Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Genetics

Factoring single-cell perturbations

GSFA is a statistical model to automatically detect latent factors (or gene modules) in single-cell CRISPR screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GSFA.

References

  1. Nat. Rev. Methods Primers 2, 9 (2022).

  2. Adamson, B. et al. Cell 167, 1867–1882.e21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixit, A. et al. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Datlinger, P. et al. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Replogle, J. M. et al. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dhainaut, M. et al. Cell 185, 1223–1239.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, Y., Luo, K., Chen, M. & He, X. Nat. Methods (2023).

  8. Yang, L. et al. Genome Biol. 21, 19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Li laboratory for valuable discussions. This work was supported by the startup fund from the Center for Genetic Medicine Research at the Children’s National Hospital and National Institute of Health research grants R01-HG010753 and R01-HL168174 (B.S. and W.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Li, W. Factoring single-cell perturbations. Nat Methods 20, 1629–1630 (2023). https://doi.org/10.1038/s41592-023-02002-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-02002-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing