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D-LMBmap: a fully automated deep-learning 
pipeline for whole-brain profiling of neural 
circuitry
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Recent proliferation and integration of tissue-clearing methods and 
light-sheet fluorescence microscopy has created new opportunities to 
achieve mesoscale three-dimensional whole-brain connectivity mapping 
with exceptionally high throughput. With the rapid generation of large, 
high-quality imaging datasets, downstream analysis is becoming the major 
technical bottleneck for mesoscale connectomics. Current computational 
solutions are labor intensive with limited applications because of the 
exhaustive manual annotation and heavily customized training. Meanwhile, 
whole-brain data analysis always requires combining multiple packages 
and secondary development by users. To address these challenges, we 
developed D-LMBmap, an end-to-end package providing an integrated 
workflow containing three modules based on deep-learning algorithms 
for whole-brain connectivity mapping: axon segmentation, brain region 
segmentation and whole-brain registration. D-LMBmap does not require 
manual annotation for axon segmentation and achieves quantitative 
analysis of whole-brain projectome in a single workflow with superior 
accuracy for multiple cell types in all of the modalities tested.

Comprehensive descriptions of neuronal connectivity are fundamental 
for understanding the brain’s functional organization. Recent prolif-
eration and integration of tissue-clearing methods and light-sheet 
fluorescence microscopy (LSFM) present unparalleled opportuni-
ties to achieve high-throughput mesoscale three-dimensional (3D) 
whole-brain connectivity mapping1–4. The increasing deluge of large 
imaging datasets urgently calls for analysis tools to quantitatively pro-
file axonal projections with canonical coordinates at the whole-brain 
level with minimal manual labor. This necessitates an integrated work-
flow for automated processing of 3D axon recognition and segmenta-
tion, as well as whole-brain registration with standard brain atlases.

Recently, deep neural networks (DNNs)5 have been widely investi-
gated for biomedical imaging analysis. Machine-learning algorithms 
learn patterns from annotated images to recognize, classify and seg-
ment regions of interest such as cells, axons and brain regions. For 
example, by training manually annotated axons in a set of 3D cubes, 
TrailMap6,7 achieves mesoscale axonal segmentation using 3D U-Net8. 
BIRDS9 employs DeepLab V3+ (ref. 10) and SeBRe11 applies Mask R-CNN12 
to achieve the detection and segmentation of major brain regions in 
single-viewed two-dimensional (2D) slices, whereas mBrainAligner13 
successfully segments major brain regions by applying 3D U-Net to 
downsampled whole brains.
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Fig. 1 | Overview of D-LMBmap. a, The pipeline of LSFM whole-brain imaging, 
which includes tissue clearing, axon staining and microscope imaging. The brain 
can be imaged in both autofluorescence (488 nm) and stained-specific (647 nm) 
channels. b, Whole-brain axon segmentation. An axon segmentation DNN is 
trained to segment axons in thousands of 3D cubes from the LSFM brain and then 
the whole-brain axons can be reconstructed by a combination of segmented 
cubes. c, Brain-style transfer. For the LSFM brain imaged in the autofluorescence 
channel (left), a style-transfer DNN is trained to learn the image style of a brain 
atlas, where each LSFM image slice can be transferred in atlas style (for example,  

Allen atlas), as well as preserving their original structures (right). d, Brain region 
segmentation. Major brain regions can be automatically segmented by a DNN,  
using either the original or style-transferred brains. e, Whole-brain 3D 
registration and projection mapping. The original LSFM brain, major brain 
regions and style-transferred brain are set as the input of the DNN for the whole-
brain registration with the brain atlas. After that the registered brain is combined 
with the whole-brain axons to achieve the projection mapping and axon 
quantification. f, The software interface of D-LMBmap for whole-brain projection 
mapping and visualization.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | October 2023 | 1593–1604 1595

Article https://doi.org/10.1038/s41592-023-01998-6

Despite this, critical challenges remain in whole-brain connectivity 
profiling. First, current solutions for training segmentation DNNs are 
based on exhaustive manual annotations and can only perform well in 
predicting samples that are similar to the training data. Training models 
using manually traced annotations for complex and extensive axons 
in large-scale 3D whole brains or delineating multiple brain regions in 
thousands of slices for each sample from different batches/modalities, 
is very inefficient. Second, current 3D brain registration methods rely-
ing on whole-brain intensity (for example Clearmap14,15 and aMAP16) or 
specified brain regions and landmarks (for example mBrainAligner13) fail 
to coordinate multiregional alignment optimization and whole-brain 
registration. Consequently, brain regions that are vulnerable to damage 
during sample preparation often experience misalignment or inad-
equate results. Deformation during registration of large brain regions 
can result in decreased accuracy for smaller structures inside them. 
Third, whole-brain data analysis requires combining multiple software 
packages and needs secondary development by users, such as data 
annotation, deep model training, whole-brain axon prediction and 
3D whole-brain registration, which is tedious and technically difficult, 
resulting in these pipelines being rarely revisited by the community.

In this study, we develop D-LMBmap (deep-learning pipeline 
for mouse brain mesoscale automatic profiling) to address all the 
above challenges. It packages an integrated workflow containing three 
modules based on new deep-learning algorithms for whole-brain cir-
cuitry profiling (axon segmentation, brain region segmentation and 
whole-brain registration). We achieve robust whole-brain axon seg-
mentation by building an improved nnU-Net-based deep-segmentation 
model and automated generation of large-scale high-quality train-
ing data. To quantify axon densities in each brain region, we develop 
a cross-modality 3D whole-brain registration method through a 
style-transfer solution and a multi-constraint strategy. Major brain 
regions are segmented automatically by a multiview semi-supervised 
network and a multiple constraint unsupervised VoxelMorph-based 
network17 is designed to achieve whole-brain registration that con-
siders the alignment of style-transferred source brain and the seg-
mented brain structures. Our pipelines require minimal manual input 
and are extensible to diverse image modalities, either at the axon or 
whole-brain level. D-LMBmap outperforms existing methods in all 
three modules in accuracy, speed, generalization and ease of use.

Results
A complete pipeline for mesoscale whole-brain analysis
D-LMBmap consists of interconnected modules that facilitate a work-
flow starting from data input and resulting in axonal projection quantifi-
cation and visualization in the Allen mouse brain atlas (CCFv3) (ref. 18). 
The main modules of axon segmentation, brain region segmentation 
and whole-brain registration utilize advanced DNNs. D-LMBmap is 
designed for whole mouse brain axonal projections labeled by antero-
grade tracing, but the axon segmentation module can be substituted 
with a soma detection module for retrograde tracing or brain activity 
mapping. Each module can be used independently or combined for 
cross-modality analysis.

Here, LSFM datasets serve as examples to illustrate the work-
flow and strategies in each module (Fig. 1). Tissue-cleared mouse 
brains with labeled axonal projections are imaged using two 

fluorescent channels: axon labeling (specific stain) and autofluorescence  
(Fig. 1a). Axon segmentation employs images from the axon-labeling 
channel (Fig. 1b), whereas brain region segmentation uses images from 
the autofluorescence channel (Fig. 1c,d). To overcome challenges in 
brain region segmentation and registration, we built a neural network 
submodule, ‘brain-style transfer’, which renders brain images in Allen 
atlas style (Fig. 1c). The whole-brain registration module integrates the 
outputs of both channels, generating quantified whole-brain projec-
tion intensity maps (Fig. 1e). D-LMBmap offers a user-friendly graphical 
user interface for comprehensive usage (Fig. 1f) and trained models 
are equipped for each module. It is also an open-source software with 
high-level application programming interfaces for customization. 
The graphical user interface enables selection and computation using 
different pretrained deep models.

Automated axon segmentation
Training DNNs generally requires abundant data with accurate annota-
tions. Low quality or quantity of training data can impede the recogni-
tion of axons and artifacts; however, manually annotating ‘foreground 
axons’ and ‘background noise’ is extremely labor intensive. The mor-
phology, density and contrast of both vary greatly across different 
brain regions and the image variability is particularly pronounced 
across different experimental batches. Manually labeling complex 
and dense axons in 3D space, particularly at the whole-brain level, 
poses great challenges. To tackle this, we develop automated axon 
segmentation for whole-brain projection mapping. Large-scale and 
diverse annotated datasets for training are generated by automatically 
annotating 3D image cubes and creating derivative artificial cubes by 
data augmentation.

First, D-LMBmap asks users to select small 3D cubes 
(150 × 150 × 150 voxels) containing predominantly artifacts or axons 
from the whole brain (Fig. 2a). With just one click, users can select the 
desired region and D-LMBmap automatically extracts the 3D cube of 
the predefined size. This manual selection of 3D cubes is the only step 
that relies on user input and after that D-LMBmap automatically anno-
tates the selected ‘artifact’ and ‘axon’ cubes. ‘Artifact’ cubes represent 
areas with no axons, visually represented as black within the algorithm 
(Supplementary Fig. 1a). For voxel-level annotation of the ‘axon’ cubes, 
we employ a binarization and skeletonization workflow (Fig. 2b and 
Supplementary Fig. 1b). D-LMBmap first binarizes the cube and extracts 
the axons with a set of image-processing techniques, including Gauss-
ian filtering, Gaussian difference and thresholding. D-LMBmap then 
connects the adjacent fragments of the binarized axons through dila-
tion. Axon center lines are extracted for skeletonization and dilation 
ensures unified thickness in the annotation, resulting in automatic 3D 
annotation of axons. Unlike manual annotation in individual 2D slices6, 
which leads to repetitive annotations in adjacent slices, D-LMBmap 
avoids redundancy in the z-stack annotation.

