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Alignment of spatial genomics data using 
deep Gaussian processes
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Spatially resolved genomic technologies have allowed us to study the 
physical organization of cells and tissues, and promise an understanding of 
local interactions between cells. However, it remains difficult to precisely 
align spatial observations across slices, samples, scales, individuals 
and technologies. Here, we propose a probabilistic model that aligns 
spatially-resolved samples onto a known or unknown common coordinate 
system (CCS) with respect to phenotypic readouts (for example, gene 
expression). Our method, Gaussian Process Spatial Alignment (GPSA), 
consists of a two-layer Gaussian process: the first layer maps observed 
samples’ spatial locations onto a CCS, and the second layer maps from 
the CCS to the observed readouts. Our approach enables complex 
downstream spatially aware analyses that are impossible or inaccurate 
with unaligned data, including an analysis of variance, creation of a dense 
three-dimensional (3D) atlas from sparse two-dimensional (2D) slices or 
association tests across data modalities.

Spatially-resolved genomic technologies hold the promise to under-
stand the spatial organization, variation and local effects of cellular 
morphology, gene expression, protein expression and other cellular 
phenotypes1–10. As new technologies have been developed, several 
computational models and analysis pipelines have been proposed for 
processing and downstream analyses of single-slice data11–17.

Although these technologies and methods have enabled scientific 
discoveries, it remains difficult to jointly analyze multiple phenotypic 
readouts from these technologies due to inevitable spatial warping 
and biological variation across slices, samples and individuals. Fur-
thermore, the various spatial genomic platforms range widely in field 
of view, spatial resolution and number of phenotypic readouts that 
they measure. The standard analysis, in which each slice is analyzed 
separately, reduces the statistical power of the analyses or prohibits 
these analyses entirely. Thus, there remains a need for tools that enable 
a joint analysis across slices, samples, modalities and technologies.

The problem of integrating disparate spatially resolved samples 
arises in several fields. Spatial alignment has been well studied in 
the context of functional magnetic resonance imaging (fMRI) brain 

data18–20. At a given time point, an fMRI scan produces measurements 
on a 3D grid across the brain across time, where the continuous level 
of blood flow is measured at each point (‘voxel’) in the grid. Given 
multiple scans across days or individuals, the alignment problem is to 
warp the spatial coordinates of each voxel in a scan so that the (x, y, z) 
voxels in each patient refer to approximately the same functional voxel 
in the brain.

Two major types of fMRI alignment have emerged: template-based 
registration and hyperalignment. Template-based registration meth-
ods seek to align scans from different individuals to a pre-defined 
CCS. This CCS is typically defined as a single individual’s scan or as 
the average across multiple manually aligned scans. The most popular 
approach uses a ‘template brain’ developed at the Montreal Neuro-
logical Institute21,22. Next, fMRI samples’ voxel coordinates are warped 
such that the new samples’ voxel coordinates match this template in 
terms of both relative location in the brain and voxel behavior across 
time. Hyperalignment approaches seek to align different individuals’ 
data without a pre-defined template. In particular, hyperalignment 
methods compute scan-specific transformations of voxel space using 
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Results
GPSA
Our GPSA is a Bayesian model for aligning spatial genomic and histol-
ogy samples with spatial coordinates that are distorted or on different 
systems. Each slice is assigned its own warping function in the first layer 
of GPSA, which accounts for slice-specific deformations. In the second 
layer, GP functions model phenotypic readouts at each location in the 
CCS. Inference is guided by two competing objectives: retain the cur-
rent position of each spot in a slice while warping each spot to ensure 
that the readouts within each warped slice match as closely as possible 
with the readout distributions encoded in the second layer of the deep 
GP (DGP). See Methods for details.

Although readouts are typically high dimensional, the readout 
features tend to be correlated, and this structure may be captured by 
a low-dimensional manifold31–34. Thus, GPSA models the readouts as a 
weighted linear combination of a small number of GPs through a linear 
model of coregionalization (LMC35; see Methods for details).

GPSA allows for joint modeling of multiple types of readout modal-
ities. For example, many experiments collect both spatial expression 
profiles and histology images for each slice1,36. These modalities con-
tain complementary information, and it is of interest to analyze both 
modalities across multiple slices jointly. To do this, we augment our 
model of the phenotypic readouts (Equation (1)) to include a separate 
likelihood for each modality, allowing for straightforward multimodal 
alignment. See Methods for details.

De novo and template-based CCSs
We propose two methods for aligning slices using GPSA: de novo align-
ment and template-based alignment. A de novo alignment estimates 
a CCS from scratch using the slices while simultaneously projecting 
these slices onto the CCS. Alternatively, if a CCS exists for a tissue and 
context of interest, a template-based alignment maps the samples 
to this given CCS. This is accomplished by fixing the warping func-
tion of the CCS to the identity. In practice, to avoid extreme warps in 
de novo alignment, we recommend arbitrarily choosing one of the input  
samples to fix as the CCS.

Simulations
We first validate the accuracy and robustness of our model using syn-
thetic data generated under a variety of settings.

Recovery of true latent common coordinates. First, we generated 
synthetic spatial expression data for two slices from a known CCS, 
and we began with a one-dimensional CCS to study and visualize the 
behavior of GPSA. We sampled spatial coordinates for n = 100 locations 
in the interval (0, 10). We then generated observed spatial coordinates 
for S = 2 slices by applying a GP warp (see Methods for details). We 
sampled synthetic gene expression yij for gene j using a GP:

yij = f(x⋆i ) + ϵ, f ∼ GP(0, k), ϵ ∼ 𝒩𝒩(0,σ2), (1)

where x⋆i  is the location of the ith sample, 𝜖 is the local Gaussian error, 
f is a random nonlinear function generated from a GP, and σ2 is  
the variance term for the Gaussian error. We set k to be the radial basis 
function (RBF) with hyperparameter τ2 = 0.1 (Methods). We fit GPSA to 
this dataset using a de novo alignment and extracted the aligned coor-
dinates for each slice. We found that the warped coordinates were well 
aligned between the two slices and that the relationship between spatial 
coordinates and gene expression was well preserved (Fig. 1a). The mean 
squared error (MSE) for the aligned coordinates was 0.000134 (where 
an MSE of 0 indicates perfect performance), while the MSE of the orig-
inal spatial coordinates was 0.0345. This result suggests that GPSA is 
able to align distorted and disparate samples accurately.

Next, we extended this experiment to a more realistic setting in 
which the spatial coordinates are 2D. Here, the CCS was a 15 × 15 grid 

the centroid of all scans as the CCS. Both linear23 and nonlinear24 hyper-
alignment approaches have been developed.

