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Learning single-cell perturbation responses 
using neural optimal transport

Charlotte Bunne    1,2,9, Stefan G. Stark1,2,3,4,9, Gabriele Gut    5,9, 
Jacobo Sarabia del Castillo5, Mitch Levesque6, Kjong-Van Lehmann    1,7 , 
Lucas Pelkmans    5 , Andreas Krause    1,2  & Gunnar Rätsch    1,2,3,4,8 

Understanding and predicting molecular responses in single cells upon 
chemical, genetic or mechanical perturbations is a core question in biology. 
Obtaining single-cell measurements typically requires the cells to be 
destroyed. This makes learning heterogeneous perturbation responses 
challenging as we only observe unpaired distributions of perturbed or 
non-perturbed cells. Here we leverage the theory of optimal transport 
and the recent advent of input convex neural architectures to present 
CellOT, a framework for learning the response of individual cells to a given 
perturbation by mapping these unpaired distributions. CellOT outperforms 
current methods at predicting single-cell drug responses, as profiled by 
scRNA-seq and a multiplexed protein-imaging technology. Further, we 
illustrate that CellOT generalizes well on unseen settings by (1) predicting 
the scRNA-seq responses of holdout patients with lupus exposed to 
interferon-β and patients with glioblastoma to panobinostat; (2) inferring 
lipopolysaccharide responses across different species; and (3) modeling the 
hematopoietic developmental trajectories of different subpopulations.

Characterizing and modeling perturbation responses at the single-cell 
level from non-time-resolved data remains one of biology’s grand chal-
lenges. It finds applications in predicting cellular reactions to envi-
ronmental stress or a patient’s response to drug treatments. Accurate 
inference of perturbation responses at the single-cell level allows us to 
understand how and why individual tumor cells evade cancer thera-
pies1. More generally, it deepens the mechanistic understanding of 
the molecular machinery that determines the respective responses 
to perturbations. Single-cell responses to genetic or chemical pertur-
bations are highly heterogeneous2 due to multiple factors, including 
pre-existing variability in the abundance and subcellular organiza-
tion of messenger RNA and proteins3–6, cellular states7 and the cellular 
microenvironment8. To effectively predict the drug response of each 
cell in a population, whether derived from tissue culture or as primary 

cells from a patient biopsy, it is thus crucial to incorporate this het-
erogeneous multivariate subpopulation structure into the analysis.

A fundamental difficulty in learning perturbation responses is 
that cells are usually fixed and stained or chemically destroyed to 
obtain these measurements. Hence, it is only possible to measure the 
same cells before or after a perturbation is applied. Therefore, while 
we do not have access to a set of paired control/perturbed single-cell 
observations, we do have access to separate sets of single-cell observa-
tions from control and perturbed cells, respectively. To subsequently 
match single cells between conditions and, at the same time, account 
for cellular heterogeneity is a highly complex pairing problem.

Here, we seek to learn a perturbation model that robustly describes 
the cellular dynamics upon intervention while still accounting for 
underlying variability across samples. Learning the responses on an 
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of each cell from the unperturbed cell population ρc into their per-
turbed state ρk upon treatment k. Despite originating from different 
observations, map Tk determines for each cell xi the most likely cor-
responding cell Tk(xi) in the perturbed population (Fig. 1c). Finding this 
map then not only allows us to model single-cell trajectories upon 
perturbation but also to predict the perturbed state of previously 
unseen control cells. As a result, we can forecast the outcome of a 
perturbation k by applying the learned map Tk to a new unperturbed 
population ρ′c (Fig. 1d).

The optimal map Tk aligning the control and perturbed population, 
which we seek to find, should best describe the incremental changes 
in the multivariate profile of each cell after applying a perturbation k. 
Using OT23,24 to recover these maps and unveil single-cell reprogram-
ming trajectories has been proposed as a strong modeling hypothesis in 
the domain of single-cell biology16,17,25–28. OT problems return the align-
ment between distributions ρc and ρk corresponding to the minimal 
overall cost between aligned molecular profiles, thus determining the 
most likely state of each cell upon perturbation (Fig. 1c). Tk is learned 
such that its image corresponds to ρk and mass is moved from ρc into ρk 
according to a principle of minimal effort. As directly parameterizing 
the OT map Tk

20,21,29 is unstable18, we parameterize the convex poten-
tials of the dual optimal transport problem f and g by input convex 
neural networks22 and recover the optimal map Tk using the gradient 
of a convex function gk (∇gk)18. Supplementary Section A.3 provides 
a more detailed review of optimal transport methods proposed for 
single-cell biology problems and how our approach deviates from 
previous methods.

To put CellOT’s performance in perspective, we benchmark it 
against current state-of-the-art methods based on autoencoders12,13, 
which attempt to add perturbation effects through the manipula-
tion of a learned latent representation (reviewed in Supplementary  
Section A.1). To further test the hypothesis of the OT modeling prior, 
we compare the learned OT map ∇gk for each perturbation k with naive 
non-OT-based alignments.

CellOT outperforms state-of-the-art methods
We apply CellOT to predict the responses of cell populations to 
cancer treatments using a proteomic dataset consisting of two 
melanoma cell lines (M130219 and M130429)30, profiled by 4i5 and 
a single-cell RNA-sequencing (scRNA-seq) dataset31, which contain 
34 and 9 different treatments, respectively. For more details on the 
datasets see Online Methods. We benchmarked CellOT against two 
autoencoder-based tools, scGEN13 and cAE12, as well as PopAlign32, a 
method based on aligning subpopulations of the control and treated 
space approximated through a mixture of Gaussian densities. Due 
to the high-dimensional nature of scRNA-seq data, we apply CellOT 
on latent representations learned by an autoencoder. The marginal 
distributions for observed and predicted cell populations for two 
4i treatments and two scRNA-seq treatments are shown in Fig. 2a,d. 
Two features are selected for each perturbation and the complete 
set of marginals is shown in Supplementary Figs. 1–4. While the 
autoencoder baselines tend to capture the mean of the treated cell 
population, they are less successful in matching all heterogeneous 
states of the perturbed population (higher moments of the perturbed 
population). Thus, these models tend to learn over-simplified per-
turbation effects and are insufficient when aiming to understand 
heterogeneous rather than average cellular behaviors. CellOT, on 
the other hand, is able to capture these higher moments, yielding 
accurate and nuanced predictions.

This can be further quantified through distributional metrics 
such as the maximum mean discrepancy (MMD)33. Low values of MMD 
imply that all moments of two distributions are matched and thus 
the entire distribution of perturbed cells is captured in fine detail, 
beyond the population average (Online Methods provides details). 
The MMDs between the predicted and observed populations for the 

existing patient cohort enables inference of treatment responses 
for new (previously unseen) patients, assuming that we captured the 
heterogeneous drug reactions of patients during training. It is cru-
cial, however, to not simply model average perturbation responses 
of a patient cohort, but to capture the specificities of a single patient 
through personalized treatment effect predictions.