The annotated 3D training cubes generated at this step only rep-
resent simple examples of axons or artifacts and they cannot fully 
capture the intricate reality of complex axons and backgrounds. To 
enhance the diversity, complexity and quantity of the training pool 
without additional effort, we develop multiple data augmentation 
strategies (Fig. 2c). Alongside common augmentation techniques 
in image segmentation such as random rotation, scaling, Gaussian 

Fig. 2 | Automated axon annotation and whole-brain axon segmentation.  
a, A 3D whole brain and the selected 3D cubes containing sparse axons, dense 
axons and artifacts, respectively. b, The automated annotation workflow  
for 3D cubes with ‘pure’ axons. It contains two steps, adaptive binarization 
(second row) and axon skeletonization (third row). c, The introduced data 
augmentation strategy to improve the diversity of annotated cubes, including 
CutMix, histogram matching and local contrast augmentation. d, The workflow 
of the DNN for axon segmentation, including preprocessing for training  
cube packaging, training strategy self-regulation and network training.  

e, The comparison of axon segmentation results of example cubes containing 
sparse axons, dense axons and mixed artifacts and axons between TrailMap 
and D-LMBmap. The blue squares indicate the regions for zoom-in comparison. 
(Scale bar, x, y, z = 60 μm). f, Quantitative comparison between D-LMBmap 
and TrailMap under the evaluation of Dice, ClDice, Precision and ClPrecision 
(two-tailed paired t-test, n = 10. ClDice, P = 0.0003, t = 5.622, d.f. = 9; ClPrecision, 
P = 0.0005, t = 5.223, d.f. = 9; ClRecall, P = 0.0622, t = 2.129, d.f. = 9; Dice, 
P = 0.000095, t = 6.641, d.f. = 9). Measure of center, mean; error bars, mean ± s.d.
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noise, blur and brightness adjustments19, we introduce three addi-
tional augmentations to simulate scenarios found in diverse stained 
brain datasets. First, CutMix20 randomly combines segments from 
‘axon’ and ‘artifact’ cubes to create new cubes. Second, we employ 
histogram matching21 to transfer backgrounds between cubes while 
preserving annotated axons. Third, D-LMBmap randomly adjusts the 
intensity of selected stochastic axons to augment morphologies and 
connectivity patterns22. Both the automatically annotated cubes and 
data augmented cubes serve as training data for segmentation DNNs, 
enabling the recognition of axons and artifacts across a broad range 
of diverse 3D cubes.

Finally, we implement nnU-Net23, a self-configuring DNN, for axon 
and artifact prediction (Fig. 2d). Compared to other commonly used 
network architectures such as 3D U-Net8, V-Net24 and DenseVoxel-
Net25, nnU-Net23 offers more-advanced 3D semantic segmentation. It 
dynamically configures training parameters based on dataset proper-
ties during preprocessing, including resampling, normalization and 
batch size. To further improve its performance, we introduce the axial 
attention26 in the decoder to our nnU-Net-based network23, preserving 
the tree-topological structure of axons along each axis (x, y, z). After 
training the segmentation model, axons within each 3D cube are auto-
matically segmented and reconstructed. To analyze the whole-brain 
axons, a single mouse brain imaged by LSFM is divided into over 4,000 
individual cubes, which are later combined.

We assessed the performance of D-LMBmap in segmenting 
whole-brain axons on multiple brain samples generated in different 
laboratories and containing various types of axons, including seroton-
ergic27, GABAergic, glutamatergic28 and dopaminergic (Supplementary 
Table 1). In comparison with TrailMap6, D-LMBmap demonstrated 
higher accuracy in recognizing axons and artifacts under all conditions 
(Fig. 2e). When segmented axons are visualized in 3D, D-LMBmap natu-
rally reflects the actual distribution and thickness of axons (Extended 
Data Fig. 1 and Supplementary Video 1). There is no redundancy in the 
z axis, which is caused by repetitive annotation in adjacent 2D slices 
(Supplementary Video 2). In quantitative evaluations across ten cubes 
containing various types of axons (Supplementary Fig. 1c), D-LMBmap 
consistently outperformed in Dice, ClDice29,30 and ClPrecision scores 
(Fig. 2f and Extended Data Fig. 2a,b), irrespective of cube location 
(Extended Data Fig. 2c,d) or axon density (Extended Data Fig. 3a,b).

Ablation study results support the effectiveness of our data aug-
mentation and axial attention strategies for axon segmentation (Sup-
plementary Fig. 2). In summary, our axon segmentation workflow is 
effective and applicable to different neuron types at the whole-brain 
level (Extended Data Fig. 4 and Supplementary Video 3).

Brain-style transfer implementation
Following whole-brain axon segmentation, the critical next step for 
whole-brain connectivity mapping is registering the experimen-
tal brain to a standard brain atlas (for example, the Allen atlas18).  

Robust and accurate whole-brain registration should ensure precise 
alignment of the brain intensity and internal regions. To support 
region-wise whole-brain registration, we develop a brain region seg-
mentation method for the automated delineation of different brain 
regions. Due to the differences in sample preparation, imaging settings, 
etc., brain samples from different batches/laboratories may display 
varying textures, colors and levels of distortion. Cross-modality reg-
istration faces even greater variability and challenges in developing a 
unified model of deep segmentation. In addition, direct 3D segmenta-
tion of a whole mouse brain is currently impractical due to computa-
tional limitations and manual annotation of multiple 3D brains is labor 
intensive; however, converting a 3D brain to 2D slices often results in 
information loss and accurately identifying boundaries of brain regions 
in single coronal, horizontal or sagittal views is difficult31. To overcome 
these challenges, we implement brain-style transfer and multiview 
semi-supervised segmentation modules in D-LMBmap (Fig. 3).

To mitigate the variability of brain samples across different 
batches and modalities, we developed a style-transfer solution 
inspired by artistic image techniques32. It converts the appearance 
of 2D brain slices into a reference atlas style, while preserving their 
original content. D-LMBmap achieves the style transfer based on an 
unpaired image-to-image translation DNN, CycleGAN33 (Extended Data  
Fig. 5a). To maintain consistency in brain shapes, we further developed 
a deep-segmentation backbone, CEA-Net, to automatically segment 
brain outlines for each input brain image (Supplementary Fig. 3). Here, 
we used an LSFM brain sample and the Allen atlas18 as example inputs 
(Fig. 3a). The network learns Generator A and B to transfer the style 
between the LSFM brain and Allen atlas, as well as learning Discrimina-
tor A and B to differentiate the original and synthetic brains. CEA-Net 
introduces brain outline constraints to keep consistency between the 
input LSFM brain sample and the output synthetic ‘Allen-style’ brain. 
The resulting style-transferred brain retains the shape and boundaries 
of the input LSFM brain at the voxel level but adopts the texture, color 
and appearance of the Allen atlas (Fig. 3b and Extended Data Fig. 5b). 
Additionally, other atlases such as the LSFM brain atlas34 can also be 
used as references (Extended Data Fig. 5c).

The unsupervised and fully automated style-transfer strategy in 
D-LMBmap is robust and works with experimental brains and atlases 
imaged at different resolutions and orientations. Furthermore, it does 
not require slice-to-slice anatomical correspondence between the 
sample and the reference images, eliminating the time-consuming 
manual pairing of the input images. This strategy will also be employed 
in the subsequent whole-brain registration module.

Multiview semi-supervised brain region segmentation
D-LMBmap employs a new deep model for accurate and robust brain 
region segmentation in a multiview and semi-supervised framework 
(Fig. 3c). We developed Semi-CEA as the semi-supervised brain image 
segmentation backbone (Extended Data Fig. 6a). The deep model is 

Fig. 3 | Brain-style transfer and automated brain region segmentation.  
a, The input consists of LSFM brain slices, while the reference images are from 
the Allen atlas. The DNN based on CycleGAN consists of two generators and 
two discriminators. Generator A generates Allen-style images from LSFM-style 
images, whereas Generator B generates LSFM-style images from Allen-style 
images. Discriminator A discriminates between original and synthetic LSFM 
images and Discriminator B does the same for Allen images. The final output is the 
synthetic Allen images, which are converted to the Allen style with their original 
content. The brain outlines segmented by CEA-Net are employed as constraints 
during CycleGAN training. b, Example results showing the input LSFM brain 
sample has been successfully transferred into a synthetic ‘Allen-style’ brain. c, The 
network architecture for semi-supervised multiview brain region segmentation. 
The network is trained by one atlas/annotated brain and several unannotated 
brains. The 2D brain slices from two views, coronal and horizontal, are extracted 
for training in Semi-CEA. After training, brain region predictions in coronal and 

horizontal views are transformed into a unified view and then combined for the 
computation of consistency loss (MSE loss). The semi-loss and the multiview loss 
are integrated for the whole deep model training. d, Examples of brain region 
segmentation results in coronal and horizontal views. Six main brain regions are 
color coded (CTX, green; CP, blue; HPF, light green; BS, pink; CB, orange; and 
CBX, yellow). The white lines in the amplified images mark the edge of segmented 
brain regions. e, Quantitative evaluation of different brain region segmentation 
methods on autofluorescence channel LSFM brains using the atlas-trained 
pipeline (n = 12). The brain data and annotations used for training the multiview 
Semi-CEA deep model (left). Region-wise median Dice score for six brain regions 
(CP, HPF, CTX, CB, CBX and BS) (middle). Average median Dice score of different 
methods (right). f, Quantitative evaluation of different brain region segmentation 
methods on autofluorescence channel LSFM brains using the sample-trained 
pipeline (n = 8). Box plot, center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5 × interquartile range; points, individual data points.
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trained by one or several annotated brains and a few unannotated 
brains, where the method considers 2D brain slices in both coronal and 
horizontal orientations. The multiview strategy minimizes the infor-
mation lost during 3D to 2D conversion and successfully improves the 
segmentation performance. The annotated brain(s) can be a brain atlas 
(Allen atlas18) or generated by the user. The training results of coronal 
and horizontal slices are combined to compute the loss function based 
on their consistency and back-propagation for the model training.

