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Images document scientific discoveries and are prevalent in modern 
biomedical research. Microscopy imaging in particular is currently 
undergoing rapid technological advancements. However, for scientists 
wishing to publish obtained images and image-analysis results, there 
are currently no unified guidelines for best practices. Consequently, 
microscopy images and image data in publications may be unclear or 
difficult to interpret. Here, we present community-developed checklists 
for preparing light microscopy images and describing image analyses for 
publications. These checklists offer authors, readers and publishers key 
recommendations for image formatting and annotation, color selection, 
data availability and reporting image-analysis workflows. The goal of our 
guidelines is to increase the clarity and reproducibility of image figures and 
thereby to heighten the quality and explanatory power of microscopy data.

Images and their analyses are widespread in life science and medicine. 
Microscopy imaging is a dynamic area of technology development, in 
terms of both hardware and software. This is especially true in light 
microscopy, with recent improvements enabling sensitive, fast and 
high-resolution imaging of diverse samples. Existing resources deve-
loped by scientists can help researchers to navigate designing micro-
scopy experiments1–3 and cover aspects such as sample preparation1, 

microscope usage1,4, method reporting5–8 and fluorophore and filter 
usage9,10. Despite widespread adoption of microscopy as a tool for 
biology and biomedical research, the resulting image figures in pub-
lications at times fail to fully communicate results or are not entirely 
understandable to audiences. This may be because authors do not 
include comprehensive imaging method statements11 or because 
they omit basic information in figures such as specimen size or color 
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While the focus of QUAREP-LiMi is on light microscopy in the life sci-
ences, the principles may also apply to figures with other images (photos,  
electron micrographs, medical images) and to image data beyond 
the life sciences. The checklists are intended for all users, from begin-
ners and laypersons who only occasionally work with light microscopy 
to experienced users and also experts, such as core facility staff or 
members of the bioimage community, who review image data or teach 
image processing.

The checklists do not include principles for designing imaging 
experiments or recommendations to avoid image manipulation.  
Previous literature covers experimental design for microscopy images, 
including accurate and reproducible image acquisition and ensuring 
image quality2,28, examples and recommendations for avoiding mis-
leading images1,29–33, detection of image manipulation34–37, appropriate 
image handling and analysis7,19,38,39, guidelines for writing materials 
and methods sections for images40, and recommendations for general 
figure preparation41.

The checklists cover image (Fig. 2) and image-analysis (Fig. 3) 
publication and are structured into three levels that prioritize legibility 
and reproducibility.

•	 The first reporting level (‘minimal’) describes necessary, 
non-negotiable requirements for the publication of image data 
(microscopy images, data obtained through image analysis). 
Scientists can use these minimal criteria to identify crucial gaps 
before publication.

•	 The second reporting level (‘recommended’) defines measures  
to ensure the understandability of images and aims to reduce 
efforts toward evaluating image analysis. We encourage scientists 
to aim for the ‘recommended’ level as their image-publication goal. 
However, we acknowledge that some aspects (for example, large 
data in repositories) may be unattainable today for some authors.

•	 The third reporting level (‘ideal’) includes recommendations that 
we encourage scientists to consider adopting in the future.

Checklists for image publication
Image formatting
After exploring, processing and analyzing image data, authors then 
communicate insights in publications with figures as visual evidence. 
Preparing a figure begins with the selection of representative images 
from the dataset that illustrate the message. When quantitative meas-
urements are reported in a chart, an example of the input image should 
be shown; when ranges of phenotypes are described, several images 
may be necessary to illustrate diversity. To quickly focus the audience 
on key structures in the image, it is permitted to crop areas without data 
or with irrelevant data (Fig. 4a). As a rule, cropping, similar to selecting  
the field of view on the microscope, is allowed, as long as this does  
not change the meaning of the conveyed image.

Next, specimens are often presented in consensus orientation 
in figures (for example, apical side of cells upward, tree top upward), 
which may require image rotation. When such rotation is done in vector  
software, pixel interpolation is not necessary, as the square repre-
senting a pixel can be rotated and size changed as is, preventing 
any optical data modification. When rotation is done in pixel-based 
image-processing software, however, any rotation that is not a multi-
ple of 90 degrees changes the intensity values through interpolation 
and therefore alters the information in the image31,42,43. The effect of 
interpolation, while it may be negligible in large images composed of 
many pixels, can greatly distort the information in small or zoomed 
images composed of fewer than 100 × 100 pixels.