Previous methods to approximate single-cell perturbation 
responses fall short of solving this highly complex pairing prob-
lem while, at the same time, accounting for cellular heterogeneity 
and the strong subpopulation structure of cell samples9–11. Current 
state-of-the-art methods12–14 predict perturbation responses via linear  
shifts in a learned latent space. While this can capture nonlinear 
cell-type-specific responses, the use of linear interpolations reduces 
the alignment problem to the possibly more challenging task of 
learning representations that are invariant to the corresponding 
perturbation.

In this work, we introduce CellOT, a new approach that predicts 
perturbation responses of single cells by directly learning and uncov-
ering maps between control and perturbed cell states, thus explicitly 
accounting for heterogeneous subpopulation structures in multi-
plexed molecular readouts. Assuming perturbations incrementally 
alter molecular profiles of cells, such as gene expression or signal-
ing activities, we learn these changes and alignments using optimal 
transportation theory (OT)15. Optimal transport provides natural 
geometric and mathematical tools to manipulate probability distri-
butions. It has found recent successes modeling cellular development 
processes16,17, albeit in a non-parameterized setting. Thus, current 
OT-based approaches are unable to make predictions on unseen cells, 
such as those from unseen samples, for example from new patients.

Based on recent developments in neural optimal transport18, CellOT  
learns an optimal transport map for each perturbation in a fully para-
meterized and highly scalable manner. Instead of directly learning a 
transport map19–21, CellOT parameterizes a pair of dual potentials with 
input convex neural networks22. This choice induces an important 
theory-motivated inductive bias essential to model stability18.

We demonstrate CellOT’s effectiveness by (1) learning single-cell 
marker responses to different cancer drugs in melanoma cell lines; (2) 
predicting single-cell transcriptome responses in biopsies of patients 
with systemic lupus erythematosus as well as panobinostat treatment 
outcomes of glioblastoma patients; (3) inferring lipopolysaccharide 
(LPS) responses across different animal species; and (4) modeling the 
transcriptome evolution of cell fates in hematopoiesis. Moreover, 
we benchmark CellOT against current state-of-the-art methods on 
multiple tasks12,13.

Results
Predicting perturbation responses via optimal transport maps
Small molecule drugs can have profound effects on the cellular pheno-
type by, for instance, altering signaling cascades. Most of these effects 
depend on the context in which the perturbation occurs. Given the het-
erogeneity among single cells in cell populations and tissues, predicting 
cellular responses requires understanding the rules by which context 
shapes genome activity and its response to drugs. High-dimensional 
single-cell data measured via single-cell genomics or multiplexed imag-
ing technologies can provide this contextual information but only 
return unpaired or unaligned observations of cell populations. Here, 
CellOT allows us to utilize such unpaired data and enables learning 
cell-state transitions upon perturbation.

In formal terms, we denote the unperturbed control population 
by ρc consisting of n cells xi for i = 1, …, n. Upon perturbation k, the 
multivariate state of each cell xi of the unperturbed population 
changes, which we observe as the perturbed population ρk (Fig. 1a). To 
understand the mode of action and effect of perturbations, we seek to 
learn the transition and alignment between populations ρc and ρk via 
parameterizing a map Tk (see Fig. 1a,b), which explains the transition 
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selected perturbations are shown in Fig. 2b,e. For scRNA-seq data, MMD 
evaluations are computed using the top 50 marker genes. An analysis 
on the influence of the number of chosen marker genes can be found 
in Supplementary Fig. 7. In addition to the autoencoder baselines, we 
include the trivial identity baseline that predicts treatment effects 
simply by returning the untreated states, as well as a theoretical lower 
bound, observed, consisting of a different set of observed perturbed 
cells, thus only varying from the true predictions up to experimental 
noise. We find that CellOT can approach the lower bound (observed 
setting), whereas the baseline methods often do not improve much 
over the identity setting.

Different evaluation metrics across all 35 4i therapies and 6 
scRNA-seq therapies are summarized in Supplementary Figs. 5 and 6. 
Besides MMD, we additionally include the ℓ2 mean that measures the 
distance between the observed and predicted mean drug effect over all 
features. Lastly, we compare the overall mean correlation coefficient 
r2 between the predicted and observed data on all features (Online 
Methods). CellOT outperforms the baselines in both metrics across 
all treatments, typically by one order of magnitude. We attribute the 
strong performance of CellOT to its ability to learn a transport func-
tion that considers explicitly the data geometries of cell populations 
through the theory of optimal transport. This hypothesis is supported 
by the observation that the inter-feature correlation structure remains 
largely conserved between treated and untreated populations, thus 
depicting a setting where OT approaches excel. For more informa-
tion, see Extended Data Fig. 1. Extended Data Fig. 2 visualizes the 
learned maps, further demonstrating CellOT’s ability to model fine- 
grained responses.

Finally, we computed Uniform Manifold Approximation and Pro-
jection (UMAP) projections34 on a joint set of predicted and observed 
perturbed cells utilizing the full feature space (Fig. 2c,f). We observe 
that the perturbed cell states inferred by CellOT are well integrated with 
the observed perturbed cells. Again, both baselines do not recover the 
perturbed distribution in its entirety and thus the perturbed state of 
different subpopulations is not captured consistently.

CellOT captures cell-to-cell variability in drug responses
Capturing distinct perturbation responses of different cell types within 
the same sample remains a challenging computational task. To reduce 
the task’s complexity, prediction algorithms can be guided by prede-
fined cell-type labels both in the perturbed and unperturbed states32 
or set to approximate the mean drug response13. These simplifications 
come at a cost: the reliance on a priori knowledge about present and 
relevant cell types, the assumption that cell types are characterized 
by the same features before and after a perturbation and that the drug 
response is uniform within a cell type. In the worst case, these limita-
tions risk masking true and important drug response heterogeneity 
and thus hamper the discovery of new cell-type- or cell-state-specific 
perturbation responses (further comparisons are provided in Sup-
plementary Fig. 13). CellOT is free of these limitations and enables 
scientists to query the predicted single-cell responses at the granularity 
best suited to answer their biological questions. As a proof of concept, 
we co-cultured the aforementioned patient-derived melanoma cell 
lines (Online Methods) at equal ratios and performed a boutique drug 
screen, during which we exposed cells for 8 h to a panel of 34 drugs 
and measured the single-cell drug responses with the 4i technology. 
Using CellOT, we predict the perturbed cell states of a shared set of 
control (dimethylsulfoxide (DMSO)-treated) cells (Fig. 3a) for each 
drug. Previous work7 shows that phosphorylation levels of signaling 
kinases upon drug treatments are tightly linked to the cellular state. To 
assess whether this relationship was retained in predicted compared to 
observed perturbed cells, we analyzed the phosphorylation levels of 
extracellular signal-regulated kinases (pERK) using the transport maps 
learned by CellOT on each drug. Using 750 predicted and 750 observed 
perturbed cells, we computed UMAP projections joint-wise from all 
features except pERK. Figure 3b shows the predicted and observed 
population individually annotated with the respective pERK levels of 
each cell. We found that the spatial organization of the two projections 
looked almost identical and that pERK levels had a highly comparable 
distribution across the cells of either class and all drug treatments 
(further analysis in Extended Data Fig. 3a,b and Online Methods).
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Fig. 1 | Overview of the CellOT model. a, Distributions of single cells were 
measured in either an untreated control state (ρc) or in one of several perturbed 
states (ρk, ρl, ρm, …). These distributions lie in a high-dimensional space of 
profiled features. b, For a perturbation k, we aim to model it with a function Tk 
that maps untreated cells in ρc to their treated counterparts in ρk. c, Lacking 
paired measurements, we assume that the perturbation transforms ρc into 
ρk under a principle of minimal effort. In particular, we learn Tk using optimal 

