss and L2-loss was used. Asa
preprocessing step, each input video was normalized by subtracting
the average value and dividing by the standard deviation. Patches with
asize of 128(x) x 128(y) x 61(t) were extracted from the input video
with an overlap of 61(x) x 61(y) x 1(¢). If the spatial dimension of the
data was smaller than 128, we reduced the patch size to match the
spatial dimension of the data. Then, random flipping and rotation by
integer multiples of 90° were used for dataaugmentation. A batch size
of16 was used by default. An Adam optimizer* with alearning rate of
5x10~*without weight decay was used for gradient-based optimiza-
tion. Toensure reproducibility, random seeds for all relevant libraries,
NumPy and PyTorch, were fixed at 0. The network was trained for
500 epochs, with each epoch containing a loop through all patches
by default. The loss values were tracked for every gradient update to
monitor the training procedure. Training SUPPORT for processing
the zebrafish dataset that had a size of 1,024(x) x 148(y) x 24,000(¢)
took 47 hfor 14 million gradient updates. The inference for the same
dataset took 30 min. We note that overfitting was avoided by using
1,500 or more frames and training the network over an extended
period did not lead to overfitting (Supplementary Figs. 60 and 62).
For both training and inference, we used zero padding to match the
input and output sizes, which had minimal impact on the results
(Supplementary Fig. 63).

The dependency of the denoising performance and loss func-
tion wasinvestigated through denoising simulation and experimen-
tal data. The weighted average of Lland L2loss, £ = a£; + (1 - a) £,,
with a €{0, 0.3, 0.5, 0.7, 1} for simulated data and «a € {0, 0.5, 1} for
experimental data were used as a loss function (Supplementary
Figs. 64 and 65).

Synthetic voltage imaging data generation

Simulating synthetic voltage imaging data includes the pipeline of
first generating clean video (ground truth) and then adding Poisson
and Gaussian noise. To generate a realistic spatial profile that resem-
bles neurons in amouse brain, we used a NAOMi* simulator that was
originally developed for simulating a two-photon calcium imaging
dataset. The code was modified to generate voltage transients instead
of calcium transients as temporal components. We generated five
different videos with 15,000 frames and a frame rate of 500 Hz with
different spike widths, ranging from1to 9 ms. The constructed volt-
age signals were matched to the parameters of Voltron. Every other
parameter was set as default apart from increasing the simulated
field of view twofold. The noisy video was generated by adding Pois-
son and Gaussian noise. To add Poisson noise to the images, we first
normalized the inputimages and multiplied themby 1,000, and then
used each pixel value as the parameter (that is, mean value) of the
Poisson distribution. Thereafter, Gaussian noise withamean of 0 and
a standard deviation of 5 was added to the images. Finally, negative
values were truncated to O.

Invivo simultaneous voltage imaging and electrophysiology
Thedatafrom simultaneous structuredillumination fluorescenceimag-
ingand patch-clamp electrophysiological recordings of single-neuron
activity were recorded with mouse cortex L2/3 pyramidal neurons
using a digital micromirror device or spatial light modulator with a
frame rate of 1,000 Hz. Voltron2 and QuasAré6a were expressed using
inutero electroporation. NDNF-Cre+ mice (JAX catalog no. 028536) of
6 weeks to 8 months were used for in vivo QuasAré voltage imaging.
Allproceduresinvolving animals were inaccordance with the National
Institutes of Health guide for the care and use of laboratory animals and
were approved by the Institutional Animal Care and Use Committee
(IACUC) at Harvard University.
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Invitro single-neuron voltage recording