Alignment methods for fMRI data are not easily extensible to 
spatial genomic and histology images for three reasons. First, curated 
anatomical CCSs are not available for the diversity of tissue types, 
developmental stages and species that are studied using spatial genom-
ics. Second, while the readout at each location for fMRI data is a single 
number representing blood flow, the readout in spatial genomics 
often has 102–105 sparse features. Finally, while the spatial resolution 
of fMRI scans tends to be one of a few standard resolutions, there is a 
wide diversity of spatial technologies, each with their own resolution 
and field of view. Thus, there is a need for spatial genomic-specific 
alignment methods.

In spatial genomics, we are aware of four approaches for aligning 
samples’ spatial coordinates. Probabilistic alignment of spatial tran-
scriptomic (ST) experiments (PASTE)25 was developed to align adjacent 
tissue slices in ST data1. PASTE uses an optimal transport framework to 
identify mappings between the spatial locations of adjacent slices. Its 
objective function trades off transcriptional similarity and proximity 
of spatial locations. While PASTE is robust and fast, it is limited to lin-
ear alignments, which are often insufficiently expressive for complex 
distortions of data. While alignment is not the focus of Splotch26, the 
method uses a linear autocorrelation model to shift ST slices to align 
specific tissue regions.

Two landmark-based approaches to spatial alignment have also 
been proposed. Effortless generic Gaussian process (GP) landmark 
transfer (Eggplant) was developed using GP regression27. Eggplant 
projects gene expression values of each misaligned slice onto a given 
CCS. Eggplant requires the user to identify a set of landmarks on each 
misaligned sample and the template sample. Eggplant performs this 
template transfer independently for each slice and each gene, ignoring 
any correlation between them. ST imaging framework (STIM) borrows 
techniques from computer vision to register ST data into a CCS28.  
For both Eggplant and STIM, the identification of shared landmark 
locations may be difficult across slices from tissues without canonical 
structures, such as tumors.

In this work, we present a probabilistic model that aligns the 
coordinates of spatial genomic samples across tissue slices, indi-
viduals and data modalities. We apply our model to ST data and, in 
one experiment, paired histology data, at subcellular, cellular and 
supercellular resolutions from different platforms. Given a set of 
unaligned slices, our approach iteratively estimates a robust CCS 
(shared spatial locations capturing the full breadth of the slices) and 
maps the local coordinates from each slice onto the CCS. Our model, 
which leverages similarities in both spatial structure and phenotypic 
readouts between slices, enables the creation of a CCS onto which 
heterogeneous slices may be mapped and then analyzed jointly 
with respect to the shared CCS. The automated creation of a CCS 
is itself a contribution; few CCSs exist because of the challenges in  
creating them29,30.

Our proposed generative model uses two stacked GPs to align 
spatial slices across samples and technologies in a 2D, 3D or poten-
tially four-dimensional spatiotemporal coordinate system. Given 
a location in a slice, the first layer maps this location to the corre-
sponding location in the CCS. The second layer generates the  
distribution of phenotypic readouts at that location (for exam-
ple, the distribution of gene expression values). Together, the first 
layer representing a CCS and the second layer representing a map 
from each location in the CCS to estimates of phenotypic readouts  
represent an atlas. Our approach opens the door to de novo creation 
of large tissue atlases using collections of tissue samples. Our model 
allows for straightforward downstream analyses on the aligned slices, 
including imputation of sparse measurements, analysis of variation 
and joint mapping of slices with distinct modalities from different  
technologies.
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containing n = 225 spatial locations. The observed spatial coordinates 
for the first slice were kept at the original grid, and the observed coordi-
nates for the second slice were generated by randomly warping the CCS 
with a GP warp (Methods) using an isotropic RBF with length scale ℓ = 10 
and spatial variance τ2 = 0.5. We sampled synthetic expression values 
from a GP with the true spatial coordinates as inputs (Equation 1). We 
fit the model twice with this dataset: once using a de novo alignment 
and once using a template-based alignment with the first slice as the 
template. For both alignments, the warped coordinates were aligned 
with minimal distortion using the latent CCS (Fig. 1b). The MSEs for 
the de novo and template-based aligned coordinates were 0.000537 
and 0.00725, respectively, while the MSE of the original spatial coor-
dinates was 0.733. These results indicate that GPSA is a viable model 
for aligning distorted spatially-resolved slices using both de novo and 
template-based alignment.

Robustness of GPSA to observation noise. We next tested GPSA’s 
robustness to the number of readout features, the magnitude of 
distortion between the slices relative to the CCS and the noise vari-
ance in the readouts. To do so, we generated synthetic datasets with 
2D spatial coordinates using the same approach as before. We var-
ied the number of readout features p ∈ {1, 20, 50}. To vary the mag-
nitude of distortion between slices, we varied the spatial variance 
τ2 of the RBF kernel of the GP warp (Methods; Equation 10), which 
corresponds to a larger distortion between slices. We fit GPSA to 
each of these datasets using a template-based alignment with the 
first slice as the template, repeating the experiment five times for  
each condition.

For comparison, we ran PASTE25 and extracted the aligned coor-
dinates. Every pair of simulated slices contains spots at identical loca-
tions. We measured the error between the warped locations for each 
of these spots between every pair of slices: 1

Sn
∑s<s′ ∑

n
i=1 ∥ x̃si − x̃s

′

i ∥
2
2. 

We interpret a lower error to indicate superior performance in these 
experiments.

In this simulation, GPSA’s alignment error decreased with more 
readout features and increased with greater distortion (Fig. 1c–e). GPSA 
achieved a substantially lower error than PASTE in all settings. This 
difference in error is largely due to the fact that PASTE applies a linear 
transformation and is unable to account for local nonlinear distortions. 
Furthermore, GPSA also outperforms PASTE with much larger numbers 
of spatial locations (Supplementary Fig. 2). These results imply that 
our model is robust to nonlinear warpings, distortions of different 
magnitudes and differences in the number of readout features.