transport theory to directly estimate this distributional mapping as the  
gradient of the optimal transport dual potential ∇ gθ. d, OT maps are learned  
for all perturbations independently. Because these maps are fully parameterized, 
CellOT can be trained, for example, on a set of initially provided samples  
to then make predictions on untreated cells originating from new, previously 
unseen samples.
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CellOT disentangles subpopulation-specific drug effects
CellOT allows us to isolate the mode of action of each drug by comput-
ing the difference between predicted perturbed cells and untreated 
control cells. A UMAP embedding of all cells color-coded by the treat-
ment distinctly separates different treatments (Fig. 3c and Extended 
Data Fig. 3e), all of which CellOT is able to faithfully learn (Supplemen-
tary Fig. 5). Such distinct treatment embeddings are not present when 
accounting only for an average perturbation effect (Extended Data  
Fig. 3d), indicating the importance of capturing the cellular heteroge-
neity of drug responses.

Using Leiden clustering on the full feature set, we grouped unper-
turbed control cells in 12 cellular states (Fig. 3d, Extended Data Fig. 3g 
and Online Methods). Cellular states 1, 5, 6, 9 and 12 show high levels 
of MelA and no SOX9 and thus correspond to the melanocytic cell line 
M130429, whereas the SOX9+ and MelA− states 2, 3, 4, 7, 8, 10 and 11 rep-
resent the mesenchymal cell line M130219 (Online Methods). Overall, 
we find that M130429 cells have higher phosphorylation levels of the 
measured signaling kinases compared to M130219; a stereotypical 
spatial organization of cellular states is retained for the majority of the 
drugs and cell states belonging to the same cell line cluster together 
(Extended Data Fig. 3f).

Computing the difference between the control and treated state of 
each drug (the optimal transport cost), allows us to further characterize 
a drug’s severity. Apoptosis inducers (for example, staurosporine), pro-
teasome inhibitors (for example, ixazomig and carfilzomib or the com-
bination treatment carfilzomib + pomalidomide + dexamethasone), 

microtubule-stabilizing agents (for example, paclitaxel), c-Met inhibi-
tors (for example, crizotinib) and ATP competitors for multiple tyrosine 
kinases such as c-KIT and Bcr-Abl (dasatinib) show high transport costs 
and thus substantial feature changes in all cellular states (Fig. 3e). Other 
drugs demonstrate less-severe effects in the observed 8-h incubation 
period. We found that all perturbations increased levels of cleaved 
caspase 3, an apoptosis marker, in various cellular states and in both 
cell lines (Extended Data Fig. 3k), with the exception of dasatinib, which 
specifically induced cell death in cellular states 5, 6, 9 and 19 associated 
to M130429 (Fig. 3f).

Previous work by Smith et al.35 reported that M130429 cells 
reduce metabolic activity upon treatment with inhibitors of MEK 
(MEKi) and RAF (RAFi), whereas M130219 cells are resistant to these 
inhibitors. When comparing the responses of the two cell lines to 
trametinib (MEKi) and MLN2480 (panRAFi) in the MEK and PI3K 
pathway using pERK and pAKT as the respective readouts, we find 
that MEKi-sensitive M130429 cells downregulate pAKT and pERK, 
whereas the MEKi-resistant M130219 cells only downregulate pERK. 
Consistently, we also found that treatment with MLN2480 results 
in a similar differential drug response (Extended Data Fig. 3i). This 
suggests that decoupling of the MEK and PI3K pathways may confer 
resistance to MEK and Raf inhibitors and constitute an adaptation 
to the escape of cancer therapy36. We found further supporting evi-
dence of pathway crosstalk alteration when we analyzed pAKT and 
pERK levels upon treatment with a cocktail of trametinib (MEKi) and 
dabrafenib (BRAFi).
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models based on the distributional distance MMD as well as average correlation 
coefficient r2 between observed perturbed and predicted perturbed cells, for 
4i (b) and scRNA (e) data. Error bars refer to the standard deviation over ten 

bootstraps of the test set and the dashed lines correspond to the median of the 
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In response to two drugs impinging on the MEK pathway, we 
observed pERK to be reduced in both cell lines but found increased 
pAKT levels in the MEKi-resistant cell line M130219 (where resistance 
was acquired during pre-exposing a patient to MEKi) (Fig. 3f). This 
finding points toward a compensatory feedback mechanism acquired 
by M130219 during MEKi treatment by which inhibition of the MEK 
pathway (quantified as a reduction of pERK) would stimulate signaling 
through the PI3K pathway, possibly through activation of an upstream 
receptor kinase37. Our results on two co-cultured primary melanoma 
cell lines treated with various anticancer drugs show that CellOT can 
accurately capture phenotypic heterogeneity in unperturbed cell 
populations and predict diverse drug responses by incorporating the 
underlying cell-to-cell variability without predefined cell line labels.

CellOT accurately infers cellular responses in unseen patients
The maps between molecular states before and after treatments 
learned by CellOT contribute to a better understanding of the differ-
ences between cells that respond to certain drugs and cells that do not 
respond. This is crucial for inferring an incoming patient’s response to 
drugs and settings with high cell-to-cell variability. To make predic-
tions on unseen patients, however, we need to demonstrate that the 
learned maps T model perturbation responses across different patients 
coherently and robustly, while still predicting personalized treatment 
outcomes for each patient instead of mere population averages. To 
test the generalization capacity of CellOT in such an out-of-sample 
(o.o.s.) scenario, we use a peripheral blood mononuclear cell droplet 
scRNA-seq dataset. Kang et al.38 characterize the cell-type specific-
ity and inter-individual variability of the response of eight patients 
with lupus to interferon (IFN)-β, a potent cytokine that induces 
genome-scale changes in immune cell transcriptional profiles. In the 
following, we compare the performance of CellOT and other baselines 
in an independent-and-identically distributed (i.i.d.) setting, where 
models see cells from all patients, as well as in the o.o.s. setting, where 
models do not see cells from a specific holdout patient (Fig. 4a).