When cropping and rotating, authors should ensure that the 
operation does not affect the original information contained in the 
image; while loss in image quality may be acceptable, quantifications, 
especially intensity measurements, should be performed beforehand39. 

legends12, which are key to fully understanding the data. To ensure 
that images are presented in a clear, standardized, and reproducible 
manner, it is essential that the scientific community establishes unified 
and harmonized guidelines for image communication in publications.

Images document biological samples and the ranges of their 
phenotypes. Increasingly, microscopy images are also a source of 
quantitative biological data, and variables are measured with a grow-
ing number of open source image-analysis software packages such as 
Fiji–ImageJ13, CellProfiler14, KNIME15 and Python software libraries16 
(https://scikit-image.org (ref. 17)) and commercial software packages 
such as ZEN, LAS X, NIS-Elements, Amira-Avizo, Imaris, Arivis Vision 
4D and Huygens18. Image analysis is often a workflow of many steps, 
such as image reconstruction, segmentation, processing, rendering, 
visualization and statistical analysis, many of which require expert 
knowledge19,20. A comprehensive publication of quantitative image 
data should then include not only basic specimen and imaging informa-
tion, but also the image-processing and analysis steps that produced 
the extracted data and statistics. Toward fully reproducible image 
analysis, it is also essential that images and workflows are available to 
the community, for example, in image repositories or archives21–23, and 
code repositories such as GitHub24.

To ensure that image figures provide insights to their readership, 
any supportive experimental metadata and image-analysis workflows 
must be clear and understandable (‘what is the pixel size?’, ‘what does the 
arrow mean?’), accessible (‘are colors visible to color-blind audiences?’), 
representative (no cherry picking) and reproducible (‘how were the 
data processed?’, ‘can one access and reanalyze the images?’). In the 
framework of the initiative for ‘Quality Assessment and Reproducibility 
for Instruments and Images in Light Microscopy’ (QUAREP-LiMi)25,26, 
the ‘Image Analysis and Visualization Working Group’ established com-
munity consensus checklists to help scientists to publish understand-
able and reproducible light microscopy images and image-analysis 
procedures. When applicable, the checklists are aligned with the FAIR 
(findability, accessibility, interoperability and reusability) principles, 
which were developed as recommendations for research data27.

Scope of checklists
The scope of the checklists is to help scientists to publish fully under-
standable and interpretable images and results from image analysis 
(Fig. 1). In this work, the term ‘images’ includes raw or essentially  
unprocessed light microscope data, compressed or reconstructed 
images and quantification results obtained through image analysis. 

Microscopy
images

Results

• Image processing
• Qualitative analysis
• Quantitative analysis
• Analysis workflows

Measurements

Foundation 
Experimental design 
and good scientific 
practice

Image data storage and availability

Acquisition of 
microscopy images 
Image, microscope 
setup, experimental 
design

Image figure

Publishing of microscopy image
figures and image analyses 

Community-developed checklists for publishing images and image analyses

Cell Area Circ.
1 102 0.6
2 210 0.3
3 150 0.7

Fig. 1 | Scope of the checklists. The checklists present easy-to-use guidelines for 
publishing microscopy image figures and image-analysis workflows. The results 
may include images or measurements of images (for example cell area or cell 
circularity (circ.)).
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In a figure, individual images should be well separated (spacing, border; 
Fig. 4b) to avoid misleading image splicing29,31.