We prepared primary rat hippocampal neurons cultured on a 35 mm
glass bottom dish (P35G-1.5-14-C, MatTek). At 9 days in vitro, neu-
rons were stained with a voltage-sensitive dye (BeRST1, 2 pM) dis-
solved in an imaging solution containing 140 mM NacCl, 3 mM KCl,
3 mM CaCl,, 1 mM MgCl,, 10 mM HEPES and 30 mM glucose (pH 7.3)
for 15 min, and then rinsed with a fresh imaging solution before opti-
calimaging?. Time-lapse imaging of spontaneous neural activity was
acquired using aninverted microscope (Eclipse Ti2, Nikon) equipped
with a x40 water-immersion objective lens (numerical aperture (NA)
1.15; MRD7710, Nikon), while maintaining the sample temperature
at 30 °C. For excitation, an LED (SOLIS-623C, Thorlabs) with a band-
pass filter (ET630/20x, Chroma Technology) was used at an irradi-
ance of 20 mW mm™ at the sample. Emission was passed through a
dichroic mirror (T660Ipxr, Chroma Technology) and an emission filter
(ET6651p, Chroma Technology), and was collected by an sCMOS camera
(OrcaFlashv.4.0,Hamamatsu) atal-kHz frame rate with 4 x 4 binning
and subarray readout (361 x 28 pixels) for a duration of 25 s. All the
animal experiments were performed according to the Institute of Ani-
mal Care and Use Committee guidelines of Seoul National University
(Seoul, Korea) (SNU-220616-1-2).

Invivo simultaneous calciumimaging and electrophysiology
A craniotomy over Vlwas performed, and neurons were infected with
adeno-associated virus (AAV2/1-hSynapsin-1) encoding jGCaMP8f. At
18-80 days after the virus injection, the mouse was anesthetized, the
cranial window was surgically removed and adurotomy was performed.
The craniotomy was filled with 10-15 pl of 1.5% agarose, and a D-shaped
coverslip was secured on top to suppress brain motionand leave access
to the brain on the lateral side of the craniotomy. The mice were then
lightly anesthetized and mounted under a custom two-photon micro-
scope. Two-photon imaging (122 Hz) was performed of L2/3 somata
and neuropil combined with a loose-seal, cell-attached electrophysi-
ological recording of a single neuron in the field of view. Temporally
fourfold downsampling was held to the data to reduce the sampling
rate before the analysis. After excluding some outlier recordings with
alow correlation between calcium signal and action potentials, an
ROl was manually drawn around the neuron, and fluorescence traces
were extracted from the mean signal of the ROlin the temporal stack.
All surgical and experimental procedures were conducted in accord-
ance with protocols approved by the IACUC and Institutional Biosafety
Committee of Janelia Research Campus.

Volumetric structural imaging of Penicillium

For the volumetric structural imaging of Penicillium, the specimen
was imaged using a point-scanning confocal microscopy system
(NIS-Elements AR v5.11.01, C2 Plus, Nikon) equipped with a x16 0.8 NA
water dipping objective lens (CFI75 LWD 16X W, Nikon). The imaging
was performed using a 488 nm excitation laser with a laser power of
0.075 mW for the low-SNR image and a laser power of 1.5 mW for the
high-SNR image. The frame rate was 0.5 Hz for 1,024 x 1,024 pixels with
apixelsize of 0.34 pumand each volume consisted 0f 1,000 z-slices with
az-stepsize of 0.1 um.

Expansion microscopy of mouse embryos

Mouse embryos wereisolated on day 15.5 of pregnancy in C57BL/6) mice
and fixed withice-cold fixative (4% paraformaldehyde in 1x phosphate
bufferedsaline) for a day at4 °C. Fixed mouse embryos were embedded
in 6% (w/w) low-gelling-temperature agarose and thensliced to a thick-
ness of 500 um with a vibratome. Embryo slices were then processed
foranchoring, gelation, Alexa Flour 488 NHS-ester staining, digestion,
decalcification and expansion according to the previously described
whole-body ExM protocol*°. Following a 4.1-fold expansion of the
embryoslices in the hydrogel, the sample was attached to cover glass
and imaged using a confocal microscope (Nikon Eclipse Ti2-E) with a

spinning disk confocal microscope (Fusionv.2.1.0.34, Dragonfly 200;
Andor, Oxford Instruments) equipped with a Zyla 4.2 sCMOS cam-
era (Andor, Oxford Instruments) and a x10 0.45 NA air lens (Plan Apo
Lambda, Nikon). The z-stack images were obtained with a z-step size of
1pmforintestineandbone, and 0.5 um for tail. Allanimal experiments
involving mouse embryos conducted for this study were approved by
the IACUC of KAIST (KA-2021-040).