As in the previous analysis, we evaluated how accurately CellOT 
captures the change in the overall expression of different marker genes 
from control to IFN-β-treated cells and thus how well the predicted 
gene expression marginals are aligned with the treated population 
(Fig. 4b). Here, we consider the genes CXCL11, CCL2 and APOBEC3A, 
as they are connected with autoimmune diseases, including systemic 
lupus erythematosus39,40 and thus potential therapeutic targets in the 
management of patients with lupus and, likely, other interferonopa-
thies39–43. These selected genes show a large change in expression from 
the control to the perturbed population, partially exhibiting a bimodal 
gene expression profile upon perturbation. In contrast to CellOT, the 
baselines do not accurately predict these large transcriptomic shifts of 
these genes. An extended analysis of additional genes strongly affected 
by the IFN-β treatment can be found in Supplementary Figs. 9 and 10.

All models, including CellOT, show little performance drop when 
modeling the treatment outcome on a new patient using the 

generalized perturbation model TL trained on the patient cohort and 
using the control cells ρcz of the unseen patient as input. This becomes 
evident when comparing the predicted population ρ̂kz  with observa-
tions ρkz  using the MMD metric. Figure 4c displays summary results 
in which each individual patient was considered for the holdout set. 
Further evaluation metrics, including the ℓ2 feature means, can be 
found in Supplementary Fig. 8. CellOT outperforms previous baselines 
both in the i.i.d. and in the o.o.s. setting, while further showing a 
smaller performance drop when generalizing to the unseen patient. 
For more results, see Supplementary Fig. 11. These results suggest that 
the learned optimal transport maps correctly model the shift in the 
structures of the cellular subpopulation present in all patients, thus 
robustly performing o.o.s. We repeat the same evaluation for a glio-
blastoma cohort consisting of seven patients44; however, generaliza-
tion within this setting proved to be difficult for CellOT and all 
baselines, due to the small size of the cohort and high degree of vari-
ance within the responses of each individual. For a complete analysis, 
see Extended Data Fig. 6.

CellOT reconstructs innate immune responses across species
The innate immune response is a cell-intrinsic defense program show-
ing high levels of heterogeneity among responding cells, and thus an 
ideal task for evaluating CellOT’s capabilities. Our analysis is based 
on the dataset collected by Hagai et al.45 that studies the evolution of 
innate immunity programs of mononuclear phagocytes within different 
species, including pigs, rabbits, mice and rats. For this, these primary 
bone marrow-derived cells are stimulated using LPS. In the following, 
we test how well CellOT and the baselines reconstruct innate immune 
responses within species that are not encountered during training. 
We refer to the generalization task as out-of-distribution (o.o.d.), as 
unlike the o.o.s. setting, we expect different species to have very distinct 
responses (Fig. 4d). The holdout set thereby consists of cells derived 
from either rat or mouse. Extended Data Fig. 4a,b provides an analy-
sis of cross-species similarity and the reasoning behind selecting the 
holdout set.

Indeed, CellOT accurately reconstructs the innate immune 
response in both mouse and rat in the i.i.d. and o.o.d. setting. This 
not only becomes evident through capturing more precisely the 
mean expression level of marker genes that show high differential 
expression levels upon addition of LPS, for example, Nfkb1 (NF-κB), 
Oasl1 (Oasl1), Mmp12 and Cxcl5 (Fig. 4e and Extended Data Fig. 4c,d), 
but also through the average correlation coefficient r2 computed 
between o.o.d. predictions and holdout observations across all 
genes (Fig. 4f). In particular, CellOT outperforms the baselines when 
analyzing how well each method captures the heterogeneity of innate 
immune responses in different species, as demonstrated by low 
levels of MMD (Fig. 4f). Most notably, our method shows a strong 
alignment or gene expression marginals of aforementioned marker 
genes that show complicated bimodal expression profiles upon 
perturbation (Fig. 4g).

Fig. 3 | CellOT facilitates the multiplexed single-cell characterization of 
cancer drugs. a, CellOT training and prediction setup. The 34 CellOT models 
were trained, one for each drug perturbation. Subsequently, each model was 
used to predict perturbed cells from a common set of unseen control cells.  
b, UMAP projection constructed with equal numbers of predicted and measured 
cells from 34 perturbations. Dots correspond to cells, color-coded for measured 
or predicted pERK intensity. AU, arbitrary unit. c, UMAP projection of single-cell 
perturbation effects using predicted cells. Dots correspond to cells, color-coded 
for drug treatment (Extended Data Fig. 3 provides the full legend and Online 
Methods provides the single-cell perturbation effect calculation). d, Cell states 
identified in control cells (Online Methods). Each column represents a cell state. 
Horizontal axis, cell states sorted based on their association to the cell lines 
M130219 and M130429. Vertical axis, cellular features (Extended Data Fig. 3  
provides the full feature set). The size and hue of the circles are scaled on the 

feature values. e, Clustergram of transport cost (TC) of drug treatments for each 
cell state (main heat map, blue-yellow color scheme), the sum of TCs (sum) of 
all states per drug (first column left of the heat map, purple), the coefficient of 
variation (CV) of TCs per drug (second column left of the heat map, green) and 
the dendrogram based on the hierarchical clustering the drug’s cell state TCs. 
Cell states are sorted as in d. f, Cell-state-specific responses to drug treatments. 
(i) Dasatinib (top). (ii) Trametinib + dabrafenib (bottom). Condition-focused 
enlargement of UMAP projection from c (top left). Same as top left but color-
coded for cell-state assignment (top right). Columns represent cell state (cs) and 
rows show highlighted features (bottom). ‘cell-’ represents mean cell intensity. 
Circles are scaled based on drug effect size and the stronger the effect the larger 
the circles. Negative values are encoded in hues of blue and positive values in red 
are hues of the respective circles.
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CellOT extends differentiation results to cells of lower potency
During developmental processes, stem and progenitor cells progress 
through a hierarchy of fate decisions, marked by a continuous differ-
entiation of cells that refine their identity until reaching a functional 
end state. By tracking an initial cell population along the differentiation 

process, CellOT allows us to recover individual molecular cell-fate 
decisions and developmental trajectories.