When presenting two magnification views of the same image (for 
example, a full and a zoomed or inset view), the position of the inset 

in the full-view image should be made clear; if the inset is placed on 
top of the full-view image, for example, to save space, it should not 
obstruct key data (Fig. 4c). If an inset is digitally zoomed, the original  
pixels should not be interpolated but ‘resized’ to maintain the 

Min Max

Checklist for image publishing

Image format

Focus on relevant image content (e.g., crop, rotate, resize)

Separate individual images

Show example image used for quantifications

Indicate position of zoom view/inset in full-view/original image

Show images of the range of the described phenotype

Image colors and channels

Annotation of channels (staining, marker, etc.) visible

Adjust brightness/contrast, report adjustments, use uniform color scales

Channel colors: high visibility on the background
Best visibility: grayscale

Image comparison: use the same adjustments

Multicolors: provide grayscale for each color channel

Multicolor: if channels are merged, make accessible to color-blind 
individuals

Provide intensity scales (calibration bar) for grayscale, color,
pseudocolor etc.

Pseudocolored images: additionally provide grayscale version
for comparison

Gamma adjustments: additionally provide linear-adjusted image
for comparison

Image annotation

Add scale information (scale bar, image length in figure/figure legend)

Explain all annotations (in figure/figure legend)

Annotations should be legible (line width, size/point size, color)

Annotations should not obscure key data

Annotate imaging details important for interpreting the figure 
(depending on the main message and imaging technique, this may be, 
e.g., image pixel size, imaging intervals (time-lapse in movies), exposure 
time or anatomical section)

Image availability

Images are shared 
(lossless compression/microscope images)

Image files are freely downloadable 
(public database)

Image files are in dedicated image database
(added-value database or image archive)

Minimal

Minimal

Minimal

Recommended

Ideal

Recommended

Recommended

Ideal

Fig. 2 | Checklist for image publication. This checklist includes points to be addressed on image format, image colors and channels, image annotations and image 
availability. Min, minimum; max, maximum.
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original resolution. Overall, the image should be sufficient in size so that  
audiences can identify all relevant details.

Image colors and channels
Fluorescent light microscopes use a range of wavelengths to generate 
images of specimens. In the images, the light intensity for individual 
wavelengths, most often in grayscale, is assigned or mapped to a visible 
color scheme. In multicolored images, several channels are overlaid to 
compare data from several channels.

Microscopy images often must be processed to adapt the bit depth 
to the visible range2,44. Usually, brightness and contrast are adjusted for 
each channel independently in many software platforms (for example, 
ImageJ–Fiji) by defining the minimum and maximum displayed inten-
sity values before converting these into eight-bit images (for screen 
display, printing). Intensity-range adjustments should be monitored 
(for example, with the image histogram) and performed with care: too 
wide of an intensity range results in ‘faded’ images that lack details, 
while too narrow of an intensity range removes data (Fig. 4d). Scien-
tists must be especially attentive with auto-contrast and auto-level, 
image-intensity normalization, non-linear adjustments (‘gamma’, 
histogram equalization and local contrast, for example, CLAHE45), 
image filters and image-restoration methods (for example, deconvolu-
tion, Noise2Void, CARE46–49, as their improper application may result 
in misleading images. When images are quantitatively compared in 
an experiment, the same adjustments and processing steps must be 
applied. If deemed critical for understanding the image data, advanced 
image-processing steps (for example, deconvolution, Noise2Void, 
CARE) may need to be indicated in the figure or figure legend, in addi-
tion to the materials and methods sections.

Next, image colors must be interpretable and accessible to readers 
and not misleading50. For full-color (for example, histology) images, the 
staining and preparation methods and, for fluorescence microscope 
images, channel-specific information (fluorophore or labeled biomole-
cule) should be annotated (Fig. 4e and Image annotation). In fluores-
cence microscope images, channels can be assigned a user-defined 
color scheme, often referred to as a lookup table (LUT), which should be 
chosen such that the imaged structures are easily distinguishable from 
the background and accessible to color-blind audiences12. Grayscale 
color schemes are best for single channels because they are uniformly 
perceived, allowing unbiased interpretations of intensity values in a 
given image. Inverting image LUTs to display intensities on a white 
instead of a black background may enhance signal contrast further, but 
be aware that different software handles this calculation differently.