Assessing alignment via readout prediction. Our experiments thus 
far have tested whether GPSA can align the spatial coordinates of dis-
torted samples. However, we expect that similar expression patterns 
across aligned slices should colocalize within the estimated CCS. To 
test this, we attempted to predict held-out readout values using the 
posterior estimates of expression values localized within the CCS. 
In particular, we repeated the 2D experiment in the previous Sec-
tion but held out 20% of the readout values from one of the slices. We 
then fit template-based GPSA and sampled the predicted expression 
values from the variational posterior predictive distribution at each  
CCS location:

̂f
(t)
ij ∼ p(fij| ̂g(t)i ), ̂g(t)i ∼ p(gi|x⋆i ), t = 1,⋯ ,T,

where g captures the CCS and f captures the noiseless distribution of 
the readouts at each location of the CCS. Because the posterior mean 
is not available in closed form, we approximate the posterior mean 

across T = 10 samples, ̂fij =
1
T
∑T
t=1

̂f (t)ij . We compute the MSE between 

the predictions and the true values. We compared GPSA to two baseline 
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Fig. 1 | Demonstration of GPSA with synthetic data. a, GPSA applied to a 1D 
spatial coordinate system with p = 2 readout features (blue and orange) and 
S = 2 slices (dots and crosses). The x axis shows the spatial coordinate of each 
sample, and the y axis shows the readout values. Top, observed data; bottom, 
the CCS. b, GPSA applied to 2D data with p = 10 readout features and S = 2 slices 
(dots and crosses). The x and y axes show the spatial coordinates of each sample. 
Points are colored by one feature value. Left, observed data. Middle and right, 
de novo and template-based alignments from GPSA. c, Alignment error (MSE 
between all pairwise aligned slices with shared original coordinates) of GPSA 
and PASTE25 across varying numbers of readout features. Error bars capture the 

s.d. across five random runs. d, Similar to c but shows the error across varying 
levels of distortion within the slices. e, Similar to c,d but shows the error across 
different levels of variance in the synthetic expression data. f, Prediction with 
synthetic data. MSE for prediction of readout values versus ground truth on 
held-out spots from an aligned slice. ‘Union’ represents predictions from a GP fit 
to a concatenation of the observed samples, ‘separate’ refers to predictions from 
independent GPs fit to each sample separately, and ‘GPSA’ refers to predictions 
from GPSA fit across all samples. Each box plot shows the minimum and the 
maximum values (whiskers), the median (center line) and the first and third 
quartiles (the box boundary).
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approaches: we fit a GP to each slice separately (‘separate’ GP), and 
we fit a GP to a concatenation of the slices (‘union’ GP). We found 
that GPSA achieves lower prediction error than the two baseline 
methods (Fig. 1f). This result suggests that GPSA estimates read-
out value distributions within a CCS that have excellent predictive  
capabilities.

Estimating CCSs for ST
Having validated GPSA as a viable model for robust spatial align-
ment of high-dimensional observations, we next applied GPSA to 
spatially-resolved genomics data. Below, we present analyses of 
data collected from three technologies: ST1, the Visium platform37 
and Slide-seqV2 (ref. 3). We also performed analyses with images of 
hematoxylin and eosin (H&E) stains jointly with the spatial genomics 
data (Supplementary Table 1).

For all datasets, we removed mitochondrial genes and spatial 
locations with low counts, normalized readouts at each spatial location 
by the total number of counts at that location and log transformed, 
centered and standardized gene counts. We further filtered the data 
to include genes with spatial variability (see Methods for details). The 
spatial locations for each slice were normalized such that both coor-
dinates were in the interval (0, 10), as all slices were produced with 
approximately the same field of view.

Aligning ST profiles of breast cancer samples. We tested GPSA 
on an ST1 dataset made up of four slices of a breast cancer tumor  
(Supplementary Fig. 4).

We first validated GPSA on the ST data by perturbing the samples 
with an artificial warp and examining whether the CCS estimated by 
GPSA approximately removed the perturbation. For this experiment, 
we analyzed each of the four samples separately. We applied a synthetic 
GP warp (Methods) with τ2 = 0.5 and ℓ2 = 10 to each of the slices and ran 
de novo GPSA on these misaligned samples. For comparison, we ran 
PASTE and visualized the aligned coordinates for each method.

GPSA was able to recover the CCS (Fig. 2). Moreover, GPSA cor-
rected the local distortions in the spatial coordinates. By contrast, 
PASTE’s global correction did not correct these distortions. To quantify 
the alignments, we computed the MSE between the aligned coordinates 
and the true coordinates for three types of synthetic warps: GP, linear 
and polar warps. We ran ten repetitions of each experiment. GPSA out-
performed PASTE under the GP and polar warps and performed roughly 
the same as PASTE under linear warps (Fig. 2). This result suggests that 
GPSA robustly corrects local distortions on spatial coordinates.

Estimating expression variability across spatial locations. We next 
asked whether we could estimate the variability of gene expression at 
each spatial location. An accurate estimate of the variance would allow 
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Fig. 2 | Aligning ST data from a breast cancer tumor. a, We applied a synthetic 
warp to one slice of the ST data1 to remove the spatial distortion. The original 
slice is plotted using dots, and the warped slice is plotted using crosses. Points 
are colored by the expression of one gene. b, Alignment from PASTE25, which 
applies a linear transformation. c, Alignment from GPSA. d, Alignment error 
(log scale) for three types of synthetic warps applied to the ST data. Results 
are shown for GPSA and PASTE; each method and warp was run ten times. Each 
box plot shows the minimum and the maximum values (whiskers), the median 

(center line) and the first and third quartiles (the box boundary); the outliers are 
plotted separately and removed from computation. e, Using the aligned spatial 
coordinates from GPSA of the four ST tumor slices, we estimated the variability 
of gene expression within each spatial location by computing the variance across 
slices for each gene. f, Spatial variance of each gene, averaged across spots, where 
the x axis has been sorted. g, Several genes show substantial variability across the 
slices. Points are colored by the estimated variance at each spatial location.  
h, Gene set enrichment analysis of the gene variance scores from g.
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for useful analyses, such as understanding the spatial heterogeneity of 
gene expression in a particular tissue region and analyzing changes in 
expression along the z axis. Better alignment of the slices will lead to 
more precise quantification of variance.

We used the ST breast cancer data1 to quantify expression variation 
across slices. Here, we aligned all four slices using a 2D template-based 
alignment, using the second slice as the template. We then transferred 
each slice’s gene expression onto the template slice’s spatial coordi-
nates by assigning each point in the template slice the average of its 
nearest neighbors in the corresponding aligned slice. Using these four 
slices within the CCS, we then computed the variance for each gene 
(Fig. 2e), representing a combination of experimental, biological and 
z-axis variability.

We found substantial variability in expression for several genes 
(Fig. 2f) that are related to tumor progression, including PRSS23  
(ref. 38) and CST4 (ref. 39). To further investigate potential biological 
implications of this variation, we performed a gene set enrichment 
analysis, testing genes’ spatial variance (Fig. 2g) for over-representation 
or under-representation of specific gene modules. We found that ‘MYC 
targets’ and ‘upward KRAS signaling’, known to be associated with expres-
sion profiles in patients with breast cancer40–43, were enriched in genes 
with high estimated spatial variance. Thus, variability of expression 
across aligned slices at single locations highlights biologically informa-
tive markers.