Weinreb et al.46 analyzed the fate potential of hematopoietic stem 
and progenitor cells, by tracking a broad class of oligopotent and multi-
potent progenitor cell subpopulations and observing samples on days 
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Fig. 4 | CellOT generalizes to unseen patients and cell subpopulations.  
a–k, The o.o.s. (a–c) and o.o.d. (d–k) setting. a, Cells from eight patients with 
lupus are measured in an untreated and IFN-β-treated state. For each sample, 
we train two models, an o.o.s. model trained on cells from all other samples and 
an i.i.d. model trained with additional access to half of the cells in the holdout 
sample (not shown). b, Marginals of predicted cells from the holdout sample 
in the i.i.d. (top) and o.o.s. (bottom) setting. Predictions for both models are 
made on the same test set (not used for training the two models). c, MMD scores 
between the predicted distribution and the observed treated distribution across 
all holdout samples in the i.i.d. and o.o.s. settings. Box plots indicate the median 
and quartiles. d, As an o.o.d. task, we trained CellOT and baselines to predict the 
response to LPS across different species and test on rat (or mouse) as a holdout 
species. e, Mean gene expression for i.i.d. and o.o.d. predictions for CellOT and 
scGEN for selected marker genes. f, Comparison of o.o.d. performance for r2 

correlation feature means and MMD of CellOT and baselines. Data are depicted 
as the mean ± s.d. across n = 10 bootstraps of the test set. g, Marginals of the 
o.o.d. predictions for marker genes showing bimodal expression profiles when 
using rat as a holdout. h, Cells from multipotent and oligopotent subpopulations 
are measured after 2, 4 and 6 days. We apply CellOT to predict how cells from 
day 2 develop into the combined set of day 4 and 6, when trained on only 
multipotent cells (Tm) or oligopotent cells (To). We then apply Tm to predict the 
o.o.d. oligopotent cells and To to predict the o.o.d. multipotent cells. Similar to 
the o.o.s. setting, i.i.d. models are trained, which includes half of the holdout 
subpopulation. i, MMD scores between the predicted and (observed) developed 
distributions for all models in both o.o.d. and i.i.d. prediction tasks ( jointly for 
day 4 and 6). Performance of CellOT, when predicting day 4 states (j) and day 6 
states (k) for different cell types in each setting using Tm.
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2, 4 and 6 (Fig. 4h). Here, we test how well CellOT and other baselines 
can learn the differentiation process of the cells observed on day 2 to 
the cells observed on days 4 and 6 (combined) and generalize from 
one subpopulation to another (o.o.d. setting). We trained two maps, 
where map To was trained exclusively on oligopotent cells and Tm on 
multipotent cells. The i.i.d. versions of these maps were trained on both 
oligopotent and multipotent cells, such that each pair of i.i.d. and o.o.d. 
maps was evaluated on the same test set. Comparing the distributional 
distance between predicted and observed differentiated cell states 
using the MMD metric, CellOT outperforms current state-of-the-art 
methods in this i.i.d. setting for both the oligopotent and the multipo-
tent subsets (Fig. 4i). Furthermore, while baselines struggle to perform 
in either o.o.d. setting, CellOT is able to generalize its predictions in 
one direction (from multipotent cells to the oligopotent setting). In 
contrast to oligopotent cells, multipotent cells have a higher potency 
and thus can potentially differentiate into more cell types and so we 
would expect that Tm is more likely to generalize than To, trained on 
the less-potent oligopotent cells. When predicting developmental 
perturbations on multipotent cells using To, the differentiated cell 
fates cannot be recovered.

We further compared the performance at different time points 
and across cell types. Figure 4j shows the accuracy of the modeled 
development of multipotent cells using map Tm individually for day 4 
and day 6 cells, respectively. It is evident that CellOT achieves better 
results when predicting short-range developmental dynamics instead 
of states further away in time (further results in Extended Data Fig. 5). 
This suggests a potential limitation for all of these methods, which 
might be unable to recover alignments over coarse time resolutions. In 
addition, while the vast majority of cells on days 4 and 6 were still undif-
ferentiated (undiff), some cells have evolved into neutrophils (neut), 
monocytes (mono), basophils (baso), lymphoid precursors (lymph) or 
dendritic cells (DCs). As expected, the performance of CellOT drops 
in terms of the MMD metric for those cell types that are only sparsely 
represented in the dataset (Fig. 4k).

Discussion
In this work we propose CellOT, a framework to model single-cell per-
turbation responses from unpaired treated and untreated cell states 
using neural optimal transport. By adequately modeling the nature 
of the problem through the lens of optimal transport, CellOT deter-
mines how perturbations affect cellular properties, reconstructs the 
most likely trajectory that single cells take upon perturbation and 
subsequently assists in a better understanding of driving factors of 
cell-fate decision and cellular evasion mechanisms. CellOT builds on 
the recent successes of optimal transport applications in single-cell 
biology16,17, by introducing a fully parameterized transport map that 
can be applied to incoming unseen samples. Previous methods19–21 rely 
on an unconstrained parameterization of the primal optimal trans-
port map; however, the unconstrained nature of these models makes 
robust optimization challenging and results in reduced performance18. 
Instead, we learn the transformation of unperturbed to perturbed cell 
states through the dual optimal transport problem, parameterized via 
a pair of neural networks constrained to be convex18. These constraints 
are important inductive biases that facilitate learning and result in a 
reliable and easy-to-train framework, as evidenced by the consistently 
strong performance of CellOT on several problems without the need 
for extensive hyperparameter tuning (Online Methods).

CellOT infers the highly complex and nonlinear evolution of cell 
populations in response to perturbations without making strong sim-
plifying assumptions on the nature of these dynamics. Unlike current 
approaches comprising autoencoder-based baselines12–14, CellOT does 
not necessarily rely on learning meaningful low-dimensional embed-
dings in which perturbations are modeled as linear shifts. We confirm 
this advantage through experiments on single-cell responses to dif-
ferent drugs in cancer cell lines obtained with RNA-seq and spatially 

resolved 4i measurements, where CellOT consistently outperforms 
(Fig. 2 and Supplementary Fig. 5). Our evaluations went beyond the 
often-used average treatment effect and correlation analysis across 
all cells; we analyzed marginals and computed MMD scores, a strong 
measure of how well predicted and observed distributions match.

Using CellOT to perform cell-state-aware drug profiling enables 
us to quantify perturbation effects as a function of the underlying 
heterogeneity of the studied system, in our case a co-culture of two 
melanoma cell lines with different sensitivities to drug treatments. 
In doing so, we sharpen the response profiles of the measured drugs 
and reveal cell-state-specific responses of multiple signaling pathway 
in relation to treatment history of the cell line donor. We found that 
the signaling activity associated with the MEK and PI3K pathways 
decoupled in cells pre-exposed to MEK inhibitors, a known adaptation 
mechanism for therapy evasion in melanoma cells36. This pathway 
rewiring is associated with an alteration in the molecular feedback 
structure of cells from effectors to receptors36,47. Thus, combining Cel-
lOT with a larger set of combination treatments, multiplexed imaging 
and cellular systems reflective of disease adaptations may help us to 
elucidate the molecular mechanisms of signaling pathway evolution 
in the context of cancer therapy.