A few steps may improve the understandability of colors overall. 
For multicolored fluorescent images, showing individual channels in 
separate, grayscale panels provides the best visibility and the highest 
contrast of detailed structures. Grayscale images are also accessible to 
all audiences, including color-blind persons (Fig. 4f). If several channels 
must be merged into one image, choose a color combination visible 
also to color-blind audiences12,51. A separate, linear-adjusted gray-
scale version may also help when images are adjusted with non-linear 
adjustments or pseudocolored LUTs (for example, ‘jet,’ ‘viridis’ and 
‘Union Jack’), which map intensity values to a dual- or multiple-color 
sequential scheme. Annotation of intensity values with an intensity 
scale bar (‘calibration bar’) helps to orient readers and is essential for 
pseudocolored and non-linear color schemes (Fig. 4g). Calibration 
bars should indicate absolute intensity values to inform audiences 
about the displayed intensity range and can be prepared with Imaris 
and ImageJ–Fiji (ImageJ user guide: https://imagej.net/ij/docs/guide/).

Image annotation
Image acquisition must be described in detail in the methods section. 
Additionally, to best communicate image data, some of this information 
is required or at least beneficial if it is associated with the figure itself 
as a caption or an annotation. Light microscopy images show objects 

Checklists for publication of image-analysis workflows

Established workflows

New workflows

Cite workflow and platform

Key settings

Example data

Manual ROI

Exact version

All settings

Public example

Document usage (e.g.,
screen recording or tutorial)

Cloud hosted or container

Cite components and platform

Describe sequence

Key settings

Example data and code

Manual ROI

Exact versions

All settings

Public example data and code

Rationale

Limitations

Screen recording or tutorial

Easy install and usage, container

Machine learning workflows

Cite original method

Access to model

Example or validation data

Training and testing data and metadata

Code available

Limitations

Cloud hosted or container

Standardized format

Minimal

Recommended

Ideal

Minimal

Recommended

Ideal

Minimal
(all models)

Recommended
(pretrained and
 new models)

Ideal
(new models)

Fig. 3 | Checklist for publication of image-analysis workflows. This checklist 
includes points to be addressed on established workflows, new workflows and 
machine learning workflows.
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sized from submicrometer to millimeter resolution. As physical size 
is not obvious without context, annotating the scale for publication is 
therefore necessary. A scale bar of a given size (in or next to the image) is 
needed to orient audiences (Fig. 5a). The corresponding size statement 
or dimension, for example, ‘0.5 mm’, can be placed next to the scale 
bar (when not possible in the figure legend). To avoid quality changes 
(pixelated or illegible text) when adapting (resizing, compressing)  
figures for publication, annotations should be added as vector graphics.  
Statements about the physical dimensions of the entire image are 
acceptable alternatives to scale bars. Magnification statements should 
be avoided, as pixel size can be determined by a number of factors, for 
example, sampling rate or binning, and does not depend only on the 
objective magnification.

Many images include further annotations such as symbols (arrows, 
asterisks), letter codes or regions of interest (ROI; dashed shapes), 
which must be explained in the figure or the figure legend (Fig. 5b). 
Symbols that resemble image data should be avoided, and note that 
symbols with clear vertical or horizontal arrangement are easier to 
distinguish than randomly oriented symbols on busy backgrounds (for 
example, ref. 12). At times, additional annotations may help readers to 
interpret the figure when the anatomical section of a three-dimensional 
object or the imaging frequency for time-lapse data is provided too 
(Fig. 5c,d). All annotations, including scale bars and ROI indications, 
must be legible, that is, have sufficient size or point size, line widths and 

colors in high contrast to the background. In addition to being legible, 
scale bars should have a meaningful length with regard to the object 
shown. Annotations placed on top of images should not obscure key 
image data and should be legible to color-blind persons.

Image availability
Image-processing operations should not overwrite the original micro-
scope image42,43, and, upon publication, both the original image (or a 
lossless compressed version) and the image file shown in the published 
figure should be available. The specific file type of the original image 
depends on the microscope type and the vendor. The definition of 
‘original data’ or ‘raw data’ and whether their storage is feasible depend 
on the specific microscopy technique. In data-heavy techniques (for 
example, light sheet microscopy) it may be acceptable if the cropped, 
binned or lossy compressed images, which faithfully capture the key 
scientific content, are made available. To retain the metadata, a conver-
sion into standard formats or open formats such as OME-TIFF52, which 
support uncompressed and lossless but also lossy (compressed) files, 
is compatible with broad applications to allow reanalysis of image 
data. If only a compressed version may be kept (that is, a file in which 
image channels and annotations are irretrievably merged), PNG files 
are superior to the JPEG format, as they allow lossless compression43.