Aligning samples in 3D space to create an atlas. Our analyses of the 
ST data thus far have ignored the 3D nature of the contiguous slices. 
Thus, we asked whether we could infer the third dimension (the z axis) 
to create a CCS plus localized expression distributions for the 3D tumor, 
what we would call a ‘3D tumor atlas’30.

To create a 3D tumor atlas, we fit GPSA on the four ST breast 
cancer slices, but we set the number of spatial dimensions to D = 3. 
We initialized the four slices’ z-axis coordinates as (0, 1, 2, 3) and 
allowed the model to warp these coordinates. Importantly, we 
used the same covariance function parameters for the warping GP 
across all spatial dimensions, which allows the alignment along 
the z axis to be informed by inferred spatial relationships along the  
x and y axes.

To perform the alignment, we used a two-step procedure. In the 
first step, we performed a template-based alignment with the second 
slice as the fixed template. In the second step, we fixed aligned coordi-
nates from warped slices 1, 3 and 4 as the template and fit GPSA again, 
warping the second slice’s coordinates. This process resulted in a 3D 
CCS for the tumor, where we have an estimate of gene expression 

at each location in the 3D CCS. The aligned z axis showed substan-
tial adjustments from the original positions (Fig. 3); we hypothesize 
that GPSA’s second-layer GP identified regions of the tumor that were  
functionally similar in terms of gene expression, and thus GPSA’s 
first-layer GP warped those spatial locations to be near one another 
within the CCS.

We imputed a dense 3D model of gene expression within the esti-
mated CCS (Supplementary Fig. 5). We found that expression of specific 
genes varied smoothly across this space, with substantial variation 
along the z axis (Fig. 3). These findings suggest that GPSA is a feasible 
model for creating 3D atlases using spatial genomic slices from sequen-
tial samples from a single tissue.

Aligning Visium profiles of the mouse cortex. Next, we applied GPSA 
to data collected using the Visium platform from 10x Genomics37. 
These data (two adjacent slices) were collected from a cross-section 
of the sagittal–posterior region of the mouse brain. The slices contain 
measurements at 3,355 and 3,289 spatial locations. We again filtered 
the data, keeping spatially variable genes (Supplemental Methods 
2.12) and leaving 135 genes. We fit template-based GPSA, designating 
the first sample as the template. In the original data, there was a small 
spatial mismatch in the cerebellar folds of the two slices (Fig. 4a,c). 
Examining the aligned coordinates, we found that GPSA was able to 
correct this distortion by adjusting the second slice downward to match 
the first slice (Fig. 4b,d).

To quantify the alignment, we fit GPSA using all of the spots from 
the first slice and 80% of the spots from the second slice, reserving the 
remaining 20% of the spots for testing. We then made predictions for 
expression levels at the held-out spots using two strategies: (1) naively 
stacking the two slices and making predictions using a GP (the union 
GP) and (2) using our estimated CCS and localized expression estimates 
to predict expression values. We computed R2 for the masked predic-
tions, repeating this experiment five times for random train–test splits. 
Predictions using the aligned coordinates from GPSA outperformed 
those using the original coordinates (Fig. 4e).

We next asked whether downstream analyses of these data could 
be strengthened following alignment with GPSA. To do this, we tested 
our ability to identify spatially-correlated genes before and after 
alignment by computing Moran’s I score for each gene. We found that 
the scores were consistently higher following alignment with GPSA, 
and scores for several genes were statistically significant only after 
alignment (false discovery rate ≤ 0.1; Fig. 4f), indicating improved 
statistical power. Under the union alignment, we identified 2,644  
(of 4,260) genes with spatial autocorrelation, while, under the GPSA 
alignment, we identified 2,945 genes with spatial autocorrelation  
(Benjamini–Hochberg (BH)-adjusted P < 0.1). Together, these find-
ings imply that aligned coordinates strengthen downstream analyses  
of variation.

Aligning Slide-seqV2 profiles of the mouse hippocampus. We next 
leveraged a set of two tissue slices collected from the hippocampus 
region of two mice using Slide-seqV23. These samples are not immedi-
ately comparable due to major shifts in the field of view (Supplementary 
Fig. 7). Thus, as a preprocessing step, we first applied a coarse manual 
rotation and translation to put the samples approximately within the 
same field of view. We fit GPSA to these slices using a template-based 
alignment with the first slice as the template.

The aligned coordinates showed correspondence between the two 
slices for multiple major landmark regions. In particular, we found that 
the dentate gyrus and the CA1–CA3 pyramidal layer were well aligned 
(Fig. 5). Due to differences in the field of view and in the structure of 
the brains of two different mice, we did not expect to achieve a per-
fect one-to-one matching of the spatial coordinates. In particular, we 
observe that the choroid plexus was a prominent marker in the first 
slice but not in the second (Supplementary Fig. 8), and several other 
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structures were not present in the second slice (Supplementary Fig. 9).  
The flexibility of GPSA allows for these distinctions. Moreover, a user 
could manually correct a deformation in the latent CCS if it were known 
to be incorrect (Discussion).

To further validate this CCS, we computed the distance between 
three landmark locations (two endpoints of the dentate gyrus and an 
edge of area CA3 (Supplementary Fig. 10)) in both slices before and 
after alignment. For all three landmarks, the distance between the 

slices decreased after alignment (Fig. 5i). This suggests that known 
structural landmarks are well aligned in GPSA even when hidden from  
the model.

Next, we fit GPSA while holding out a fraction of the spots and 
tested how well we could predict the expression values at the held-out 
spots before and after alignment. Again GPSA outperformed a concat-
enation of slices in prediction, and this improved prediction was largely 
consistent across genes (Supplementary Fig. 11).
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Multimodal alignment: incorporating histology images
We jointly aligned spatially-resolved gene expression and histology 
images. The histology images contain measurements for three color 
channels and thus are low dimensional relative to gene expression 
values; however, these images often contain interpretable features 
of anatomy widely used by pathologists, leading to their availability 
alongside spatial gene expression profiling. We hypothesize that 
including histology images in the alignment procedure may pro-
duce better alignments and enhance the interpretability of align-
ments in downstream analyses, such as enabling straightforward  
CCS annotation.

To test this hypothesis, we used mouse brain data from the Visium 
platform. For each slice, a histology image is pre-aligned to a Visium 
slice. We again fit template-based GPSA using the S = 2 slices with the 
first slice as the template, but this time we also include the histology 
images as phenotypic readout features and spatial locations.