We further analyzed how well the learned maps generalize beyond 
samples used for training (o.o.s. setting) and to different sample com-
positions (o.o.d. setting). In Fig. 4, we therefore tested CellOT’s ability 
to predict treatment responses in unseen patients with lupus, infer 
developmental trajectories on stem cells of lower potency and translate 
innate immune responses across patients. In all cases, CellOT’s accu-
racy and precision were superior to current state-of-the-art methods  
(Fig. 4). Moreover, the predicted cell states after perturbation are still 
very close to the actual observed cell states. We consider these results 
to be particularly promising, as it illustrates that accurate o.o.s. and 
o.o.d. predictions are indeed possible.

The ability to make o.o.d. predictions, such as on unseen patients, 
is, however, only feasible if (1) similar samples have been observed in 
the unperturbed setting and (2) the training set contains cases that 
are similar not only in their unperturbed state but also their perturba-
tion response. An analysis of patients with glioblastoma treated with 
panobinostat44 (Extended Data Fig. 6a–c) confirms this restriction; 
CellOT and the baselines are able to predict treatment outcomes for 
those patients that are similar to other patients in both the unperturbed 
state as well as the perturbation effect (Extended Data Fig. 6f) but fail to 
capture perturbation effects for patients that exhibit unique responses 
(Extended Data Fig. 6g). This limitation is important to consider when 
applying CellOT in o.o.d. settings. To overcome such problems, larger 
cohorts, additional meta-information and methodological extensions 
are required. Bunne et al.48 partially address this issue by deriving a neu-
ral optimal transport scheme that can be conditioned on a context, for 
example, patient metadata, when predicting perturbation responses.

We also observed that the predictive performance for CellOT 
drops when perturbations are too strong (the cell distributions before 
and after perturbations are very different) (Fig. 4j); a similar drop was 
observed for the other methods (Supplementary Fig. 12). The princi-
ple underlying the optimal transport theory is ideally suited for acute 
cellular perturbations during which single cells do not redistribute 
entirely and randomly in multidimensional measurement space, but 
typically only in a few dimensions, such that the overall correlation 
structure is preserved. While this modeling hypothesis is satisfied 
when perturbation responses are observed via regularly and frequently 
sampled snapshots, molecular transitions cannot be reconstructed 
when perturbation responses have progressed too far. For particu-
larly strong or complicated perturbations, cellular multiplex profiles 
might change too drastically, violating OT assumptions and making it 
challenging to reconstruct the alignments between unperturbed and 
perturbed populations based on the minimal effort principle. In such 
settings, additional information is likely needed, for instance, a model 
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of the underlying biology or models that integrate observations of 
multiple smaller time steps.

Despite the stochastic nature of cell-fate decisions and the fact 
that cellular dynamics are intrinsically noisy49, CellOT models cell 
responses as deterministic trajectories. Approaches treating cell-fate 
decisions as probabilistic events have previously allowed estimation 
of the full dynamical model to a greater extent than their deterministic 
counterparts50. By connecting OT and stochastic difference equa-
tions, recent work51,52 can build up on CellOT to account for biological 
heteroscedasticity, at the cost of added model complexity and other 
simplifying assumptions.

Despite having provided a proof of concept of the capacity of 
CellOT to model various chemical perturbations for different data 
modalities through an in-depth analysis of the nature of the learned 
mapping as well as a demonstration of its versatility in a broad class of 
applications, CellOT’s generalization capacity has been evaluated on 
relatively small datasets. Crucially, large cohorts consisting of patients 
with different molecular profiles, such as patients with cancer with 
various underlying genetics, could result in strongly heterogeneous 
treatment responses. It is evident that approaches addressing these 
challenges could readily exploit the upcoming availability of large-scale 
patient cohort studies. The use of neural optimal transport to learn 
single-cell drug responses makes for an exciting avenue for future work, 
including its use to improve our understanding of cell therapies, study 
drug responses from patient samples and better account for cell-to-cell 
variability in large-scale drug design efforts.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01969-x.
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Methods
Theoretical background
Optimal transport. Optimal transport plays dual roles. It induces 
a mathematically well-characterized distance measure between 
distributions as well as provides a geometry-based approach to 
realize couplings between two probability distributions. Let μ and 
ν be two measures in ℝd. The optimal transport problem by Monge53 
is defined as

argminT∶T♯μ=ν 𝔼𝔼X∼μ ∥ X − T(X)∥22, (1)

where T corresponding to the smallest cost is the optimal transport 
map. This formulation is non-convex and challenging to solve. Years 
later Kantorovich54 provided a relaxation allowing for soft assignments,

W(μ, ν) = min
γ∈Γ(μ,ν)

𝔼𝔼(X,Y)∼γ ∥ X − Y∥22, (2)

where the polytope Γ(μ, ν) is {γ ∈ ℝn×m
+ , γ1m = μ, γ⊤1n = ν}, describes the 

set of all couplings (or joint distributions) γ between μ and ν. The opti-
mal transport plan γ thus corresponds to the coupling between two 
probability distributions that minimizes the overall transportation 
cost. Given the OT coupling γ, the resulting distance W(μ, ν) between 
μ and ν is known as the Wasserstein distance. Computing optimal 
transport distances in (2) involves solving a linear program, and the 
resulting computational costs are prohibitive for large-scale machine 
learning problems. Regularizing objective (2) with an entropy term 
results in significantly more efficient optimization55 and differentiabil-
ity w.r.t. its inputs, and thus is commonly used as a loss function in 
machine learning applications.

Problem (2) denotes the primal formulation of optimal transport. 
Kantorovich also introduces its corresponding dual54, which is a con-
strained concave maximization problem defined as

W(μ, ν) = max
(g,f)∈Φc

𝔼𝔼μ[g(x)] + 𝔼𝔼ν[f(y)], (3)

w h e r e  t h e  s e t  o f  a d m i s s i b l e  p o t e n t i a l s  i s 
Φc ∶= {(g, f) ∈ L1(μ) × L1(ν) ∶ g(x) + f(y) ≤ 1

2
∥ x − y∥22, ∀(x, y)dμ⊗ dν a.e.} 23, 

Theorem 1.3. Theorem 2.9 by Villani23 further simplifies the dual prob-
lem (3) over the pair of functions (g, f) to

W(μ, ν) = 1
2𝔼𝔼 [‖x‖

2
2 + ‖y‖22]⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝒞𝒞μ,ν

−min
f∈Φ̃

𝔼𝔼μ[f∗(x)] + 𝔼𝔼ν [f(y)] , (4)

where Φ̃ is the set of all convex functions in L1(dμ) × L1(dν), L1(μ): = {g is 
measurable & ∫gdμ < ∞}, f∗(x) = maxy⟨y, x⟩ − f(y) is f’s convex conjugate, 
and the optimal transport map transforming μ into ν corresponds to 
the gradient of f*, i.e., T = ∇ f*. We can recover the optimal transport 
plan via γ = (∇f∗ × Id)♯μ. Theorem 2.9 by Villani23 then proves the exist-
ence of an optimal pair (f, f*) of lower semi-continuous proper conju-
gate convex functions on ℝn minimizing (3).

Input-convex neural networks. Convex spaces such as Φ̃ in (4), can 
be parameterized utilizing neural networks which are convex w.r.t. to 
their inputs. One such parameterization approach comprises so-called 
input convex neural networks (ICNNs) introduced by Amos et al.22. 
ICNNs are based on fully connected feed-forward networks that ensure 
convexity by placing constraints on their parameters. An ICNN with 
parameters θ = {bi,Wz

i
,Wx

i
} represents a convex function f(x; θ) and, for 

a layer i = 0…L − 1, is defined as

hi+1 = σi(Wx
i
x +Wz

i
hi + bi) and f(x;θ) = hL, (5)

where activation functions σi are convex and non-decreasing, and ele-
ments of all Wz

i
 are constrained to be nonnegative. Despite their  

constraints, ICNNs are able to parameterize a rich class of convex func-
tions. In particular, Chen et al.56 provide a theoretical analysis that any 
convex function over a convex domain can be approximated in sup 
norm by an ICNN. Huang et al.57 further extend ICNNs from fully con-
nected feed-forward neural networks to convolutional neural archi-
tectures. Lastly, input convex neural networks have been utilized to 
parameterize Wasserstein gradient flows58–60 as well as barycenters61.

Model
Recent high-throughput methods provide insight into how cell popula-
tions respond to various perturbations on the level of individual cells. 
Such data, however, is often non-time-resolved and unaligned. Hence, 
snapshots taken of biological samples before and after perturbations 
do not provide information on the individual cellular trajectories. 
Perturbations might include the application of drugs affecting molecu-
lar functions in cells, or changes in the cellular environment causing 
shifts in biological signaling, thus impacting cells and their states in 
various ways. In the following, we describe our approach, which uncov-
ers single-cell perturbation responses by learning a mapping between 
control and perturbed cell states. Hereby, let 𝒳𝒳 denote the biological 
data space spanned by the measured cell features. We then treat a cell’s 
response to perturbation k as an evolution in a high-dimensional space 
of cell states 𝒳𝒳 = ℝd.

Recovering perturbation effects via neural optimal transport. Given 
a dataset of n observations {xc1 ,… , xcn}, xci ∈ 𝒳𝒳  drawn from ρc ∈ 𝒫𝒫(𝒳𝒳) ,  
the distribution of cells before applying a perturbation, we aim to 
predict the distribution of cells ρk ∈ 𝒫𝒫(𝒳𝒳) upon some perturbation k, 
given a set of separate samples {xk1 ,… , xkm}, xki ∈ 𝒳𝒳.

Perturbation responses of cells are dynamic: After applying per-
turbation k, cell states evolve over time and thus can be modeled as a 
stochastic process in the cell data space. Despite this time-resolved 
nature of single-cell responses, we only have access to the distributions 
of cell states before, ρc, and after injecting perturbation k, ρk. We thus 
aim to understand the underlying stochastic process without access 
to time-resolved perturbation responses by uncovering the map T 
between ρc and ρk. Given prior biological knowledge, we can assume 
that perturbations do not drastically or totally alter underlying cellular 
processes. We thus posit that the evolution of probability distributions 
of single cells upon perturbation can be modeled via the mathematical 
theory of optimal transport.

Following Makkuva et al.18, we thus learn the optimal transport 
map T (1) between ρc and ρk. Instead of computing a coupling γ individu-
ally for each pair of cell samples using existing solvers55 as done by 
Schiebinger et al.17, we learn a parameterized optimal transport map 
using neural networks. The parameterized OT map then serves as a 
robust predictor for cellular distribution shifts upon perturbations on 
unseen samples {xc

i
}n

′

i=1
∼ ρc, i.e., such as those of another patient.

Parametrization of the optimal transport map. To propose an efficient 
strategy to learn the optimal transport map, we will build upon cel-
ebrated results by Knott62 and Brenier63, which relate the optimal solu-
tions for the primal (2) and the dual form (3). As the convex conjugate 
f* is very hard to compute, Makkuva et al.18 propose to approximate f* in 
(4) via another convex function g, subsequently deriving a max-min for-
mulation over two convex functions, Theorem 3.3 (ref. 18) which reads

W(ρc,ρk) = max
f∈Φ̃

f∗∈L1(ρk)

min
g∈Φ̃

𝒞𝒞ρc ,ρk
− 𝔼𝔼ρc

[⟨x,∇g(x)⟩ − f(∇g(x))] − 𝔼𝔼ρk
[f(y)]⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝒱𝒱ρc ,ρk (g,f)

. (6)

The intuition behind the approach stems from the fact that

𝔼𝔼ρc
[f∗(x)] = max

g∈Φ̃
𝔼𝔼ρc

[⟨x,∇g(x)⟩ − f(∇g(x))] ,
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where we observe that in 〈x, ∇ g(x)〉 − f( ∇ g(x))≤f*(x) for all functions 
g the equality is achieved with g = f*18, Theorem 3.3. In order to learn 
the resulting optimal transport, i.e., the solution of the minimization 
problem in (6), Makkuva et al.18 parameterize both dual variables g 
and f using input convex neural networks22, yielding a transport map 
defined as the gradient of g. We then obtain the optimal transport map 
T⋆ via the alternate max-min optimization of

(g⋆
θ
, f⋆ϕ ) ← argmax

ϕ
min
θ

𝒞𝒞ρc ,ρk
− 𝒱𝒱ρc ,ρk

(gθ, fϕ), (7)

where T⋆ = ∇g⋆
θ

 and θ and ϕ are the parameters of each ICNN.

Predicting perturbation effects via CellOT. The framework described 
above allows us to recover maps between control {xc1 ,… , xcn}  and per-
turbed cells {xk1 ,… , xkm}, giving insights into cellular response trajecto-
ries upon application of a perturbation k. Given a set of perturbations 
K, and sample access to the control distribution ρc as well as distribu-
tions ρk for each perturbation k ∈ K, CellOT learns the optimal pair of 
dual potentials (gθ⋆

k
, f⋆ϕk

) by solving (7). Given parametrizations of the 
convex potentials for each k, CellOT then predicts the transformation 
of a control cell xc

i
 upon perturbation k via ̂xki = ∇gθ⋆

k
(xc

i
), i.e., samples 

following the predicted perturbed distribution ̂ρk = (∇gθ∗
k
)#ρc. CellOT 

thus provides a general approach to predict state trajectories on a 
single-cell level, as well as understand how heterogeneous subpopula-
tion structures evolve under the impact of external factors.