As a minimal requirement, the image files shown in figures or used 
for quantification should be available. When possible (see limitations 

A A’A B

Min

Max

Min

Max

Staining

Marker 1 Marker 2 Marker 1
Marker 2

Marker 1 Marker 2Marker 1
Marker 2

a Focus: crop, rotate, resize, etc.

g Explain channel values with calibration scales/indicatorsf Grayscale channels improve
visibility of image features

e Channel annotations visible on background 

c Show origin of inset
Consider showing full-size image

d Brightness/contrast adjustment

b Separate individual
images clearly

Min Max

2,832
2,165
1,499
832
165

2,832
2,165
1,499
832
165

Fig. 4 | Image formatting, colors and channels. a–c, Image formatting  
may include image cropping, rotation and resizing (a), image spacing in the 
figure (b) and presenting several magnifications (zoom, inset) of images (c). 
 d–g, Image colors and channels. d, Adjust brightness and/or contrast to achieve 
good visibility of the imaging signal. e, Channel information should be annotated 

and visible to audiences (high contrast to background color, visible to color-blind 
audiences). f, Image details are most unbiased in grayscale. g, It is best practice 
to publish legends for color intensities (intensity and/or calibration scales) with 
images, and this is recommended for pseudocolor scales.
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above), lossless compressed files, which allow replication of the 
analysis workflow, should be shared or made available (Fig. 5e–g). 
We strongly discourage author statements that images ‘are available 
upon request’, as this has been shown to be inefficient53,54; however, at 
present, infrastructure is not sufficiently in place to ban this option. A 
clear advancement is depositing both the published and the original 
images in a public repository with an open license that permits reuse 
in the scientific context (CC-BY, CC0). Zenodo, Open Science Frame-
work and figshare are currently essentially free options also for image 
data; however, some of these have file size limitations (Fig. 5e–g and 
Extended Data Fig. 1). OMERO servers (https://www.openmicroscopy.
org/omero/institution/) enable institutions but also individual labo-
ratories to host public or private (access-controlled) image-sharing 
databases (see Extended Data Fig. 1 for an overview of current reposito-
ries). In the long term (‘ideal’), uploading images with all experimental 
metadata to dedicated, specialized or fully searchable image databases 
has the potential to unlock the full power of image data for automated 
image and/or metadata searches and the possibility of image data 
reuse. Databases that allow such functionalities and more include the 
BioImage Archive (a primary repository that accepts any image data 
in publications; https://www.ebi.ac.uk/bioimage-archive/), the Image 
Data Resource (which publishes specific reference image datasets; 
https://idr.openmicroscopy.org/) and EMPIAR (a dedicated resource 
for electron microscopy datasets; https://www.ebi.ac.uk/empiar/). At 
present, most of the available options are free of charge for 20–50-GB 
datasets; however, dedicated image databases have strict requirements 
regarding file type and metadata (Fig. 5e–g and Extended Data Fig. 1).  

To be inclusive, we do not enforce the use of online repositories but 
require as a minimal measure that scientists are prepared to share 
image data. Costly and expert-driven storage solutions are at present 
not accessible to all scientists in the global imaging community.

Checklists for publication of image-analysis 
workflows
Image-analysis workflows usually combine several processing steps  
carried out in a specific sequence to mathematically transform the 
input image data into a result (that is, image for visualization or data for 
a plot; Fig. 6 and ref. 39). As images are numerical data, image process-
ing invariably changes these data and thus needs to be transparently 
documented31,39,43. We developed separate checklists for scientists 
wishing to publish results originating from image-processing and 
image-analysis workflows (Fig. 3). Focusing on easy implementation 
of the checklists, we propose three categories:

 1. Established workflows or workflow templates: workflows available  
in the scientific literature or well established in the respective 
fields.

 2. New workflows: established or new image-analysis components 
(available in software platforms or libraries) are assembled by 
researchers into a new workflow.

 3. Machine learning workflows: machine learning uses an extended 
technical terminology, and machine learning workflows that use 
deep neural networks (‘deep learning’) face unique challenges 
with respect to reproducibility. Given the rapid advancements 
in this field, we created a separate machine learning checklist.

A

B

C

20 µm

3 µm

04:30

05:15

06:00

06:45

Tim
e

hh:mm

a Scale information

gfe Images in dedicated
image database

Deposit images in
public database 

Share images

Time lapsedAnatomical slices of a 3D volume c

b Annotations: explained, visible, not obscuring content

Local file server costs
Size limit, N/A

Provide lossless compressed or original microscope images

No costs/costs for >20 GB
Size limited, ~20–50 GB

No costs
No/large size limit

Strict metadata/file type requirements

Fig. 5 | Image annotation and availability. a–d, Image annotation. a, Possible 
ways to provide scale information. b, Features in images can be annotated with 
symbols, letters or ROI. c,d, For advanced image publication, information on 
the anatomical view or intervals in time-lapses may be required. hh:mm, time 
in hours and minutes; 3D, three dimensional. For local storage, size limit is not 

applicable (N/A). e–g, Image availability. e, Currently, image data are often 
shared ‘upon request’. f,g, More images along with the image metadata should 
be available for download in public databases (f) and, in the future, also should 
be archived in dedicated, added-value databases, in which images are machine 
searchable or curated (g).
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Established workflows
Examples of well-established workflows are published pipelines for 
CellProfiler (CellProfiler published pipelines, https://cellprofiler.
org/published-pipelines; CellProfiler examples, https://cellpro-
filer.org/examples), workflows in KNIME55, specialized plugins and 
easy-to-use scripts in ImageJ56–58 and tools and plugins that solve generic 
image-analysis problems such as tracking59 or pixel classification60,61. 
For these workflows, extensive expertise, documentation and tutorials  
already exist that allow others (for example, reviewers, readers) to repro-
duce the workflow and to judge the validity of the results. Scientists  
publishing images or image-analysis results processed with established 
workflows thus can focus on documenting key parameters only.

Minimal. The authors must cite the used workflow. The specific soft-
ware platform or library needs to be cited if the workflow is not available 
as a standalone tool. Key processing parameters must be reported. To 
validate the performance of the workflow and its settings, example 
input and output data must be provided. Any manual interventions 
(for example, ROI) must be documented. To ensure proper reproduc-
tion of the workflow, the precise version numbers of the workflow and 
the software platform used are vital and must be documented in the 
methods. If the used software does not allow the researcher to easily 
define and retrieve a specific version number, the exact version used 
must be deposited as a usable executable or code.

Recommended. Authors should state all settings in the methods or the 
supplementary material of the article. Providing data upon request is 
an ineffective method for data sharing54. Thus, authors should provide 
example input and output data and any manual ROI via a public reposi-
tory (see Image availability).

Ideal. Documenting the use of software in the form of a screen record-
ing or, in the case of command line tools, by reporting all executed 
commands in detail greatly facilitates understanding the workflow 
application and therefore reproduction. To avoid any variation  
arising from factors such as computer hardware or operating system, 

authors could provide cloud-hosted solutions62–64 (kiosk-imageJ-plugin, 
https://github.com/vanvalenlab/kiosk-imagej-plugin) or the workflow 
packaged in a software container (docker, https://www.docker.com/; 
Singularity, https://docs.sylabs.io/guides/3.5/user-guide/introduc-
tion.html)65.

New workflows
New image-analysis workflows assemble components into a new 
sequence, for example, a macro in Fiji, a pipeline in CellProfiler or a 
workflow in KNIME in an original way. To ensure reproducibility of the 
analysis, it is essential to report the specific composition and sequence 
of such new workflows.

Minimal. The individual components used in the new workflow must 
be cited, named and/or described in detail in the methods section 
along with the software platform used. It is essential that scientists 
specify or provide the exact software versions of the used components 
and software platform in the methods whenever possible. Authors 
must describe the sequence in which these components have been 
applied. Key settings (for example, settings that deviate from default 
settings) must be documented in the methods section. Finally, the 
developed workflow must be shared as code (for example, via code 
repositories such as https://github.com/) or pipelines (for example, 
KNIME workflow, CellProfiler pipeline). Example input and output 
and any manually generated inputs (that is, ROI) must be made avail-
able (Image availability). For new workflows that were created using 
software that does not allow scripting, the workflow steps must be 
carefully described with text.

Recommended. All settings of the workflow must be disclosed and 
described to help reproduction of the analysis. Example input, output 
and manual inputs (ROI) should be provided via public repositories 
such as Zenodo. The developer should describe the rationale as well 
as the limitations of the workflow and the used components in more 
detail in the methods or supplementary material. Whenever possible, 
evidence of the adequacy and efficiency of the used algorithms on the 
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published data and potentially even comparisons to related established 
workflows facilitate such documentation.

Ideal. To further promote reproducibility, documentation such as a 
screen recording or a text-based tutorial of the application of the work-
flow should be added. To enable efficient reproduction of an analysis 
with a new workflow, authors should provide easy installs (for example, 
update sites, packages) or easy software reproduction (for example, via 
software containers) and easy-to-use user interfaces of software (that 
is, graphical user interfaces). The new workflow should also be pub-
lished as independent methods papers with extensive documentation 
and online resources55–61. In sum, extensive documentation and ease 
of installation and use will ultimately contribute to the new workflow 
becoming well established and reproduced within the community  
(a future established and published workflow template)66.

Machine learning workflows
Machine learning and especially deep learning have recently become 
capable of surpassing the quality of results of even the most sophisti-
cated conventional algorithms and workflows and are continuing to 
advance67. Deep learning procedures are quickly adapted to micro-
scopy image tasks such as U-Net68 for cell segmentation69, Noise2Void  
for image reconstruction47, StarDist70,71 and Cellpose62 for instance 
segmentation, DeepProfiler72 for feature extraction and Piximi  
(https://www.piximi.app/) for image classification.

In machine learning workflows (supervised, unsupervised, 
self-supervised, shallow or deep learning), input image data are trans-
formed by one or multiple distinct mathematical operations into a 
scientific result. The instructions for this transformation are learned 
from provided data (for example, labeled data for supervised learning 
and unlabeled data for unsupervised learning) to produce a machine 
learning model. However, the precise makeup of this model is not 
easily accessible to a user and depends strongly on the quality and 
nature of the supplied training data as well as on the specific train-
ing parameters. Biases in the training data and errors in the labels of 
ground truth for supervised machine learning will bias machine learn-
ing models73–75. Reporting is thus even more critical for reproducibility 
and understandability when machine learning applications are applied 
for image analysis.

Three major approaches are widely used in machine learning-based 
image analysis today that require different documentation. (1) Pre-
trained models are directly applied to new image data, and referral to 
existing references is sufficient. (2) Pretrained models are retrained 
(transfer learning) with new image data to improve the application, 
and, in this case, more information must be provided. (3) Models are 
trained de novo, in which case, extensive documentation is required 
for reproducibility.

Minimal (all models). The precise machine learning method needs to 
be identifiable. Thus, the original method must be cited. At a minimum, 
access to the model that has been produced in the particular learning 
approach must be provided as well as validation input and output data. 
If a pretrained model has been used, it must be clearly identifiable. 
Example data or validation data must be provided; validation data 
must not be part of the training and testing data.

Recommended (retrained and new models). To facilitate the repro-
duction and validation of results from either models trained from 
scratch or pretrained models that were retrained, the full training 
and testing data and any training metadata (for example, training 
time) should be made available. The code used for training the model 
should be provided. Code as well as data should be provided via pub-
lic repositories (for example, Zenodo, GitHub). The authors should  
discuss and ideally test how well the model has performed and show  
any limitations of the used machine learning approach on their data. 

The application of machine learning models will particularly benefit  
from being deployed in a cloud-hosted format or via software 
containers.

Ideal (new models). Further standardization promotes ease of repro-
duction and validation by the scientific community by making use of 
emerging online platforms. Thus, new models could be created con-
forming to standardized formats (for example, Model Zoo, https://bio-
image.io/#/about) if they become more readily available in the future.