GPSA successfully aligned these multimodal samples (Fig. 6).  
In the original histology images, there was a slight misalignment in one 
of the cerebellar folds (Fig. 6c). After fitting GPSA, we observed that 
the alignment had been corrected (Fig. 6d). Examining gene expres-
sion in the corresponding region, we found that the darker histol-
ogy region corresponded to higher levels of expression in the genes 
CAMK2A (BH-adjusted P value ≤ 1.0 × 10−5) and MT-CO1 (BH-adjusted  
P value ≤ 5.0 × 10−3; Supplementary Fig. 12).

We computed a vector field showing the displacement of each 
spatial coordinate after the alignment. Substantial nonlinear warp-
ing was necessary to align the histology stains (Fig. 6e). These results 
suggest that GPSA may be used to align multimodal data including 
spatial gene expression and histology measurements, broadening its 
potential applications.

Discussion
We have presented GPSA, a Bayesian two-layer GP model for align-
ing multiple spatial genomic and histology slices into a known or an 
unknown CCS. We have shown that our model can flexibly align samples 

from multiple spatial sequencing technologies, fields of view and data 
modalities. Current approaches such as PASTE25 and Splotch26 rely on 
linear transformations of spatial coordinates. We showed the necessity 
of allowing nonlinear warpings. We imagine a two-stage strategy for 
building tissue atlases: (1) running PASTE to find a coarse alignment and 
(2) running GPSA to tune the coarse alignment and produce a CCS with 
localized measurement distributions across the space. Given GPSA’s 
flexible assumptions, our model is applicable to many other spatial 
sequencing technologies (both present and future) with varying levels 
of resolution, fields of view and profiling.

Several future directions could be pursued. While we find that 
GPSA finds more accurate alignments than competing approaches, 
this comes at the cost of time. Our variational inducing point inference 
reduces the time complexity from O(n3) to O(nm2), where n and m are 
the number of readouts and inducing points, respectively. However, a 
large number of inducing points are often required for high-resolution 
technologies. Nonetheless, we find that the time required to fit GPSA 
to the data presented here is not prohibitive (Supplementary Fig. 13). 
Moreover, researchers only need to align their samples once with GPSA. 
Including known anatomical landmarks could speed up the alignment 
and lead to more biologically interpretable coordinate systems. To 
incorporate prior anatomical knowledge, structural landmarks could 
easily be included in the GPSA framework by fixing the annotated land-
mark locations in the CCS. However, an attractive feature of GPSA is its 
reliance on almost no prior knowledge about the structure of the tissue. 
Future work may also use landmarks inferred from the histology images 
to annotate the CCS in an automated manner. Finally, there remains 
an opportunity for a deeper theoretical study of GPSA and DGPs in 
general. Studying the posterior consistency of the kernel parameters 
and the latent variable G could lead to theoretical guarantees for the 
resulting CCSs.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Problem definition and notation
Here, we formalize the problem that we wish to solve. We define a 
spatially-resolved slice or slice from a spatial genomic or histology 
technology as a set of pairs {(xi,yi)}

n
i=1, where xi ∈ ℝD is a vector of spatial 

coordinates encoding a single slice’s relative location in a D-dimensional 
space, and yi ∈ ℝp is a vector of measured readout features at this loca-
tion. Typically, D ∈ {2, 3, 4} in biomedical applications, where D = 4 
corresponds to the spatiotemporal setting. We focus on D = {2, 3} in 
this paper. Following convention, we refer to a single location xi as a 
spot, which may refer to a single cell, a subcellular location, a collection 
of cells or a single pixel depending on the technology. We arrange the 
observations from a slice into two data matrices: the spots’ relative 
locations X ∈ ℝn×D and the phenotypic readouts associated with those 
spots Y ∈ ℝn×p.

To give concrete examples, in ST applications, xi encodes a spatial 
location on a single tissue slice, and yi is a vector of RNA transcript 
counts at this location for each of p genes. In a histology setting, xi is a 
pixel location, and yi is a vector containing the p image color channel 
readouts.

We assume that we have S spatially-resolved slices collected from 
the same tissue type and similar tissue region. Often, these slices will 
be adjacent slices from a single tissue, but, as we showed in our results, 
our approach is extensible to datasets collected from different tissue 
samples or individuals. Suppose slice s (s ∈ {1, …, S}) contains ns spots, 
and let Xs = [xs1,x

s
2,… ,xsns ]

⊤  denote its spatial locations. Similarly, let 
Ys = [ys1,y

s
2,⋯ ,ysns ]

⊤ be the sth readout of feature values. We denote the 
total number of spots across slices as N = ∑S

s=1 ns. We note that, in our 
framework, the slices may have different total numbers of spots and 
may be on different scales.

Our goal is to align these S slices’ spatial coordinates by creating 
a CCS such that the matching anatomical, structural and functional 
regions of each slice are mapped to the same absolute locations in the 
CCS. To do this, we seek correspondences between both the spatial 
coordinates and phenotypic readouts of each slice. Specifically, we 
seek S vector-valued warping functions g1, g2, …, gS, with gs ∶ ℝD → ℝD, 
each of which maps a slice’s observed relative spatial coordinates into 
a shared CCS. Let gsi = g

s(xsi )  denote evaluation of the sth warping  
function at spatial location xsi . We call gsi  the ‘aligned spatial location’ 
of this spot, and let the full set of aligned spatial locations be denoted 
as G = [g1

1,g
1
2,… ,gsi ,g

s
i+1,… ,gSnS ].

Our goal is to estimate these warping functions {gs}Ss=1 such that 
any two samples mapped to nearby points in the CCS, gsi ≈ gs

′

i′ , are 
structurally and functionally similar to one another. We consider three 
approaches that show the powerful behavior of our probabilistic model 
under uncertainty and censored information. First, we treat the mul-
tiple slices as biological replicates to leverage both spatial information 
and the measured readouts for alignment. Second, we consider mul-
tiple data modalities of the same biological system, assuming that the 
data come from approximately the same location in the absolute coor-
dinate system to leverage the spatial locations and all modalities jointly. 
Third, we use multiple slices and infer their relationship along an unob-
served z axis, assuming that the measured readouts vary across the z 
axis in a smooth manner. The flexibility of our GP framework allows 
each of these three approaches to alignment.

Gaussian processes
A GP is a stochastic process defined as a collection of random variables 
in which any subset follows a multivariate Gaussian distribution. Spe-
cifically, y1, y2, … constitute a GP if, for any finite set of indices i1, i2, …, in, 
it holds that

(yi1 , yi2 ,⋯ , yin )
⊤ ∼ 𝒩𝒩n(μμμ,ΣΣΣ),

where μ is a mean vector and Σ is a positive definite covariance matrix. 
GPs are widely used in functional data analysis, machine learning and 

spatial statistics due to their flexibility and expressiveness in modeling 
complex dependent data44–48. For example, in nonparametric regres-
sion models, GPs are commonly used to model unknown arbitrary 
functions; in Bayesian contexts, they act as priors over functions49.

GPs are often used as prior distributions over functions, as in this 
paper. In this case, for a function f defined on the domain ℝD, we denote 
a GP prior as

f ∼ GP(μ, k),

where μ ∶ ℝD → ℝ is a mean function and k ∶ ℝD × ℝD → ℝ is a positive 
definite covariance function (also known as a kernel function or covari-
ogram). For noisy responses from the noiseless function f, we include 
Gaussian noise: y ∼ 𝒩𝒩(f(x),σ2) , where σ2 is often referred to as the 
‘nugget’.

Deep Gaussian processes
DGPs were developed to further extend the expressivity of GPs50,51. 
DGPs are a composition of functions, each of which is drawn from a 
GP. In the univariate case, the function drawn from an L-layer DGP is 
given by

f = fL ∘ fL−1 ∘ ⋯ ∘ f1,

where, for each ℓ = 1, …, L, we have fℓ ∼ GP(μℓ, kℓ), and yℓ = fℓ(fℓ−1( ⋯ f1(x))) 
is the output of the ℓth layer in an input sample x. In this work, we use 
two-layer DGPs or L = 2.

Gaussian Process Spatial Alignment
First layer: warping functions. GPSA places GP priors on the warping 
functions g1, …, gS that map the observed spatial coordinates onto a 
CCS. Focusing on the case with D = 2 spatial dimensions for demonstra-
tion, GPSA assumes that

gsi = [
gs1(x

s
i )

gs2(x
s
i )
] , gsd ∼ GP(μgd, kg); s = 1,… , S,d = 1, 2,

where gsd  is the warping function for slice s for which the output  
is the dth spatial dimension, μgd ∶ ℝD → ℝ  is a mean function, and 
kg ∶ ℝD × ℝD → ℝ is a positive definite covariance function. We specify 
the mean of the aligned spatial location to be equal to the observed 
location, μgd(x) = xd, which encourages the aligned coordinate for a 
given spatial location to be centered around the observed location. 
This assumption is useful to avoid extreme warps that drastically shift 
the mean of each observed location.

Second layer: modeling phenotypic readouts. GPSA then posits 
another set of functions {fj}

p
j=1 that describe the spatial organization of 

each phenotypic readout (for example, gene expression values) within 
the CCS. We place a GP prior on these functions as well. Letting ysij  
denote the value for feature j in spot i from slice s, GPSA assumes that

ysij = fj(g
s
i ) + ϵ, fj ≈ GP(μf, kf), j = 1,… ,p, s = 1,… , S, (2)

where ϵ ∼ 𝒩𝒩(0,σ2) is a noise term, μf ∶ ℝD → ℝ is a mean function, and 
kf ∶ ℝD × ℝD → ℝ is a positive definite covariance function. Let fsij ∈ ℝ be 
the evaluation of fj at input gsi . We specify μf = 0, as we assume  
that the phenotypic readouts have been centered. Furthermore,  
let F = [f111, f

1
21,… , fsij, f

s
(i+1)j,… , fSnsp]  denote the full set of function 

evaluations.
The above model results in a two-layer DGP where, for each slice s, 

the DGP is made up of a composition of two functions, f∘gs.

Posterior inference for the common coordinate system
We have two statistical objectives with the GPSA model: estimating 
the CCS, as represented by the latent variable G, and estimating the 
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warped, denoised and localized values for the phenotypic readouts for 
each slice, represented by F. The CCS gives us an atlas of the system; 
the warped and smoothed readouts may be used for downstream 
analysis of the aligned slices. Thus, in our Bayesian GPSA framework, 
the posterior distribution of interest is

p(G,F|X,Y,Θ) = p(X,Y|G,F,Θ)p(G,F)
Z , (3)

where the vector Θ contains the parameters for the mean and covari-
ance functions and Z = p(X, Y∣Θ) is a normalizing constant. However,  
Z is analytically intractable in DGPs50. Thus, we use stochastic vari-
ational inference with inducing variables to approximate the posterior 
distribution over G and F (ref. 52).

Stochastic variational inference for GPSA
Although closed-form posterior distributions are available in GPs, this 
is not the case in DGPs. To perform approximate inference, we leverage 
a sparse GP framework using inducing points51,53,54. Because GPSA is a 
two-layer DGP, we include inducing points at each of the two layers. In 
particular, suppose we have a set of Ms < ns inducing locations (also 
known as pseudo-inputs) for each slice X̃1,… , X̃S ∈ ℝMs×D and another 
set of M < N inducing locations in the CCS layer G̃ ∈ ℝM×D . We then 
denote the associated set of inducing values (pseudo-outputs) for the 
two layers as UG1 ,… ,UGS ∈ ℝMs×D and UF ∈ ℝM×p, respectively. The joint 
model (omitting dependence on the covariance function parameters 
Θ) is then

p(G,F,UG,UF,X,Y) =

p(Y|F)⏟⎵⏟⎵⏟
Noisemodel

p(F|UF,G)⏟⎵⎵⏟⎵⎵⏟
ReadoutGP

p(UF|G̃)⏟⎵⏟⎵⏟
Inducingprior

p(G|UG,X)⏟⎵⎵⏟⎵⎵⏟
WarpGP

p(UG|X̃)⏟⎵⏟⎵⏟
Inducingprior

. (4)

Note that p(F∣UF, G) and p(G∣UG, X) have closed forms because they 
are conditional multivariate Gaussians. If a Gaussian noise model is 
assumed, then p(Y∣F) also has a closed form. However, inference in this 
model scales cubically with the number of spots; therefore, we seek a 
faster variational approach.

We now specify a variational model Q, with parameters that we will 
optimize to approximate the exact posterior (equation (3)). Following 
earlier work50, we use the following form for the approximate posterior:

Q = p(F|UF,G)q(UF)p(G|UG,X)q(UG), (5)

where q(UF) and q(UG) are chosen to be multivariate normal distribu-
tions. We denote the variational parameters collectively as ϕ. Because 
all distributions are Gaussian, we can analytically marginalize out the 
pseudo-outputs UF and UF (ref. 51). See Appendix for details.

The optimization problem is then to minimize the Kullback Leibler 
(KL) divergence from the exact posterior (equation (3)) to the approxi-
mate posterior (equation (5)) with respect to the variational parame-
ters. This is equivalent to maximizing a lower bound on the log marginal 
likelihood ℒ ≤ logp(Y) (the evidence lower bound or ELBO). The vari-
ational parameters ϕ are made up of the parameters of the prior dis-
tributions for the pseudo-outputs q(UF) and q(UG) and optionally the 
inducing locations X̃1,… , X̃S, G̃ . More precisely, our optimization  
problem is

max
ϕ

ℒ, ℒ = 𝔼𝔼Q [log
p(Y|F)p(UF|G̃)p(UG|X̃)

qϕ(UF)qϕ(UG)
] . (6)

We provide a complete derivation and explanation of this lower 
bound in the next section. Although this lower bound cannot be 
evaluated in closed form, we can efficiently sample from it and 
use these samples to maximize with respect to the variational  
parameters ϕ.