To better support the following whole-brain registration step, six 
major brain regions were selected as default settings for segmenta-
tion: cerebral cortex (CTX), caudoputamen (CP), hippocampal for-
mation (HPF), brain stem (BS), cerebellum (CB) and cerebellar cortex 
(CBX) (Extended Data Fig. 6b). There are two pipelines available; the 
‘atlas-trained pipeline’ uses a public atlas for training and applies 
style transfer to convert experimental brain samples to atlas style, 
whereas the ‘sample-trained pipeline’ involves manual annotation of 
any detailed brain structures in one or several experimental brains for 
training, providing high accuracy. Both pipelines yield the segmented 
brain regions in the modality of the experimental brains (Fig. 3d).

To validate the quantitative efficiency of D-LMBmap on brain 
region segmentation, we manually annotated 12 LSFM brains generated 
in different laboratories. We evaluated both pipelines, atlas-trained and 
sample-trained. Compared to recent mouse brain region segmenta-
tion methods (SeBRe11, BIRDS9 and mBrainAligner13), both D-LMBmap 
pipelines showed superior results in all six brain regions (Fig. 3e,f). 
When using the Allen atlas for training, the atlas-trained pipeline of 
D-LMBmap outperformed other methods with a 30% higher average 
median Dice score (Fig. 3e). When annotated brain samples were used 
for training, the sample-trained pipeline of D-LMBmap achieved a 10% 
higher average median Dice score compared to other methods (Fig. 3f 
and Extended Data Fig. 6c). Moreover, the sample-trained pipeline also 
achieved better and more stable performance than the atlas-trained 
pipeline, with a 5% higher average median Dice score. D-LMBmap also 
showcased excellent performance on low-resolution magnetic reso-
nance imaging (MRI) brains (Supplementary Fig. 4) and LSFM brains 
imaged in the stained-specific channel (Supplementary Fig. 5).

The results of the ablation study suggest that our innovative 
brain-style transfer and multiview semi-supervised segmentation mod-
ules are highly efficient for brain region segmentation (Supplementary 
Fig. 6), enabling D-LMBmap achieves a Dice score of around 0.9 across 
various modalities and requires minimal or no manual processing.

Multi-constraint and multiscale whole-brain registration
D-LMBmap achieves meticulous cross-modality registration of 3D 
whole mouse brains, addressing the challenges of distortion and dam-
age caused by sample preparation. Artifacts bias certain brain areas and 
contribute to complex imaging variations. Regions near the ventricular 
system are susceptible to distortion, whereas areas close to the surface 
are vulnerable to damage during tissue preparation. Existing methods 

mainly focus on intensity alignment by large-scale deformation opti-
mization at the whole-brain level; however, the experimental source 
brains and the reference brain aimed for registration are often from 
different modalities. Meanwhile, large-scale deformation optimization 
cannot guarantee an accurate alignment for individual internal brain 
regions, especially small or easily damaged areas.

To overcome these issues, we develop a multi-constraint and mul-
tiscale DNN for whole-brain registration (Fig. 4a). Multiple constraints 
are introduced at different levels, including the style-transferred source 
brain, segmented major brain regions and selected small brain struc-
tures, including the ventricular system, which can be automatically 
obtained by the aforementioned modules. The style-transferred 
source brain has a similar appearance to the reference brain and keeps 
voxel-level one-to-one correspondence with the source brain. This 
can alleviate the intensity gap between the reference brain and the 
source brain. The constraints in each brain region greatly improve the 
optimization in comparison with the whole brain, which can further 
enhance the registration of local regions. Subsequently, all the inputs 
are downsampled twice for training and undergo transformations at 
each scale. We extend the VoxelMorph17 to achieve multiscale deform-
able registration with multi-constraints. We train the model first on 
downsampled data with fewer optimization parameters and then fix 
the parameters to train larger-sized data. The model takes the original 
brain, style-transferred brain and segmented brain regions as inputs in 
different channels, updating their transformation parameters simulta-
neously. This unified framework enables the automatic computation 
of rigid, affine and deformable transformations from the source brain 
to the reference brain (Fig. 4b).

D-LMBmap outperforms state-of-the-art mouse brain registration 
methods, including ClearMap14, aMAP16 and mBrainAligner13, across 
different modalities. To achieve quantitative evaluation, we computed 
the median Dice score of six large brain regions (CTX, CB, CBX, HPF, 
CB and CP) and the average median Dice score between the source 
brains and the Allen atlas after the whole-brain registration, for 12 
LSFM whole mouse brains in the autofluorescence channel. D-LMBmap 
achieved individual brain region scores ranging from 0.87 to 0.95 and a 
region average median Dice score of 0.93, about 10% higher than other 
methods (Fig. 4c and Extended Data Fig. 7a). Additionally, D-LMBmap 
demonstrated superior whole-brain registration results for MRI brains 
(Extended Data Fig. 7b,d) and LSFM brains in the stained-specific chan-
nel (Extended Data Fig. 7c,e).

Our ultimate goal is to achieve accurate registration of hundreds of 
individual brain regions, including the tiny structures within the thala-
mus, hypothalamus and brainstem; however, current methods struggle 
with the registration accuracy of small brain regions. In contrast, the 
multi-constraint strategy provides more reliable anchors to guide the 
deformation optimization in D-LMBmap, thereby much more effective 
in registering small brain structures (Extended Data Fig. 8a,b). We 
evaluated the median Dice score for five selected small brain structures 

Fig. 4 | Whole-brain 3D registration workflow and results. a, The multiscale 
learning-based framework with multi-constraints for the whole-brain 3D 
registration. The registration input contains multiple sources, including 
the LSFM experimental brain, the style-transferred experimental brain, the 
segmented brain regions and the reference atlas and atlas brain regions. 
All the inputs are downsampled twice and then computed with rigid and 
affine transformation using convolutional layers. A neural network based on 
VoxelMorph is used for deformable transformation. b, Registration results of 
representative brains from different modalities, including the LSFM brain in the 
autofluorescence channel, the MRI brain and the LSFM brain in the stained-
specific channel. Orange lines indicate where the brain region boundaries are 
defined in the Allen atlas overlaid. (Scale bar, x, y, z = 1 mm). c, Quantitative 
evaluation and methods comparison of whole-brain registration on 12 LSFM 
brains in the autofluorescence channel. Median Dice score of six individual 
major brain regions (CP, HPF, CTX, CB, CBX and BS) (left). Average median Dice 

score across six brain regions (Right). Box plot: center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; points, individual 
data points. d, Quantitative evaluation and methods comparison of whole-
brain registration on small brain structures using nine LSFM brains. Median 
Dice score of five small brain structures (act, fr, mtt, IPN, Hb) (left). Average 
median Dice score across five small brain structures (right). Box plot, center 
line, median; box limits, upper and lower quartiles; whiskers, 1.5 × interquartile 
range; points, individual data points. e, Evaluating the whole-brain registration 
by the false-positive report of cell distribution in the ventricular system. (i) 
Representative horizontal and coronal brain slices containing the LV, 3rd V and 
AQ; (ii) Numbers of cells that are falsely reported to be in LV, 3rd V and AQ by 
ClearMap, mBrainAligner and D-LMBmap (one-way analysis of variance followed 
by Dunnett’s multiple comparison test. F (1.003, 2.006) = 30.44, P = 0.031, n = 3). 
*P < 0.05. Measure of center, mean; error bars, mean ± s.d.
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(anterior commissure temporal limb (act), fasciculus retroflexus (fr), 
mammillothalamic tract (mtt), habenular (Hb) and interpeduncular 
nucleus (IPN)), as well as the average median Dice score between the 
source brains and the Allen atlas after the whole-brain registration. 
When automated small-structure constraints are applied, D-LMBmap 
achieved a median Dice score from 0.60 to 0.85 for individual small 
brain regions and an average median Dice score of 0.76, about a 35% 
higher average Dice score than other methods (Fig. 4d). Users can 
further improve results by using constraints generated from manually 
annotated training samples. The superior performance of D-LMBmap 
in registering fine brain structures is also evident in the evaluation of 
landmark distance deviations (Extended Data Fig. 9d,e).

The ventricular system is prone to deformation during tissue 
preparation, resulting in inaccurate registration of adjacent brain 
regions. For example, we analyzed three mouse brains stained for 
neuronal activity in response to foot shock. Several activated key brain 
regions locate near the ventricular system, such as the habenula, para-
ventricular nucleus of the thalamus, periaqueductal gray and amyg-
dala. Inaccurate registration can misassign signals from these regions 
to the ventricular system, leading to misinterpretations. To assess 
D-LMBmap’s effectiveness in registering ventricular system-adjacent 
brain regions, we compared it to ClearMap14 and mBrainAligner13. We 
counted the falsely detected number of neurons in the lateral ventricle 
(LV), the third ventricle (3rd V) and the cerebral aqueduct (AQ) after 
whole-brain registration. D-LMBmap reported fewer false assignments 
(91 cells per brain in the LV and 3rd V and 2 cells per brain in the AQ) 
compared to the other two methods, which wrongly assigned around 
300–600 cells per brain to the ventricular system (Fig. 4e).

These results demonstrate that D-LMBmap can achieve excellent 
whole-brain registration by employing multiple constraints to achieve 
multiregional alignment optimization (Extended Data Fig. 9a,b). Con-
straints of the style-transferred source brain ensure consistent intensity 
globally and locally (Extended Data Fig. 9c). This enables registration of 
source brains with fewer anatomical features and more imaging noise, 
such as LSFM brains in the stained-specific channel and MRI brains  
(Fig. 4b and Extended Data Fig. 7b–e). In addition, due to the 
tissue-clearing processing and light-sheet imaging settings, the 
majority of our LSFM brains suffer from damage in the olfactory bulb, 
cerebellum and brain surface. Nevertheless, constraints of different 
brain regions assure region-wise alignment. D-LMBmap can even per-
form accurate registration when the brains are damaged by up to 50%  
(Supplementary Fig. 7).