Discussion
Here, we have presented recommendations in the form of checklists 
to increase the understandability and reproducibility of published 
image figures and image analyses. While our checklists were initially 
intended for bioimages from light microscopes, we believe that their 
many principles are applicable more widely. Our checklists include 
recommendations for image formatting, annotation, color display and 
data availability, which, at the minimal level, can largely be achieved 
with commercial or open-source software (for example, ‘include scale 
bar’). Likewise, the minimal suggestions for image-analysis pipelines 
can be implemented readily with today’s options (for example, code 
repositories). We believe that, once included in microscopy core facility 
training and microscopy courses and introduced as guidelines from 
publishers, the recommendations will present no additional burden. 
On the contrary, transparent requirements for publishing images 
and progress-monitoring checklists will ease the path from starting a 
microscopy experiment to producing reproducible76, understandable 
image figures for all scientists.

Recommendations extending the ‘minimal’ level are introduced in 
the ‘recommended’ and ‘ideal’ reporting levels and at times go beyond 
what is easy to implement with standard tools today. They are meant 
to encourage continuous striving toward higher-quality standards in 
image publishing. Before all these advanced standards can become a 
new norm, technologies, software and research infrastructure must still 
be improved. At present, no image database is used widely enough to 
become a go-to solution, although dedicated resources exist and are 
slowly gaining traction and publishers are experimenting with parallel  
solutions (for example, EMBO source data). Also, while funding  
agencies increasingly require data to be deposited in repositories, few 
guidelines are provided for publishing terabytes to petabytes of raw 
data. While publishers may mandate data deposition or availability, 
they are not always reviewing its implementation. Combined with a 
lack of recognition of efforts put into publishing original image data, 
scientists are often discouraged to make data openly available. Com-
mercial solutions for data storage are becoming increasingly available. 
For instance, Amazon Web Services Open Data has already been used to 
host image data (https://registry.opendata.aws/cellpainting-gallery/), 
and we believe that, ultimately, images presented in most publications 
should be linked to images processed by lossless compression that are 
amenable to reanalysis.

The checklists and recommendations for image analyses will natu-
rally be dynamic and require regular updates to reflect new develop-
ments in this active research domain. Moreover, it is possible that 
generation of publication-quality images will also become a standard-
ized ‘workflow’ in and of itself. It was previously suggested that images 
should be processed through scripting, with every step from micro-
scope output to published figure stored in a metadata file39. Another 
challenge is the continuous availability of image-analysis software 
and workflows, which require software maintenance and updates to 
stay usable. Beyond technical developments, it is important to create 
inclusive standards for image publication that are achievable for our 
diverse global scientific community, which differs greatly in access to  
training and support, imaging infrastructure and imaging software.  
Our explicit intention is that the minimal level, which we believe  
must be met, does not pose an additional monetary or skill burden on 
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scientists and is achievable with attention to detail. Our further report-
ing levels, ‘recommended’ and ‘ideal’, should encourage scientists  
to improve the accessibility and explanatory power of their images  
in publications.

We envision that the present checklists will be continuously 
updated by the scientific community and adapted to future require-
ments and unforeseen challenges. We are currently working on version 
1.0 of a web-based Jupyter Book as a home for the ongoing development 
of ideas, extensions and also discussions on image publication. This 
consortium will continue future work in close alliance with similar 
initiatives such as NEUBIAS66,77, BINA and German BioImaging, ini-
tiatives that members of the authorship are involved with alongside 
their participation in QUAREP-LiMi. Collectively, we will work toward 
providing educational materials and tutorials based on the presented 
checklists and to continuously lobby to integrate its contents in gen-
eral resources for better images78. We ask that all readers consider 
how their work will be seen and used in the future and join us in build-
ing a stronger scientific foundation for everyone. Version 1.0 of the 
presented checklists will already make images in publications more 
accessible, understandable and reproducible, providing a valuable 
resource as a solid foundation within today’s research that will benefit 
future science and scientists.

Data availability
The checklists can be downloaded as printable files from https://doi.
org/10.5281/zenodo.7642559. The companion Jupyter Book can be 
found at https://quarep-limi.github.io/WG12_checklists_for_image_
publishing/intro.html.
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Extended Data Fig. 1 | Scientific repositories. Overview of current repositories that accept image data82.
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