Invivo calciumimaging of zebrafish brain
For zebrafish experiments, transgenic larval zebrafish (Danio rerio)
expressing GCaMP7a calcium indicator under control of GAL4-UAS
system and huc promoter (Tg(huc:GAL4); Tg(UAS:GCaMP7a))** with a
Casper (mitfa(w2/w2);mpv17(a9/a9))* mutant were imaged at 3-4 days
postfertilization.

The larvae were paralyzed by bath incubation with 0.25 mg ml™
of pancuronium bromide (Sigma-Aldrich) solution for 2 min (ref. 47).
After paralysis, the larvae were embedded in agar using a2% low melting
point agarose (TopVision) ina Petri dish. The dish was filled with stand-
ard fishwater after solidifying the agarose gel. Specimens were imaged
using a point-scanning confocal microscopy system (NIS-Elements
ARV.5.11.01, C2 Plus, Nikon) equipped with a x16 0.8 NA water dipping
objective lens (CFI75 LWD 16X W, Nikon). The imaging was performed
using a488 nmexcitationlaser (0.15-0.75 mW). All animal experiments
involving zebrafish conducted for this study were approved by the
IACUC of KAIST (KA-2021-125).

Imaging spontaneous neurotransmission

Primary cultures of rat hippocampal neurons were obtained from
embryonicday 18 Sprague-Dawley fetal rats and plated onto glass cover-
slips that were precoated with poly-D-lysine. Neurons were transfected
with SF.iGluSnFR A184V (Addgene catalog no.106199) or iGABASnFR
F102G (Addgene catalog no.112160) using calcium-phosphate method,
along with Synapsinl-mCherry to serve asapresynapticbouton marker.
Transfected hippocampal neurons atday 16 invitrowere placedinaper-
fusion chamber (Chamlide, LCI) and mounted onto the 35 °C heating
stage of aninverted microscope (IX71, Olympus) equipped with a x40
oil-immersion objective lens (UPlanApo, x40/1.00). The imaging was
conductedin Tyrode’s solution (136 mM NaCl, 2.5 mMKCI,2 mM CacCl,,
2 mM MgCl,, 10 mM glucose, 10 mM HEPES; pH 7.4; 285-290 mOsm)
containing 1 pM tetrodotoxin to block action potential firing. A total
of12trials were obtained, each consisting of 500 frames captured ata
framerate of 100 Hz (iGluSnFR) or 50 Hz (iGABASnFR), using an Andor
Sona-2BV11 sCMOS camera (Andor) driven by MetaMorph Imaging
Software (Molecular Devices) with abinning of 2and acropped mode of
110 x 110 pixels. All the animal experiments were performed according
totheInstitute of Animal Care and Use Committee guidelines of Seoul
National University (SNU-220525-4).

Baseline and activity decomposition of voltage imaging data
Forvisualization, the datawere decomposed into the underlying base-
line and neuronal activity. The baseline estimation was performed using
the temporal moving average. Window length was chosen in accord-
ance withtherecordingrate for the data. For the data that only required
photobleaching correction, b-spline fit was used to estimate baseline
without using the moving average (Fig. 5a). For the positive-going volt-
age indicators (zArchonl, QuasAréa, paQuasAr3-s, SomArchon), the
activity component was acquired by subtracting the estimated baseline
from the data. For the negative-going voltage indicators (Voltronl,
Voltron2), the activity component was acquired by subtracting the
datafrom the estimated baseline.

Spike detection for F;score calculation

To calculate spike detection accuracy, we measured the F, score
for a given dF/F, threshold. The spikes were detected through the
following steps: (1) calculating dF/F, from the fluorescence trace,
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(2) hard-thresholding the dF/F, trace and (3) finding local maximum
locations. The dF/F, threshold refers to the threshold value used in
step (2). In simulated data, clean voltage traces were used to obtain
ground-truth spike locations. In experimental data, electrophysi-
ological recordings were used as the ground truth. For subthresh-
old analysis, we calculated Pearson correlation coefficients between
electrophysiological recording and single-pixel voltage traces in the
subthreshold regime.

Cell detectionin neuronal populations imaging data

For voltage imaging data, the SGPMD-NMF pipeline was applied to
detect ROl and corresponding temporal signals, whichis available on
GitHub (https://github.com/adamcohenlab/invivo-imaging). In the
pipeline, detrending based on b-spline fitting and demixing based
on localNMF were used without additional denoising. For the mouse
cortex data, detrended data was flipped before the demixing step by
subtracting the data from the maximum value of the data, since the
data were recorded with Voltronl, which is a negative-going voltage
indicator. After extraction, we removed nonneuronal spatial com-
ponents with the following simple heuristics: (1) reject if the number
of pixels in the component is smaller than a, (2) reject if the width or
height of the component is larger than  and (3) reject if the width/
heightisnotin (y, ).

For mouse cortex data, only the first heuristicwas used, with a set
as 10, where the size of the neurons was smallin the data. For zebrafish
data, all heuristics were used, with « =100, =50, y=0.5and §=1.5
(Supplementary Fig. 41).

Cellpose*® was applied to a single frame image of SUPPORT-
denoised videoto detect cells (Supplementary Fig. 55). All parameters
were set to default except ‘flow” and ‘cellprob’, which were set by empiri-
cal values that best fit the data.

Real-time intravital imaging in anesthetized mouse

H2B-GFP (Jackson Laboratory, Stock No. 006069) and mTmG
(Jackson Laboratory, stock no. 007676) mice were purchased from
the Jackson Laboratory. Flowing red blood cells in various tissues of
the offspring of H2B-GFP crossbred with mTmG were imaged using
a confocal and two-photon microscope (IVM-CMS, IVIM Technology
Inc.). For real-time intravital imaging, mice were anesthetized using
an intramuscular injection of a mixture of Zoletil (20 mgkg™) and
Xylazine (11 mg kg™). Red blood cells fluorescently labeled by far-red
fluorophore DiD (Thermo Fisher) were intravenously injected through
thetail vein. Toimage ear skin, the right ear of the anesthetized mouse
was gently attached to transparent coverslip with saline water** ™",
To image kidney, a 15 mm incision was made on both the skin and the
retroperitoneum and then the kidney was gently exteriorized with
round forceps. The exposed kidney surface was covered by transparent
coverslip®*. A wet gauze soaked in warm saline was placed between
the kidney and the underlying tissue to reduce motion artifacts>*°.
To image muscle, a10 mm incision was made on thigh skin and then
muscle was exposed and covered by transparent coverslip”. A high NA
water-immersion objective lens (CFI75 Apochromat 25XC W, NA 1.1,
Nikon) was used, and 488, 561 and 640 nm lasers were used to excite
green fluorescent protein (GFP), mT and DiD, respectively. All animal
experiments involving live anesthetized mice conducted for this study
were approved by the IACUC of KAIST (KA-2021-058, KA-2022-010).

Performance metrics

SNR, PSNR and r.m.s.e. were used as metrics to evaluate the pixel-level
consistency between SUPPORT-denoised images and ground-truth
images. The r.m.s.e. between the signal x and the reference signal y is

defined asr.m.s.e.(x,y) = 1/E [(x —y)z] ,where E denotes the arithmetic
mean. The SNR between the signal xand the reference signal yis defined

as SNR(x, y) =10log;, ”;L’”z The PSNR between the signal xand the

se.xy)’

reference signal y is defined as PSNR(x, y) = 10log,, max(®

nm.s.e(x,_y)l :
The Pearson correlation between the signal x and the reference signal

E[—p)(y—#y)]
0,0,

yisdefinedasR = where u, and u, are the mean values of

signal x and y, respectively, and o, and o, are the standard deviations
of signal x and y, respectively. As a measure of the performance of
denoising experimental voltage imaging data, SNR was used with
modification, as the ground truth was not available. The SNR of the
signal x is defined as SNR (x) = 10Iogw%("). Metrics were calculated
after baseline correction. )

For the population voltage imaging data, we measured the perfor-
mance of cell extraction. After cell detection using locaINMF, we first
calculated loU between all pairs of extracted components and manu-
ally segmented cells. The cell extraction was given as correct if the loU
between the extracted component and the manual segmentation was
higher than the threshold. Then, the F, score (that is, harmonic mean
of precision and recall) was calculated.