The multiscale learning strategy reduces computational com-
plexity and efficiently handles large-sized whole brains. The whole 
registration process is completed in just a few minutes, much faster 
than traditional optimization-based methods that take hours. For a 
regular LSFM source brain (320 × 456 × 528 voxels), registration to the 
Allen atlas takes only about 5 min on a standard laptop (Supplemen-
tary Table 5). In summary, D-LMBmap’s learning-based framework 
facilitates effective and efficient whole-brain registration, offering a 
comprehensive solution.

Mouse brain circuitry mesoscale automatic profiling
D-LMBmap integrates three modules to create a complete work-
flow for quantifying axonal projections throughout the whole brain. 
The software offers five key functions: automated axon segmenta-
tion, brain-style transfer, brain region segmentation, whole-brain 

registration and region-wise axon quantification. We use automated 
tools for labeling, training, versioning, continuous integration, packag-
ing, distribution and documentation to enable a reliable, reproducible 
and easy-to-use software package.

Here, we showcase the whole-brain projection heat maps of four 
different neuronal types generated by D-LMBmap, demonstrating its 
adaptability to different neuronal types (Supplementary Table 1) and 
both sparse27 (Fig. 5a) and dense labeling (Fig. 5b,c and Extended Data 
Fig. 10). We successfully obtained the first 3D whole-brain projec-
tomes of the dorsal raphe nucleus serotonin neurons (Fig. 5b) and the 
ventral tegmental area GABAergic neurons (Fig. 5c), which are quite 
challenging because of the extreme density and complexity of the 
axons. Additionally, axonal density quantification is provided for each 
brain region based on the Allen atlas taxonomy (Fig. 5a(ii),b(ii),c(ii)). 
The software also offers batch processing, whole-brain visualization 
(Supplementary Videos 4–6) and result exportation functionalities 
(Supplementary Table 2).

Discussion
Here, we present D-LMBmap, an end-to-end deep-learning system 
for mouse whole-brain circuitry profiling. It offers automated axon 
segmentation, enabling efficient identification and reconstruction 
of long-range axonal projections across the entire mouse brain within 
hours, without manual annotation. D-LMBmap quantifies axon densi-
ties in hundreds of brain regions using a new 3D registration method 
that incorporates brain-style transfer and region constraints, ensur-
ing accurate and robust cross-modal registration in minutes. We have 
packaged D-LMBmap in a user-friendly workflow, making it accessi-
ble to neuroscience researchers without extensive computational  
backgrounds.

Mapping connectomes at single synapse resolution often relies 
on time-consuming electron microscopy (EM); however, generating 
whole-organism connectomes using EM-based nanoscale techniques 
has been limited to organisms such as Caenorhabditis elegans35–37 due 
to the size and complexity of the mammalian brain38. Recently, nota-
ble progress has been made in mesoscale connectomics by mapping 
cell-type specific connections across different mouse brain regions 
using a combination of viral genetic labeling and block-face imag-
ing techniques39, such as serial two-photon tomography (STPT)40,41, 
fluorescence micro-optical sectioning tomography (fMOST)42,43, 
high-definition fMOST (HD-fMOST)44,45 and volumetric imaging with 
synchronized on-the-fly-scan and readout (VISoR)46. Although algo-
rithms for analyzing block-face imaging data have been developed41,43,47, 
automated and efficient methods for tracking single axons at the 
whole-brain level are still in high demand. To achieve single-neuron 
tracing, block-face imaging strategies typically use sparse labeling 
and reconstruct axons from high-resolution 3D brain images of 
20,000 × 30,000 × 25,000 voxels. It will be very time-consuming to 
exhaustively predict small sized cubes (for example, 150 × 150 × 150 
voxels) one-by-one, but by limiting the regions for analysis only to 
the areas relevant to the sparsely labeled fibers by preprocessing may 
reduce computational time. In the future, we will further extend our 
automated axon segmentation pipeline for single-neuron tracing based 
on high-resolution 3D brain images.

Block-face imaging requires specialized instruments that may not 
be readily accessible to many researchers. Modern bulk-tracing data, 
generated using viral-genetic strategies and imaged with LSFM at the 

Fig. 5 | Whole-brain axonal architecture and regional analysis. a, Whole-brain 
circuitry profiling of Sert-Stanford brains. (i) Axon segmentation results on 
ten horizontal brain slices overlaid and average axon distribution heatmaps in 
horizontal, coronal and sagittal views (n = 3). (ii) Axon density in hierarchical 
brain regions based on the Allen atlas. Scale bar, x, y, z = 1 mm. b, Whole-brain 
circuitry profiling of Sert-NIBS brains. (i) Axon segmentation results on ten 
horizontal brain slices overlaid and average axon distribution heatmaps in 

horizontal, coronal and sagittal views (n = 3). (ii) Axon density in hierarchical 
brain regions based on the Allen atlas. Scale bar, x, y, z = 1 mm. c, Whole-brain 
circuitry profiling of GABA-NIBS brains. (i) Axon segmentation results on ten 
horizontal brain slices overlaid and average axon distribution heatmaps in 
horizontal, coronal and sagittal views (n = 3). (ii) Axon density in hierarchical 
brain regions based on the Allen atlas. Scale bar, x, y, z = 1 mm.
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whole-brain level, can reveal the connection relationships of highly 
specific neuronal types defined by multiple molecular features, as 
well as other important anatomical information3,27,48. Despite the lim-
ited resolution of LSFM brains for single-cell level axon tracking, this 
method enables high-throughput mapping from whole-brain images 
of 2,000 × 2,500 × 2,000 voxels. The widespread adoption of LSFM 
facilitated high-throughput mesoscale 3D whole-brain connectivity 
mapping necessitates software development for data analysis.

Deep learning has gained prominence in image analysis due to 
their remarkable performance13,49–55; however, their application to 3D 
circuitry profiling of brain samples is complicated by the diverse image 
variance and complexity of the brain tissue. Deep models rely on accu-
rate and extensive training data and producing comprehensive manual 
annotation poses a bottleneck in developing robust whole-brain projec-
tion mapping algorithms6,13,52. D-LMBmap achieves superior accuracy 
but greatly alleviates the labor-intensive manual annotation. For axon 
segmentation of LSFM samples, it leverages automated annotation 
and 3D cube augmentation, eliminating the time-consuming process 
of manual labeling. Additionally, D-LMBmap utilizes brain-style trans-
fer and semi-supervised learning techniques to enhance whole-brain 
registration accuracy with minimal manual input. The automated 
pipeline achieves excellent brain region segmentation with a Dice 
score exceeding 90%, requiring either no manual input or only one 
annotated brain per sample batch. For greater accuracy in specific 
brain structures or when experimental brains differ greatly from the 
atlas, users can train the registration model with manually segmented 
regions of interest and perform automated testing (Extended Data Fig. 
8b), eliminating the need for manual delineation of regions of interest 
for each experimental brain56.

Second, D-LMBmap is easily applicable to various brain samples, 
providing effective axon segmentation regardless of sample back-
grounds and morphological diversity (Extended Data Figs. 2–4 and Sup-
plementary Fig. 1). We have successfully tested D-LMBmap on different 
axonal projection types and LSFM brain samples from various laborato-
ries, achieving consistent results, including serotonergic, GABAergic, 
glutamatergic28 and dopaminergic neurons (Supplementary Table 1). 
Furthermore, our brain transfer strategy allows D-LMBmap to facilitate 
cross-modality image registration. This is particularly useful for sam-
ples with limited anatomical features or low-resolution boundaries, 
such as LSFM brains that are imaged in stained-specific channels or 
those collected via MRI (Fig. 4b, Extended Data Figs. 6 and 7 and Sup-
plementary Figs. 4 and 5).

Third, D-LMBmap offers user-friendly software equipped with 
well-trained deep models for axon segmentation, brain-style trans-
fer, brain region segmentation and whole-brain registration. This 
comprehensive toolkit allows neuroscientists to effortlessly conduct 
whole-brain circuitry mapping. Our straightforward installation pro-
cess, along with a tutorial video and example data available at https://
github.com/lmbneuron/D-LMBmap, ensures accessibility for research-
ers with varying levels of computational experience. To our knowledge, 
D-LMBmap is the first software package to provide an end-to-end 
solution for whole-brain circuitry profiling.

Finally, D-LMBmap is an open-source software with a flex-
ible modular design. For example, whole-brain registration using 
D-LMBmap excels in algorithmic efficiency and it is cost effective for 
wet laboratories to train the models using 25-μm resolution images on 
a regular server (Supplementary Table 5); however, training models 
for higher resolution using 10-μm images directly is impractical. It 
can be resolved by extending the pipeline with a module that registers 
major brain regions instead of the entire brain at 10-μm resolution. 
This approach combines whole-brain registration at lower resolutions 
and registration of major brain regions at higher resolution (Sup-
plementary Fig. 8). Although the training time increases for refining 
high-resolution registration of each major brain region, the overall 
training time remains acceptable for most wet labs. Most notably, each 

deep model in D-LMBmap can be extended to accommodate various 
signals (for example, axons, somata and nuclei), imaging modalities 
and animal models.

While this study primarily focuses on the development and vali-
dation using LSFM mouse brains, D-LMBmap offers the potential for 
broader applications. Even though our automated strategy greatly 
reduces manual input in axon segmentation, developing training mod-
ules for specific axon types or sample batches remains time-consuming. 
Next, we will focus on transfer learning, including domain adaptation 
and model generalization techniques, to create more generalized deep 
models that can be effectively applied to various axon types, minimiz-
ing the need for specialized training. Meanwhile, our current brain-style 
transfer algorithm has limitations in preserving fine-grained local 
structures, due to its unguided, unpaired and unsupervised nature. To 
address this, we will explore a diffusion model with multi-constraint 
embedding for fine-grained brain-style transfer, aiming to develop a 
unified cross-modal brain registration solution.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Animal care and use
All experiments related to the use of mice in the Medical Research 
Council Laboratory of Molecular Biology were carried out in accord-
ance with the UK Animals (Scientific Procedures) Act of 1986, with local 
ethical approval provided by the Medical Research Council Laboratory 
of Molecular Biology Animal Welfare Ethical Review Board and overseen 
institutionally by designated animal welfare officers (Animal Project 
License PP6471806). TRAP2;Ai14 mice (TRAP2, JAX 03032; Ai14, JAX 
7914) were kindly shared by L. Luo, Stanford University. All experiments 
related to the use of mice at the National Institute of Biological Sciences 
(NIBS), Beijing were approved by the Animal Care and Use Committee 
in accordance with the Regulations for the Administration of Affairs 
Concerning Experimental Animals of China. DAT-Cre ( JAX 006660) and 
Vgat-Cre mice ( JAX 028862) were obtained from the Jackson Labora-
tory. Sert-Cre mice (031028-UCD) were obtained from the University 
of California, Davis.

Data preparation
The average and annotation templates of the Allen atlas were down-
loaded from the Allen Institute web portal (http://atlas.brain-map.
org/). All the brain datasets, processing methods, brain names and 
imaging resolutions are summarized in Supplementary Table 1. All 
the samples were collected from adult mice. TRAP2;Ai14 mice were 
used to generate somata-stained and nuclei-stained datasets. Mice 
used for these two datasets received five mild electrical foot shocks 
delivered through the floor. Each foot shock was up to 0.7 mA for up 
to 2 s. The brain samples were cleared based on a modified Adipo-Clear 
protocol57. Detailed protocols of TRAP2; Ai14 staining and c-fos stain-
ing have been described previously58. In brief, we used rabbit anti-Fos 
(Synaptic Systems, cat. no. 226003, lot 9-95; dilution, 1:500), rabbit 
anti-RFP (Rockland, 600-401-379, lot 42896, dilution, 1:500) and don-
key anti-rabbit Alexa Fluor 647 ( Jackson ImmunoResearch, 711-605-
152, lot 161533; dilution, 1:500). The Sert-Stanford dataset is from the 
samples of the Vglut3-Cre; Sert-Flp group in the study of Ren et al.57 and 
raw data are kindly shared by D. Friedmann. The DCN-Stanford dataset 
is from the study of Kebschull et al.28 and the raw data are kindly shared 
by J. Kebschull.

Brain samples presented as Sert-NIBS, GABA-NIBS and DA-NIBS are 
generated at NIBS. Samples of Sert-NIBS, GABA-NIBS and DA-NIBS were 
prepared by an unpublished labeling system, LINCS (label individual 
neurons with chemical dyes and with controllable sparseness), which 
introduces chemical dyes (for example, Alexa Fluor 647) as the signal-
ing molecule for photostable and ultrabright labeling. LINCS labeling 
was performed via a viral-genetic approach and achieved cell-type spec-
ificity using the Cre-loxP system and recombinant adeno-associated 
viral (AAV) vectors. For Sert-NIBS brains, 50 nl AAV was injected in the 
dorsal raphe nucleus of Sert-Cre mice. For GABA-NIBS brains, 50 nl AAV 
was injected in the ventral tegmental area unilaterally. For the DA-NIBS 
brain, 50 nl AAV was injected in the ventral tegmental area bilater-
ally. The brain samples were cleared based on the iDISCO+ protocol14. 
Samples were stored in dibenzyl ether until clear and imaged within 1 
week. The cleared mouse brains were imaged in horizontal orientation 
with the dorsal side up on a light-sheet microscope (Ultramicroscope 
II, LaVision BioTec) using an sCMOS camera (Andor Neo) and a ×4/0.3 
objective lens equipped with a 6-mm working distance dipping cap. 
Samples were scanned for 640 nm and 488 nm (autofluorescence) 
channels with dynamic focus using one-sided illumination with a step 
size of 3 μm.

The MRI dataset was accessed from https://github.com/
dmac-lab/mouse-brain-atlas. We used the ex vivo brain MRI dataset 
for validating the brain region segmentation and whole-brain regis-
tration methods. The dataset provides annotations of 21 different 
brain regions59. The image resolution was 150 μm per voxel. As the 
size and shape of MRI brains are greatly different from the Allen atlas, 

we resized and downsampled the Allen atlas to the MRI resolution for 
whole-brain registration.

In the task of whole-brain axon segmentation, we manually 
annotated ten large-sized cubes for quantitative evaluation and com-
parison, with a size of 600 × 600 × 225 voxels, including two cubes 
from Sert-Stanford, two cubes from DCN-Stanford, two cubes from 
Sert-NIBS, two cubes from GABA-NIBS and two cubes from DA-NIBS. 
The number of automatically annotated cubes for deep model train-
ing, including ‘pure’ axon cubes and ‘pure’ artifact cubes and mixed 
cubes after data augmentation, is provided in Supplementary Table 2. 
The size of automatically annotated cubes was 150 × 150 × 150 voxels. 
In the brain region segmentation task, we manually annotated 12 LSFM 
brains in the autofluorescence channel with six major brain regions 
(CTX, CB, CBX, BS, HPF and CP) for quantitative evaluation and com-
parison, including three somata-stained brains, three nuclei-stained 
brains, three Sert-Stanford brains and three Sert-NIBS brains. These 
annotations are also used for the evaluation of whole-brain regis-
tration. We also manually annotated nine LSFM brains in the auto-
fluorescence channel with five small brain structures (act, fr, mtt, IPN 
and Hb) for quantitative evaluation and comparison of whole-brain 
registration in local areas, including three somata-stained brains, 
three nuclei-stained brains, three Sert-Stanford brains. We further 
manually selected 18 landmarks in Allen atlas and the LSFM brains 
for quantitative evaluation and comparison of whole-brain registra-
tion. The data used for brain region segmentation and whole-brain 
registration are summarized in Supplementary Table. 3. All training 
and prediction was performed using an NVIDIA GeForce RTX 3090 
graphics-processing unit.

Axon segmentation
Automated cube annotation and data augmentation. The manual 
selection of ‘axon’ and ‘artifact’ cubes is generally based on the axon 
projection patterns. To achieve high-quality training, representative 
‘axon’ cubes were selected for brain regions receiving axonal innerva-
tion. For the ‘axon’ cubes, users were not required to select cubes with 
100% pure axons, as a few highlighted noises would not influence the 
subsequent process. For the ‘artifact’ cubes, users can traverse the 
whole brain to select typical noises (for example, blood vessels, high-
lighted edges and bright points). We binarized the selected axon cubes 
and extracted the axons with a set of image-processing techniques, 
including a Gaussian filter with a kernel size of 3 × 3 × 3, following the 
difference of Gaussians to increase the visibility of axons and thresh-
olding to get binarized axons. The threshold can be set automatically 
or by users after checking the 3D cube. Subsequently, to keep the 
tree-topological structure of axons, we employed image dilation to 
connect the adjacent fragments of the above binarized axons. Then the 
center lines were extracted to skeletonize the axons and were dilated to 
generate annotations with unified thickness (the center voxel extends 
one more voxel in six directions of the 3D space; left and right, top and 
bottom, front and back). In doing so, the axons are annotated automati-
cally and in 3D (Supplementary Fig. 1b). For an axon cube with the size 
of 150 × 150 × 150 voxels, the automated annotation can be obtained 
within 5 min. We summarize the number of automatically annotated 
cubes in Supplementary Table 3.

We introduced three data augmentation strategies to simulate 
real scenarios of heterogeneous brain samples (CutMix20, histogram 
matching60 and local contrast enhancement22) (Fig. 2c). In the CutMix 
strategy, we randomly cut part of the axon cubes and the artifact cubes 
respectively and then mix the two partial cubes as a new cube, which 
includes both axons and artifacts. In the histogram matching, we ran-
domly selected two cubes and transferred the histogram from one to 
another, simultaneously preserving the annotated axons. In the local 
contrast enhancement, we randomly change the intensity of stochastic 
axons to enhance the diversity of axon morphology and connectivity 
patterns. Given 100 cubes of axons and artifacts individually, our data 
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augmentation strategy can generate more than 1,000 cubes with anno-
tations for deep model training (Supplementary Table 3).

Network for axon segmentation. We designed the axon segmenta-
tion based on the nnU-Net architecture23. The self-configuring param-
eters and settings were automatically computed according to the 
different training datasets. Similar to the 3D U-Net backbone8, the 
network included six layers of encoder and six layers of decoder. 
Moreover, we introduced the axial attention module61 in the last 
decoder layer for integrating self-attention to each axis indepen-
dently. The kernel size was set as 3 × 3 × 3, with the instance normaliza-
tion and the activation function of LeakyReLU. The initial learning 
rate was set as 0.0003. The input image size was 128 × 128 × 128 voxels, 
which were randomly cropped from the original training cubes with 
the size of 150 × 150 × 150 voxels. Binary Cross Entropy loss with a 
Sigmoid layer (BCEWithLogitsLoss) was employed as the loss function 
during the network training. The loss function ℒAS for axon segmenta-
tion can be formulated as:

ℒAS =
1
N

N

∑
n=1

{−w[yn × logσ (xn) + (1 − yn) × log(1 − σ (xn))]} (1)

where N indicates the number of voxels in a 3D cube. σ  indicates the 
Sigmoid function to normalize the predictions x  in [0,1]. x  indicates 
the predictions. y  indicates the ground-truth annotations. We set the 
pos_weight w  as 1 when y  equals to 0 (indicating the current voxel 
annotation is a background) and w  as 3 when y  equals to 1 (indicating 
the current voxel annotation is an axon). For the sparse axon cubes, we 
used the skeletonized annotations for the deep model training to keep 
the tree-topological structure of axons. For extremely dense axon 
cubes, the skeletonized annotations are also quite dense and cannot 
reflect the real structure of axons. Hence, we used binarized annota-
tions for the deep model to recognize axons and artifacts. The network 
was trained within 550 epochs. The number of cubes used for training 
is summarized in Supplementary Table 3. In general, based on 1,000 
cubes after data augmentation, the network training can be finished 
within 12 h. The prediction of a whole-brain (for example, with the size 
of 2,000 × 2,500 × 2,000 voxels) for all stained axons can be finished 
within 6 h.

In the testing phase, ten large-sized cubes with a size of 
600 × 600 × 225 voxels are used for quantitative evaluation, including 
two cubes from Sert-Stanford, two cubes from Sert-NIBS, two cubes 
from GABA-NIBS, two cubes from DCN-Stanford and two cubes from 
DA-NIBS (Supplementary Fig. 1c). For the evaluation metric, we first 
employed the Dice score, which has been widely used for the evalua-
tion of most image segmentation and registration tasks. As the Dice 
score indicates the voxel-wise volumetric scores that cannot well 
evaluate the connectivity of axon tubular structures, we also intro-
duced the ClDice based on the intersection of center lines and axon 
volumes30, which has also been employed for the evaluation of mouse 
brain vasculature segmentation29. Additionally, we also reported the 
ClPrecision and ClRecall to comprehensively reflect whether methods 
can well identify axons/artifacts and fully explore all stained axons 
(Extended Data Fig. 2a).

Brain-style transfer. We developed a deep model of brain-style transfer 
based on CycleGAN33. Different from the original version of CycleGAN, 
we introduce a brain outline segmentation subnetwork, namely 
CEA-Net (Supplementary Fig. 3), in the CycleGAN framework, for the 
automated segmentation and preservation of the brain outline between 
the input brain and the output style-transferred brain. As an example, 
we employed a somata-stained LSFM brain as the experimental brain 
and the Allen atlas as the atlas brain (Fig. 3a). In the brain-style transfer 
framework, Generator A included three convolutional layers and sev-
eral residual blocks, which were trained to generate images from the 

LSFM brain style to Allen style. In the meantime, a CEA-Net was also 
trained for the brain outline segmentation of synthetic Allen images, 
with ground-truth annotations of the brain outline from the original 
LSFM outline. This CEA-Net could keep the brain outline consistent 
between the synthetic Allen and the original LSFM. Generator B had 
the same architecture, which was trained to generate images from the 
Allen style to the LSFM brain style. The CEA-Net for brain outline seg-
mentation was also embedded in Generator B, which could keep the 
brain outline consistent between the synthetic LSFM and the original 
Allen. Discriminator A included five fully convolutional layers, which 
were trained to differentiate LSFM brain-style images that were original 
or synthetic. Discriminator B had the same architecture, which was 
trained to differentiate Allen-style images that were original or syn-
thetic. Accordingly, the overall loss function ℒBST  for brain-style  
transfer included the CycleGAN loss and the CEA-Net segmentation 
loss, which can be formulated as:

ℒBST = ℒGAN(GA, DB,X,Y ) + ℒGAN(GB,DA,Y, X )

+ℒcyc(GA,GB) + ℒBCE(X ) + ℒBCE(Y )
(2)

ℒGAN(GA, DB,X,Y ) = 𝔼𝔼y∼pdata( y)[log(DB( y))]

+𝔼𝔼x∼pdata(x)[log(1 − DB(GA(x)))]
(3)

ℒGAN(GB, DA,Y,X ) = 𝔼𝔼x∼pdata(x)[log(DA(x))]

+𝔼𝔼y∼pdata( y)[log(1 − DA(GB( y)))]
(4)

ℒcyc(GA,GB) = 𝔼𝔼x∼pdata(x)[‖GB(GA(x)) − x‖1]

+𝔼𝔼y∼pdata( y)[‖GA(GB( y)) − y‖1]
(5)

ℒBCE(X ) = −
N

∑
n=1

xn × log ( ̄xn) + (1 − xn) × log(1 − ̄xn) (6)

ℒBCE(Y ) = −
N

∑
n=1

yn × log ( ̄yn) + (1 − yn) × log(1 − ̄yn) (7)

where the ℒGAN indicates the adversarial losses, ℒcyc indicates the cycle 
consistency loss, following the settings of the CycleGAN. ℒBCE   
indicates the segmentation loss for brain outline segmentation and 
preservation. GA, GB, DA, DB  indicates Generator A, Generator B, Dis-
criminator A and Discriminator B respectively. X and Y indicate the 
LSFM brain image datasets and Allen brain image datasets, respectively. 
̄xn indicates the predictions X, where xn indicates the ground truth. ̄yn 

indicates the predictions Y, where yn indicates the ground truth.
In our implementation, the brain-style transfer is completed 

for each 2D image slice, for example, transferring hundreds of brain 
slices to Allen atlas style. The slices for the style transfer can be either 
from coronal, horizontal or sagittal views. In our experiments, all 
style-transferred models were trained on brain images in the cor-
onal view, with a fixed image size of 320 × 448 pixels. We trained 
style-transfer models based on different experimental brain data-
sets and brain atlas. During the style-transfer training, the learning 
rate was set as 0.0002, with a batch size of 1. The network was trained 
within 200 epochs. One experimental brain with around 500 slices 
in the coronal view was enough to train a style-transfer model with a 
brain atlas. The deep model training for the brain style transfer can 
be finished within 12 h.

Brain region segmentation
Network for brain region segmentation. The backbone of the brain 
region and outline segmentation is CEA-Net (Supplementary Fig. 3). 
CEA-Net is originally from CE-Net62, which is a recently developed 
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semantic segmentation model, including two additional modules in 
comparison with the U-Net architecture (dense atrous convolution 
(DAC) and residual multi-kernel pooling (RMP)), which can better 
investigate local to global context cues for brain region segmentation. 
Based on the CE-Net, we introduce the attention gates61 following 
the RMP module, which can better learn to segment brain regions 
with varying shapes and sizes. Considering the limited access of brain 
images with ground-truth manual annotations, we extended CEA-Net 
in a semi-supervised manner, namely Semi-CEA (Extended Data  
Fig. 6a), based on the most commonly used semi-supervised bench-
marks, Mean Teachers63. Semi-CEA includes two models (the student 
model and the teacher model), where the parameters in the teacher 
model are first obtained from the student model trained in annotated 
data, by the exponential moving average weights. Then a consistency 
loss (mean square error; MSE) is computed based on the original predic-
tion from the student model and the noisy prediction from the teacher 
model (prediction for the image with π angle rotation). Moreover, as 
some brain regions cannot be well identified in a single view (for exam-
ple, HPF, CP and CBX), we further proposed a new multiview Semi-CEA 
framework for more accurate brain region segmentation (Fig. 3c). In 
our experiment, we trained the multiview Semi-CEA in coronal and 
horizontal views. For a specific brain region, the predictions in coro-
nal and horizontal views were combined in 3D for the computation 
of multiview MSE loss. Accordingly, the overall loss function is the 
combination of the MSE loss and the semi-supervised segmentation 
loss (BCEWithLogitsLoss) in two views:

ℒBRS = ℒcor +ℒhor +ℒ3D (8)

ℒcor = ℒhor = ℒsup +ℒqua (9)

ℒsup = −
N

∑
i=1

( xi log yi + (1 − xi) log(1 − yi) (10)

ℒqua =
N+P
∑
i=N

( ̂yi − ̂y′i)
2

(11)

ℒ3D =
N

∑
i=1

(yc
i
− yht

i
)
2
+

P

∑
j=1

( ̂ycj − ̂yhtj )
2

(12)

where ℒcor  and ℒhor  indicate the segmentation loss in coronal and 
horizontal views, respectively. ℒcor and ℒhor are computed in the same 
way (Semi-Loss), which includes both the ℒsup and ℒqua. The training 
set consists of N annotated brain image slices and P unannotated brain 
images. ℒsup indicates the supervised loss for annotated brain image 
slices (BCEWithLogitsLoss), where ℒqua indicates the quadratic loss 
function for unannotated brain image slices. xi  indicates the 
ground-truth annotation, where yi indicates the prediction of anno-
tated brain region. ̂yi indicates the unannotated image predictions 
without π angle rotation, where ̂y′i indicates the unannotated image 
predictions after π angle rotation. Additionally, ℒ3D indicates the MSE 
loss of two views’ prediction in 3D for annotated and unannotated 
images, where yc

i
, ̂ycj  indicates the annotated and unannotated image 

predictions in the coronal view. yht
i

 and ̂yhtj  indicate the annotated and 
unannotated image predictions in the coronal view, which are trans-
formed from the horizontal view.

When training the multiview Semi-CEA network, the network 
input image size was unified as 448 × 320 pixels in the coronal view 
and 512 × 448 pixels in the horizontal view. The initial learning rate 
was 0.0001, with a batch size of 16. RMSProp was adopted as the opti-
mizer. The network was trained within 100 epochs. To facilitate the 
training of multiple brain regions, pairs of brain regions were trained 
together, such as CB and BS, CTX and CBX, CP and HPF. The brain region 

segmentation model can be trained within 8 h. After the model train-
ing, one brain region with 500 slices in a whole brain can be quickly 
predicted within 1 min.

In the experiment of LSFM autofluorescence brain region seg-
mentation, the Allen atlas brain slices in the coronal view were first 
used for training the multiview Semi-CEA model. Then the 12 LSFM 
brains were used for evaluation, where D-LMBmap transferred the 12 
LSFM brains with Allen style for a more accurate prediction (Fig. 3e). 
We also trained the multiview Semi-CEA model based on four LSFM 
autofluorescence brains, with one from somata-stained, one from 
nuclei-stained, one from Sert-Stanford and one from Sert-NIBS. The 
remaining eight brains were used for evaluation (Fig. 3f and Extended 
Data Fig. 6c). In the experiment of MRI brain region segmentation, we 
used only one MRI brain for the multiview Semi-CEA training. Then 
seven MRI brains were used for evaluation (Supplementary Fig. 4a,b). 
As the MRI dataset does not annotate the CBX brain region, we only 
reported the Dice score of the other five brain regions. In the experi-
ment of LSFM stained-specific brain region segmentation, we used 
the deep model trained on the Allen atlas for evaluation, where three 
LSFM stained-specific brains were transferred to Allen style before 
brain region segmentation (Supplementary Fig. 5a,b).

Whole-brain registration
Network architecture for whole-brain registration. We designed 
a multiscale and multi-constraint DNN for the whole-brain 3D regis-
tration (Fig. 4a). As an example, we employed a somata-stained brain 
as the source brain and the Allen atlas as the reference brain. The 
network inputs included the original LSFM brain, the LSFM brain 
with Allen style, the segmented major brain regions of the LSFM 
brain, the Allen atlas and corresponding brain regions in the Allen 
atlas. The initial brain size was unified as 320 × 456 × 528 voxels, 
which is consistent with the original size of Allen atlas. The network 
downsamples all the inputs twice to 160 × 228 × 264 voxels and 
80 × 114 × 132 voxels. Then the inputs in the minimum resolution 
(80 × 114 × 132 voxels) were first trained with a rigid transformation 
network, including a nine-layer convolution for feature extraction 
and a two-layer convolution for rotation and translation matrix 
computation. Similar to the architecture of rigid networks, the affine 
transformation network was trained to learn the deformation and 
translation matrix. The rigid and affine transformations in the mini-
mum resolution inputs were also applied to a higher resolution, 
including the 160 × 228 × 264-voxel and 320 × 456 × 528-voxel sized 
inputs. Subsequently, we extended the VoxelMorph network17 in a 
multiscale format, for the training of nonrigid deformation from the 
source brain to the reference brain. The VoxelMorph was first trained 
on the minimum resolution, with five layers of convolutional encod-
ers for feature extraction of inputs and seven layers of convolutional 
decoders for the computation of deformation fields. The corre-
sponding layers were connected by the concatenated skip connec-
tions. After training on the minimum resolution, the network 
parameters were fixed and used for the training of inputs with higher 
resolution. There were 16 layers of both convolution encoders and 
decoders in the second resolution network (160 × 228 × 264 voxels) 
and 24 layers of both convolutional encoders and decoders in the 
third resolution network (320 × 456 × 528 voxels). The loss function 
in the rigid network is the MSE loss for the similarity measuring 
between each brain region in source brain and the reference brain, 
whereas the affine network includes the MSE loss and the regulariza-
tion loss. The loss function in the VoxelMorph network includes an 
unsupervised loss and an auxiliary data loss, following the settings 
from the original VoxelMorph network. The network was trained by 
integrating the above loss functions, where the overall loss function 
ℒWBR for whole-brain registration can be formatted as:

ℒWBR = ℒr +ℒa +ℒv (13)
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ℒr = ℒsim =
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⎪
⎪
⎪
⎪
⎪
⎪
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ℒMI (X,Y ) = − ∑
x∈VX

∑
y∈VY

p (x, y) log ( p(x,y)
∑

x∈VX
p(x,y)∑

y∈VY
p(x,y)

) ,

for the original brain

ℒCC (X,Y ) =
1
N

N

∑
j=1

∑
i∈δj

(Xi−X̄i)(Yi− ̄Yi)

√∑
i∈δj

(Xi−X̄i)
2∑

i∈δj
(Yi− ̄Yi)

2
,

for style transferred brain

ℒMSE (X,Y ) = √
1
N
∑N

i=1(Xi − Yi)
2,

for brain regions
(14)

ℒa = ℒsim +ℒind +ℒrank (15)

ℒind = ‖A − I‖2F + ‖b‖22 (16)

ℒrank = ||rank(A) − 1|| (17)

ℒv = ℒsim +ℒreg +ℒinv (18)

ℒreg = ‖∇Φ‖1 (19)

ℒinv =√
1
N
∑

N

i=1 (Yi − Ii)
2, I = Y⊙Φ−1 (20)

Φ−1 = (−Φx⊙Φ, −Φy⊙Φ, −Φz⊙Φ) (21)

where ℒr , ℒa, ℒv  indicate the loss functions of rigid, affine, multiscale 
VoxelMorph network, respectively. In the rigid network, there are three 
types of similarity loss function (ℒsim) in measuring the source brain 
and the reference brain (the mutual information loss (ℒMI), the 
cross-correlation loss (ℒCC) and the MSE loss (ℒMSE)). X  indicates the 
reference brain, where Y  indicates the registered brain. For a brain 
location, p(x,y) indicates the probability of voxel values as x  in X  and 
y in Y  at the same position. VX and VY indicate the two sets of all voxel 

values in X  and Y , respectively. δj indicates the cube with the size of s × 
s × s and the center of j. X̄i indicates the average voxel value of δj in X. 
The ℒMI is employed for the similarity measuring between the original 
source brain and the reference brain. The ℒCC is employed for the simi-
larity measuring between the style-transferred source brain and the 
reference brain. The ℒMSE is employed for the similarity measuring 
between each brain region in source brain and the reference brain. In 
the affine network, besides the similarity loss (ℒsim), it also includes 
two more items (ℒind for the penalization of the affine transformation 
from the identity and ℒrank for constraining brain scaling in the affine 
transformation matrix). A indicates the predicted affine transforma-
tion matrix, where b indicates the offset in the affine transformation. 
In the multiscale VoxelMorph network, besides the similarity loss (ℒsim), 
it also includes two more items (ℒreg for the constrain of the gradient 
in nonlinear to keep smooth transformation and ℒinv for the constraint 
of nonlinear transformation space). The Φ indicates the nonlinear 
transformation space, where Φ−1 indicates the approximate inverse 
transformation in the nonlinear transformation space. ⊙ indicates  
the interpolation.

For the multi-constraints, the original source brain, style- 
transferred source brain and the source brain regions, were set as inputs 
for the deep model training in different channels, which were used for 
the similarity computation with the corresponding reference brain 
and reference brain regions, respectively. The original source brain 
was assigned with higher weights in the loss computation (70%), 
whereas the style-transferred source brain and brain regions were 
assigned with lower weights in the loss computation (15%). In each 

training batch, the above constraints’ losses in different channels were 
integrated for model updating. Φx, Φy and Φz indicate the offset in the 
x, y and z directions, respectively.

During the network training, the initial learning rate in the rigid 
and affine network was set as 0.0001. The initial learning rate in the 
VoxelMorph was set as 0.001. Adam was adopted as the optimizer, 
with a batch size of one. In the training on the minimum resolution 
inputs (80 × 114 × 132-voxel-sized brains), the training epoch was 
set as 1,000, whereas in the training of the higher resolution inputs 
(160 × 228 × 264-voxel and 320 × 456 × 528-voxel-sized brains), the 
training epoch was set as 300.

In the experiment of LSFM autofluorescence brain registra-
tion to Allen atlas, ten LSFM brains were used for multiscale and 
multi-constraint deep registration model training, where the con-
straints of all brain regions were directly obtained by the automated 
brain region segmentation. Then the 12 LSFM brains with manual brain 
region annotations were used for evaluation (Fig. 4c and Extended 
Data Fig. 7a). In the registration evaluation of small brain structures, 
nine LSFM brains with manual brain region annotations were used for 
evaluation (Fig. 4d and Supplementary Table 4). In the registration 
evaluation of landmark distance, we employed the landmark extrac-
tion method – 2.5D corner detection, presented in mBrainAligner13. We 
filtered out 18 landmarks that were automatically detected across all 
the testing LSFM brains and the Allen atlas (Extended Data Fig. 9d). In 
the experiment of MRI brain registration, five MRI brains were used for 
model training, where the constraints of brain regions were obtained 
from the MRI datasets by manual annotations. Then three MRI brains 
were used for evaluation (Extended Data Fig. 7b,d). In the experiment 
of LSFM stained-specific brain registration, we directly used the deep 
model trained on the LSFM autofluorescence brains for evaluation, 
where the inputs were the style-transferred LSFM stained-specific 
brains (Allen style) (Extended Data Fig. 7c,e).

Software and algorithms
Software resources used are detailed in the following table.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed in this study are available on  
the D-LMBmap’s GitHub page (https://github.com/lmbneuron/ 
D-LMBmap). All the automatically annotated and manually annotated 

Software Developer Link

PyTorch v.1.11.0 The Linux Foundation https://pytorch.org

PyCharm v.2022.3 JetBrains https://www.jetbrains.com/

Anaconda v.4.12.0 Anaconda https://www.anaconda.com/

Python v.3.8.8 Python Software 
Foundation

https://www.python.org/

ImageJ (Fiji) v.1.53q National Institutes  
of Health

https://imagej.nih.gov/ij/
index.html

Elastix v.4.8 Image Sciences 
Institute

https://elastix.lumc.nl/

IMARIS v.9.0.1 Oxford Instruments https://imaris.oxinst.com/

Vaa3D v.4.001 Allen Institute https://github.com/Vaa3D

ITK-SNAP v.3.6.0 Yushkevich et al.64 www.itksnap.org

Allen Institute’s 
Common Coordinate 
Framework (CCFv3)

Allen Institute’s for 
Brain Science

http://atlas.brain-map.org

GraphPad Prism 
v.9.4.1

GraphPad https://www.graphpad.com/
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samples are also available on GitHub. All the source data files for each 
figure are available at https://doi.org/10.5281/zenodo.8123585. The 
full-resolution LSFM brain images are available on request. MRI brain 
data are available at https://github.com/dmac-lab/mouse-brain-atlas. 
The Allen Institute’s Common Coordinate Framework (CCFv3) atlas 
is available at http://atlas.brain-map.org. Source data are provided 
with this paper.

Code availability
The source code of all D-LMBmap modules, including automated 
axon segmentation, brain-style transfer, brain region segmenta-
tion, whole-brain 3D registration, along with the executable files of 
D-LMBmap software and sample data can be found at D-LMBmap’s 
GitHub page (https://github.com/lmbneuron/D-LMBmap).
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Extended Data Fig. 1 | Comparison of axon segmentation results with 
enlarged views between the TrailMap and the D-LMBmap. a, b, c, Three 
representative cubes with enlarged views (the first column), as well as the axon 
segmentation prediction of TrailMap (the second column), D-LMBmap (the third 

column) and the overlapped prediction between the TrailMap and the 
D-LMBmap (fourth column). The cube size is 200 × 200 × 225 voxels. (Scale bar, X, 
Y, Z = 60 μm.).
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Extended Data Fig. 2 | Metrics used for axon segmentation and effectiveness 
evaluation of diverse cubes. a, Metrics used for suitable and comprehensive 
evaluations of axon segmentation, including ClDice, ClPrecision, ClRecall and 
Dice score. b, Quantitative comparison between D-LMBmap and TrailMap under 
the evaluation of ClDice, ClPrecision, ClRecall, and Dice score using the manually 
annotated cubes in different types of axons respectively, n = 2 cubes in each axon 
types. Error bars, mean ± SD. c, Representative cubes of axons distributed in 
different major brain regions in a DCN-Stanford brain. Cubes are selected from 

the CP, BS, CB, HPF, and the CTX. d, Quantitative evaluation and comparison 
between TrailMap and D-LMBmap for the effectiveness of handling diverse axon 
across different brain regions. For each testing session, testing cubes (150 × 150 
× 150) were selected from one out of the five brain regions, including the CP, 
HPF, CTX, CB, and the BS. Training cubes were selected from the rest four brain 
regions. ClDice, ClPrecision, ClRecall, and Dice scores were used as evaluation 
metrics, n = 3 cubes in each testing brain region. Error bars, mean ± SD.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01998-6

Extended Data Fig. 3 | Effectiveness evaluation of D-LMBmap for predicting 
cubes with different axon densities. a, Representative cubes with different 
axon densities ranging from 1% to 100%. Here, 100% density is defined as the 
axons occupying around 800 million voxels in one cube (200 × 200 × 450 voxels, 

scale bar, X, Y = 240μm, Z = 90μm.). b, Quantitative evaluation and comparison 
between the TrailMap and the D-LMBmap when predicting cubes with different 
axon densities under the metrics of ClDice, ClPrecision, ClRecall, and Dice score.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Whole-brain axon segmentation of different cell types. 
a, (A1-A5), coronal slices of segmented axons in a Sert-Stanford brain. (A6), 3D 
segmentation of whole-brain axons in the Sert-Stanford brain. (A7 - A8), zoom-in 
views of segmented axons from A6. b, (B1-B5), coronal slices of segmented axons in 
a DA-NIBS brain. (B6), 3D segmentation of whole-brain axons in the DA-NIBS brain. 
(B7 - B8), zoom-in views of segmented axons from B6. c, (C1-C5), coronal slices of 

segmented axons in a GABA-NIBS brain. (C6), 3D segmentation of whole-brain 
axons in the GABA-NIBS brain. (C7 - C8), zoom-in views of segmented axons from 
C6. d, (D1-D5), coronal slices of segmented axons in a DCN-Stanford brain. (D6), 3D 
segmentation of whole-brain axons in the DCN-Stanford brain. (D7 - D8), zoom-in 
views of segmented axons from D6. (Scale bar, X, Y, Z = 1 mm.).

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Style transfer solution employed in D-LMBmap.  
a, Quantitative comparison of four style transfer methods, UNIT, DSFN, 
CycleGAN and D-LMBmap, under the evaluation metrics of SSIM, PSNR, and FID 
(n = 12 brains) at the whole brain level. The higher the SSIM and PSNR scores, the 
more similar the reconstructed LSFM brain is to the original LSFM brain. 
Conversely, the lower the FID score, the more similar the reconstructed LSFM 
brain is to the original LSFM brain. Box plot: center line, median; box limits, upper 
and lower quartiles; whiskers, 1.5× interquartile range; points, individual data 

points. b, Sample brains transferred into Allen atlas style. Here are images of a 
LSFM brain in the autofluorescence channel, an LSFM brain in the stained-
specific channel, and an MRI brain which has been transferred into the Allen atlas 
style. (Scale bar, X, Y, Z = 1 mm.). c, Sample brains transferred into LSFM atlas 
style. The figure shows the LSFM brain in the autofluorescence channel, the LSFM 
brain in the stained-specific channel, and the MRI brain transferred into the LSFM 
brain atlas style. (Scale bar, X, Y, Z = 1 mm.).

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | The architecture of Semi-CEA and the segmentation 
of major brain regions. a, Semi-CEA is developed for automated brain outline 
and brain region segmentation. It is the semi-supervised version of the CEA-
Net, where the rotation consistency is applied for the computation of semi-
supervised loss. b, The six major brain regions used for the evaluation of brain 

region segmentation. The BS, CP, HPF, and CTX are adjacent to each other, and 
the CBX is a subregion of the CB. c, The comparison of brain region segmentation 
results of an LSFM autofluorescence brain among D-LMBmap, SeBRe, BIRDS, and 
mBrainAligner. (Scale bar, X, Y, Z = 1 mm.).

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of cross modality whole brain  
registration results using different methods. a, Representative results of 
whole-brain registration of an LSFM brain in the autofluorescence channel by 
ClearMap, aMAP, mBrainAligner, and D-LMBmap. (Scale bar, X, Y, Z = 1 mm.).  
b, Representative results of whole-brain registration of an MRI brain by the four 
methods. (Scale bar, X, Y, Z = 1 mm.). c, Representative results of whole-brain 
registration of an LSFM brain in the stained-specific channel by the four methods. 
(Scale bar, X, Y, Z = 1 mm.). d, Quantitative comparison of the whole-brain 
registration results on MRI brains generated by ClearMap, aMAP, mBrainAligner, 
and D-LMBmap (n = 3). Left: region-wise median Dice score for five brain regions 

(CP, HPF, CTX, CB, and BS). Right: average median Dice score of different 
methods. Box plot: center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; points, individual data points. e, Quantitative 
comparison of the whole-brain registration results on LSFM brains in the stained-
specific channel generated by ClearMap, aMAP, mBrainAligner, and D-LMBmap 
(n = 3). Left: region-wise median Dice score for six brain regions (CP, HPF, CTX, 
CB, CBX, and BS). Right: average median Dice score of different methods. Box 
plot: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× 
interquartile range; points, individual data points.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01998-6

Extended Data Fig. 8 | Evaluation of registration methods for small brain 
structures. a, Representative images of whole-brain registration on small brain 
structures of an LSFM brain in the autofluorescence channel by ClearMap, 
aMAP, mBrainAligner, and D-LMBmap. (Scale bar, X, Y, Z = 1 mm.). b, Schematic 
drawings of the pipelines employed in the D-LMBmap whole-brain registration 
based on brain region constraints. B1. In the training pipeline of D-LMBmap for 
whole-brain registration, brain region constraints can either be automatically 
obtained using our developed Multi-view Semi-CEA network for automated 
brain region segmentation or manually delineated by users. These brain region 
constraints are then used as input for the training of the whole-brain registration 
model. B2. In the testing pipeline of D-LMBmap for whole-brain registration, the 

brain regions of the testing brain can be obtained either automatically using 
the Multi-view Semi-CEA network or manually delineated by users. Once this is 
done, registration can be automatically achieved using the trained whole-brain 
registration deep model. c, Registration results of whole-brain registration 
on small brain structures of 9 LSFM brains in the autofluorescence channel by 
D-LMBmap using different brain region constraints, where the cyan results 
indicate the results using the automated segmentation pipeline, and the 
deep blue results indicate the results using manual delineation pipeline. Box 
plot: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× 
interquartile range; points, individual data points.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Evaluation of the multi-constraint strategy in the 
D-LMBmap whole brain registration module. a, The confusion matrix for 
validating the effectiveness of individual major brain region constraints on 
LSFM brains (n = 12). The X-axis indicates individual brain region constraints, 
and the Y-axis indicates the change of the brain region Dice score after the 
single brain region constraint is added. (Ventricles, VC = LV + 3rdV + AQ). b, The 
confusion matrix for validating the effectiveness of individual small brain 
structure constraint on LSFM brains (n = 9). c, Ablation study of the effectiveness 
of brain style transfer in the whole-brain registration. C1. From left to right, 
the original LSFM brain as the source brain, the Allen atlas as the reference 
brain, the registered brain based on D-LMBmap and using style transfer, and 

the registered brain based on D-LMBmap without using style transfer. C2. 
Comparison across the reference brain, the registered brain with and without 
brain style transfer in the magnified view of the frontal cortex (in blue squares), 
the somatosensory cortex (in yellow squares), and CBX (in green squares). d, 
The locations of 18 manually selected landmarks are presented in the 3D Allen 
atlas, the corresponding 2D slice of the Allen atlas, and a 3D LSFM brain. e, 
Quantitative comparison of the whole-brain registration results on LSFM brains 
(n = 6) by computing the average landmark distance generated by ClearMap, 
aMAP, mBrainAligner, and D-LMBmap. Box plot: center line, median; box limits, 
upper and lower quartiles; whiskers, 1.5× interquartile range; points, individual 
data points.
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Extended Data Fig. 10 | Whole-brain circuit projections and regional 
quantification. a, Whole-brain circuitry profiling of DCN-Stanford brains.  
A1. Axon segmentation results on ten horizontal brain slices overlaid,  
and average axon distribution heatmaps in horizontal, coronal, and sagittal views 
(n = 3). A2. Axon density in hierarchical brain regions based on the Allen atlas. 

(Scale bar, X, Y, Z = 1 mm.). b, Whole-brain circuitry profiling of DA-NIBS brains.  
B1. Axon segmentation results on ten horizontal brain slices overlaid, and  
axon distribution heatmaps in horizontal, coronal, and sagittal views (n = 1). B2. 
Axon density in hierarchical brain regions based on the Allen atlas. (Scale bar, X, 
Y, Z = 1mm.).

http://www.nature.com/naturemethods
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