Maximizing the ELBO in GPSA
Recall that the ELBO for a generic model with observed data x, latent 
variable z and approximating distribution q is given by

ℒ = 𝔼𝔼q(z) [log
p(x, z)
q(z) ] ,

where p(x, z) is the joint model density, and q(z) is the variational 
distribution.

Plugging in our GPSA model, the ELBO is given by

We can split equation (6) into a term containing the expected log 
likelihood and two terms that are KL divergences:

ℒ = 𝔼𝔼Q [logp(Y|F)] − 𝔼𝔼Q [log
q(UF)
p(UF|G̃)

] − 𝔼𝔼Q [log
q(UG)
p(UG|X̃)

] (7)

= 𝔼𝔼Q [logp(Y|F)] − DKL (q(UF) ∥ p (UF|G̃ ) − DKL (q(UG) ∥ p(UG|X̃)) . (8)

Because we let q(UF) and q(UG) be multivariate Gaussians, the KL diver-
gence has a closed form, and the only remaining term to estimate is the 
expected log likelihood (the first term in equation (8)). We estimate 
this term with a Monte Carlo approximation. Given T samples of F, 
our estimate is

𝔼𝔼Q [logp(Y|F)] ∼
1
T

T
∑
t=1

logp(Y|F̂t),

w h e re  F̂1,… , F̂T ≈ Q .  We  u se  a  t wo - s t a ge  p ro c e d u re  t o  
obtain these samples. First, we draw samples of Ĝ  from 
p(G|X, X̃) = ∫ p(G|UG,X, X̃)p(UG|X̃)dUG.  Second, we draw samples 
 of F̂  from p(F|Ĝ, G̃) = ∫ p(F|UF,G, G̃)p(UF|G̃)dUF.  We can write each of 
these distributions in closed form.

Let q(uGsd ) = 𝒩𝒩(mGs
d ,S

Gs
d ). The marginal for G is given by

q (gsd|m
Gs
d ,S

Gs
d ;X, X̃) = 𝒩𝒩 (μ̃Gsd , Σ̃

Gs
d )

with

μ̃Gsd = m(Xs) +K⊤
X̃sXs

K−1
X̃sX̃s

(mGs
d −m(X̃s))

Σ̃Gsd = KXsXs −K⊤
X̃sXs

K−1
X̃sX̃s

(KX̃sX̃s − SGsd )K
−1
X̃sX̃s

KX̃sXs .

Let q(uFj ) = 𝒩𝒩(mF
j ,S

F
j ). The marginal for F is given by

q (fj|mF
j ,S

F
j ;G, G̃) = 𝒩𝒩 (μ̃Fj , Σ̃

F
j )

with

μ̃Fj = m(G) +K⊤
G̃G

K−1
G̃G̃
(mF

j −m(G̃)) (9)

Σ̃Fj = KGG −K⊤
G̃G

K−1
G̃G̃
(KG̃G̃ − SFj )K

−1
G̃G̃

KG̃G. (10)

We then maximize the ELBO with respect to the variational param-
eters, as well as the covariance function parameters. If the covariance 
function parameters are optimized, one can regularize the covariance 
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function parameters to avoid unrealistic warping functions. Under our 
Bayesian framework, we can place a prior distribution on the covariance 
function parameters to limit the warps to be small and stable.

This procedure is also amenable to stochastic optimization algo-
rithms52. In terms of memory consumption, GPSA is extremely scalable. 
In particular, stochastic optimization algorithms open the door to scale 
GPSA to datasets with millions of spots by using a subset of the spots (a 
‘mini-batch’) on each iteration of optimization. The required memory 
consumption will thus scale with the chosen mini-batch size, which can 
be made arbitrarily small depending on a user’s memory constraints.

Multivariate correlated outcomes
In its simplest form, GPSA assumes that feature readouts are independ-
ent of one another by modeling each with a separate GP-distributed 
function fj. However, given that our phenotypic readouts of interest 
(gene expression, for example) are often highly correlated between fea-
tures, we would like to leverage the correlation between readouts to fit 
f. There are several approaches to accounting for this correlation35,55,56.

We choose to leverage the LMC35. Rather than allowing p sepa-
rate GPs, the LMC assumes that there are L < p latent GPs and that the 
observed readouts are a linear combination of the outputs of these 
latent GPs. To incorporate this into our registration model, we assume 
the following model for the second-layer GP:

ysi = WF + ϵ

[F]ℓi = fℓ(gi) ∼ GP(μℓ(gi), kℓ(gi,G))

ϵ ∼ 𝒩𝒩(0,σ2I)

where W ∈ ℝp×L is a loading matrix, F ∈ ℝL×N is a matrix containing latent 
factors and I is the identity matrix. Given a set of warped coordinates 
G, our likelihood is then

p(Y,F|W,G,θ,σ2) =
p
∏
j=1
p(yj|F,wj,σ2)

L
∏
l=1
p(fl|G)

=
p
∏
j=1

𝒩𝒩(yj|Fwj,σ2IN)
L
∏
l=1

𝒩𝒩(fl|μl(G),KGG).

Including the warp model, our entire joint model becomes

p(Y,F,G|W,θ,σ2) =
p
∏
j=1

𝒩𝒩(yj|Fwj,σ2IN)
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

Noise

L
∏
l=1

𝒩𝒩(fl|μl(G),KGG)
⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

LMC

S
∏
s=1

D
∏
d=1

𝒩𝒩(gsd|μsd(Xs),KXsXs )
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

Warpprior

.

In our applications, we may not be interested in directly estimating 
the latent factors F. We can marginalize these out57 and write the likeli-
hood as

vec(Y)|G ∼ 𝒩𝒩(μ,Σ),

where

μ = 0Np, Σ =
L
∑
l=1
K(l)
GG

⊗wlw
⊤
l .

If the latent covariance functions k1, …, kL are the same, the covariance 
simplifies as Σ = KGG ⊗ WW⊤.

Multimodal outcomes
We may sometimes have access to multiple samples from each slice, 
each of whose phenotypic readouts are collected from different modal-
ities. For example, we may have an ST sample and a histology image in 
each slice. While both of these modalities lie in a 2D spatial coordinate 
system, they have different response values. In this example, the ST 

readouts will be Y1 ∈ ℝn×p, where p is the number of genes, while the 
histology image readouts will be Y2 ∈ ℝm×q, where q is the number of 
color channels.

Our model can easily accommodate this setting. We assume that 
the different modalities are already aligned within each slice, which is 
a reasonable assumption in practice. Instead of computing the likeli-
hood for only one set of phenotypic readouts, we compute it for each 
modality’s phenotypic readouts. For example, the likelihood becomes

p(Y,G|X,θ,σ2) = p(Y|G,θo,σ2)p(G|X,θw)

=
M
∏
m=1

pm
∏
j=1
p(ymj |G

m,θo,σ2)
S
∏
s=1

D
∏
d=1

p(gsd|X
s,θw)

,

where M is the number of modalities, pm is the number of readout fea-
tures in modality m, Ym is the set of readout features for modality m, 
and σ2 is the variance of the Gaussian noise of each readout.

Non-Gaussian likelihoods
We can accommodate non-Gaussian likelihoods in this model. In par-
ticular, we can specify the likelihood in equation (4), p(Y∣F), to be any 
suitable data likelihood. In the setting of sequencing data, the measure-
ments often come in the form of nonnegative integer counts, for which 
a Poisson likelihood is often a reasonable choice.

Imputing dense spatial readouts under GPSA
The second layer of GPSA represents a mapping from the CCS to the 
observed phenotypic readouts. Thus, for any location in the CCS 
(regardless of whether a sample location is mapped to this point in 
the first layer or not), we can compute the variational parameters for 
the phenotypic readouts at this location (equations (9) and (10)). This 
allows for querying across a dense grid of locations in the CCS, yielding 
a distribution over the phenotypic readouts at these locations.

Model settings and preprocessing for experiments
In our experiments, we normalize all spatial coordinates so that the 
minimum x and y coordinate values are 0, and the maximum coordinate 
values are 10.

For all experiments, we specify the mean function of the GP prior 
for the warping functions to be the identity function. This choice is 
motivated by our expectation that most distortions in tissue samples 
will be relatively small and local, with large translations between slices 
being uncommon. We use the RBF covariance function for the first-layer 
GPs. The RBF covariance function is given by

k(x, x′) = τ2 exp {− (x − x
′)2

ℓ2 } , (11)

where ℓ is the length scale parameter, and τ2 is the spatial variance 
parameter. Intuitively, ℓ controls how different the warping function 
is locally, and τ2 controls the overall magnitude of the warping function 
(Supplementary Fig. 5). For the second layer of the multi-output GP, 
with an LMC covariance function, we infer the covariance function 
parameters using maximum likelihood. Model parameters, including 
covariance function parameters, are fitted during training by maximiz-
ing a lower bound on the log marginal likelihood of the data. For the 
first-layer GP (the warp GP) in de novo alignments, we fix the covari-
ance function parameters before model fitting. Specifically, we fix the 
length scale as ℓ = 10 and the spatial variance as σ2 = 1 to ensure smooth 
and minimal warps. We found that these choices are relatively robust 
within a range (Supplementary Fig. 18). Our empirical tests show that 
the model’s performance tends to be stable for higher values of σ2 and 
ℓ. This is likely due to the fact that the model is more constrained with 
lower values of σ2 and ℓ (that is, it is difficult for the model to accommo-
date distortions with large magnitude under these parameter settings).
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For our applications to spatial genomics data, we filter the readout 
features to features that show spatial correlation. Specifically, for each 
readout feature, we compute Moran’s I statistic58 (Supplementary 
Fig. 19) and retain features in the top 5% of I scores. We find that this 
approach identifies genes with high spatial variability (Supplementary 
Figs. 16 and 17) and identifies genes that were identified in previous 
work15. More complicated procedures to identify spatially variable 
genes could be used15, but this is not the primary focus of our work. 
This step increases the efficiency of GPSA not only by reducing the 
dimension of the readout features but also by removing features that 
are not correlated across space and would not aid a spatial alignment 
(Supplementary Fig. 8).

Synthetic warps
Throughout our experiments, we apply three different types of random 
warps, which we describe here.

 1. Linear warp: this warp applies a linear transformation to the 
observed spatial coordinates for each slice Xs such that 
x̃sd = (xs)⊤βββsd + βsd0 + ϵ for d ∈ {1, …, D}, where βββsd ∈ ℝD,βsd0 ∈ ℝ are 
the slope and intercept, respectively, and ϵ ∼ 𝒩𝒩(0,σ2) is a noise 
term.

 2. Polar warp: for a single spatial sample to be represented as 
x = [x1, x2]

⊤, this function is defined as

gs(x;θ) = [
x1 + r cosϕ

x2 + r sinϕ
] ,

where θ = {r, ϕ}. We further parametrize θ to allow for location-specific 
distortions. Thus, θ is implicitly a function of x as well,

[
rx
ϕx

] = θ(x) = Bx,

where B is a 2 × 2 coefficient matrix. The full warping function can then 
be written as

gs(x;θ) = [
x1 + b11x1 cos(b12x1)

x2 + b21x1 sin(b22x2)
] .

 3. GP warp applies a transformation function that is drawn from a 
GP:

x̃sd = f
s
d(x

s
d) + ϵ, f sd(x

s
d) ∼ GP(xsd,Kxsdx

s
d
). (12)

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The following data are available: (1) ST data were obtained from 
the PASTE code repository: https://github.com/raphael-group/
paste. All four layers from the ‘sample_data/’ directory were used. 
(2) Visium data were obtained from the 10x Genomics website. 
Data for the two slices were downloaded from the ‘Datasets’ page. 
Specifically, spatial gene expression and hematoxylin and eosin 
stains were downloaded from the following links: mouse brain 
serial section 1 (sagittal–posterior; https://www.10xgenomics.
com/resources/datasets/ mouse-brain-serial-section-1-sagittal- 
posterior-1-standard-1-1-0) and mouse brain serial section 2 (sagit-
tal–posterior; https://www.10xgenomics.com/resources/datasets/ 
mouse-brain-serial-section-2-sagittal- posterior-1-standard-1-1-0). 
(3) Slide-seqV2 data were downloaded from the Broad Institute’s 
Single Cell Portal: https://singlecell.broadinstitute.org/single_cell/ 

study/SCP815/highly-sensitive-spatial-transcriptomics-at-near- 
cellular-resolution-with-slide-seqv2. Two pucks corresponding  
to the mouse hippocampus were used: Puck_191204_01 and 
Puck_200115_08.

Code availability
Code for the model and experiments is available at https://github.com/
andrewcharlesjones/spatial-alignment. All experiments in the paper 
can be run with the Python scripts in the ‘experiments/’ directory of 
the GitHub repository.
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