Comparison with other denoising algorithms

We used the publicly availableimplementations of PMD (https://github.
com/ikinsella/trefide), DeepCAD-RT (https://github.com/cabooster/
DeepCAD-RT), NOSA*® (https://github.com/DavideR2020/NOSA) and
Volpy®* (https://github.com/flatironinstitute/CalmAn).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The dataset of one-photon epifluorescence imaging with targeted
illumination of QuasAré6a expressing mouse cortex L2/3 neurons
simultaneously recorded with patch clamp can be downloaded from
https://zenodo.org/record/8176722. The dataset of one-photon epif-
luorescenceimaging with targeted illumination of Voltron2 expressing
mouse cortex L2/3 neurons simultaneously recorded with patch clamp
can be downloaded from https://zenodo.org/record/8176722. The
dataset of wide-field fluorescence imaging of SomArchon expressing
mouse hippocampus neurons can be downloaded from https://zenodo.
org/record/8176722. The dataset of confocal imaging of volumetric
structural imaging of Penicillium can be downloaded from https://
zenodo.org/record/8176722. The dataset of confocal imaging of volu-
metric structuralimaging of Alexa fluor 488 NHS-ester stained mouse
embryos canbe downloaded from https://zenodo.org/record/8176722.
The dataset of in vivo single-neuron simultaneous calcium record-
ing of jGCaMP8f and electrophysiology can be downloaded from the
DANDI (https://dandiarchive.org/dandiset/000168?search=jgcam
p8m&pos=1). The dataset of confocal imaging of GCaMP7a express-
ing zebrafish neurons can be downloaded from (https://zenodo.org/
record/8176722). The datasets from previous publications are publicly
available, and the corresponding links can be found ineach respective
publication. Source data are provided with this paper.

Code availability
Code for Pytorch implementation of SUPPORT is available online at
GitHub repository (https://github.com/NICALab/SUPPORT).
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Extended Data Fig.1| SUPPORT denoises freely moving Caenorhabditis
elegans imaging data. a, Images of freely moving C. elegans. From left to right:
Noisy, SUPPORT, DeepCAD-RT, and PMD denoised data. Inset shows the intensity
profile along the dashed line. Magnified views of the boxed regions are presented
underneath. b, Pixel-wise difference between denoised data and noisy data.
Squared norm of Fourier transform of each difference are shown in the lower
images. Inset shows the logarithm of the squared norm of Fourier transform
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23.37s

23.58s 23.79s

Noisy

DeepCAD-RT  SUPPORT

against the distance to the origin. ¢, Magnified views of the red boxed region in
aat consecutive neighboring time points. Magenta lines were set on the left side
of the brightest neuron in the noisy data. From top to bottom: Noisy, SUPPORT,
DeepCAD-RT, and PMD denoised data. d, Noisy volume and denoised volume are
depth coded and presented. Magnified views of the boxed regions are presented
ontheright.
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Extended Data Fig. 2| SUPPORT denoises volumetric structural imaging the number of planes along the z-axis (***: p-value < 0.001). d, Intensity profiles

data. a, Representative axial slice from low-SNR, SUPPORT-denoised, high-SNR ofthe cyan dashed linein a. e, Example frame of bone of amouse embryo after
volumes of Penicillium. b, Magnified views of the yellow boxed regionin a at expansion for the raw data (top) and denoised image using SUPPORT (bottom).
multiple axial locations. Axial location of a corresponds to 3.37 um. ¢, Box-and- f,Raw (top) and denoised image (bottom) of intestine of amouse embryo.
whisker plot showing Pearson correlation coefficient and signal-to-noise ratio e-f,Length scales are presented in pre-expansion dimensions.

for axial slices. A two-sided paired-sample t-test is used, N = 381, which represents
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