Neural optimal transport. Beyond the chosen approach, other efforts 
have investigated ICNN-based approaches as fast and scalable approxi-
mations to (1). Taghvaei et al.64 consider solving (4) by parameterizing f 
with an ICNN and solving for f* at each step, which, however, is compu-
tationally very expensive. Makkuva et al.18, and as such the approach 
considered in this work, extend this work by approximating f * with 
another ICNN g transforming the problem into a max-min optimiza-
tion of two input convex neural networks (see (7)). Lastly, Huang et al.57 
introduce a novel, OT-inspired parameterization of normalizing flows 
utilizing ICNNs. See Korotin et al.65 for a detailed comparison of the 
current state of neural optimal transport solvers.

Limitations. While single-cell expression profiling provides a detailed 
look into the molecular states of individual cells, these observations 
are often destructive and thus does not allow for continuous measure-
ments of molecular properties over time. There have been numerous 
proposals for methods to uncover the dynamics of individual cells 
from population data, but all of them face the same challenge: sequen-
tially observed distribution of cell states can be produced by multiple 
dynamics and mechanisms of gene regulation. The ill-defined nature 
of the problem makes it necessary to pose certain assumptions on the 
underlying cellular dynamics.

The mathematical foundation of this work builds on the biological 
intuition that perturbations incrementally alter the molecular profiles 
of cells. This principle aligns with the theory of optimal transport and, 
following previous work17, serves naturally as the model foundation of 
CellOT. If this principle is violated, however, and perturbations strongly 
disrupt the population to an unidentifiable level, the performance 
of CellOT as well as other methods drops (see Discussion). In these 
instances, a more complicated mathematical machinery would be 
needed. Such tools, however, are currently unable to scale to settings 
with more than a few genes66. Thus, we rely on a fine granularity of the 
time course to recover large cell state changes between consecutive 
time points67.

Furthermore, if a system exhibits rotations and oscillations within 
two consecutive snapshots not captured by measurements, models 
based on optimal transport as well as previous tools68 will not be able to 
recover such complex dynamics. This is in part also due to the current 
choice of the cost function, which, due to theoretical constraints and 

practical performance, is set to the Euclidean distance (2). We leave 
it to future work, to investigate choices of alternative cost functions.

Beyond, the current system is not able to recover effects (other 
than cell flux) that change the distribution of cells between time points, 
for example, proliferation and death67. Recent works, however, pro-
pose extensions to the classical neural optimal transport scheme that 
account for cell death and birth69.

Lastly, current developments in bioengineering aim at over-
coming the technological limitation of destructive cell assays.  
Chen et al.70 propose a transcriptome profiling approach that preserves 
cell viability. Weinreb et al.46 capture cell differentiation processes while 
clonally connecting cells and their progenitors through barcodes. 
These methods thus offer (lower-throughput) insights that provide 
individual trajectories of cells over time, i.e., an alignment between 
distinct measurement snapshots. Somnath et al.52 propose a novel 
algorithmic framework connected to optimal transport that is able to 
make use of such (partially) aligned datasets71,72.

Datasets and preprocessing
Single-cell multiplex data. Biologists have various powerful tech-
nologies at their disposal, capable of capturing multivariate single-cell 
measurements. High-content imaging, particularly when augmented 
by multiplexing abilities such as by Iterative Indirect Immunofluo-
rescence Imaging (4i)5, is ideally suited to study heterogeneous cell 
responses. With 4i, fluorescently labeled antibodies are iteratively 
hybridized, imaged, and removed from a sample to measure the abun-
dance and localization of proteins and their modifications. Thus, 4i 
quickly generates large, spatially resolved phenotypic datasets rich 
in molecular information from thousands of treated and untreated 
(control) cells. Additionally to the multiplexed information gener-
ated by 4i, cellular and nuclear morphology are routinely extracted 
from microscopy images (without the need for 4i) by image analysis 
algorithms73.

The cells were seeded in a 384-well plate, and allowed to settle 
and adhere overnight. Drugs and dimethyl sulfoxide as the vehicle 
control was added to the cells the next morning and incubated for 8 
hours, after which the cells were fixed with paraformaldehyde. Sub-
sequently, 6 cycles of 4i were performed, for which the images were 
acquired with an automated high-content microscope. We utilized 
a mixture of two melanoma tumor cell lines (ratio 1:1) in order to 
image a total of 97,748. For this, we consider two co-cultured primary 
melanoma cell lines (M130219 and M130429), which were derived 
from the same melanoma patient from different body sites. M130219 
originates from a subcutaneous biopsy taken during treatment with 
Bimetinib (MEKi), whereas M130429 was derived from a bone autopsy 
one month after stopping said targeted therapy30. Both cell lines 
share the same driver mutation (NRAS Q61R) but are phenotypically 
diverse. Consequently, the cell lines are also classed as two different 
melanoma subtypes due to, amongst others, differences in marker 
expression30: the former a mesenchymal subtype (SOX9+, MelA-), 
the latter a melanocytic subtype (Sox9-, MelA+). 10,995 cells are 
imaged in the DMSO-treated control state and the rest are treated 
with one of 34 cancer therapies. Between 2,000 and 3,000 cells are 
profiled per treatment.

All image analysis steps were performed by our in-house plat-
form called TissueMAPS (https://github.com/TissueMAPS). The steps 
included illumination correction74, alignment of images from different 
acquisition cycles using Fast Fourier Transform75, segmentation of 
nuclei and cell outlines76, as well cellular and nuclear measurements of 
intensity and morphology features using the scikit-image library77.

The extracted marker intensities and morphological features are 
then re-normalized to the same numerical scale by dividing each fea-
ture with its 75th percentile computed on control cells. Values are then 
transformed with a log1p (x ← log(x + 1)) function. A total of 47 features 
are reported, 21 morphological features and 26 protein intensities.
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Single-cell RNA sequencing data. For the statefate46 and SciPlex 331 
datasets, raw counts were obtained from their GSA uploads. For each, 
the scanpy toolbox78 was used to perform library size normalization, 
cell and gene filtering, and a log1p transformation. For all datasets, we 
consider the 1, 000 highly-variable genes, which were computed based 
on the training set only. Highly variable genes are thereby computed 
using the scanpy’s highly_variable_genes function. Preprocess-
ing for the lupus patients38 and cross-species dataset45 were inherited 
from Rybakov et al.79 and Lotfollahi et al.13, and we would like to thank 
the author for hosting this dataset. Lastly, the preprocessing of the 
glioblastoma patient dataset44 was adapted from Peidli et al.80. See the 
Data Availability section for further details.

Training and technical details
Setup. In the i.i.d. setting, we split all cell datasets into train, test, and 
evaluation set, where the test and evaluation set consists of 500 to 
1, 000 cells, dependent on the size of the original dataset. The split is 
performed on each drug and control condition independently. In the 
o.o.d. setting, the model does not have access to cells of the holdout 
condition. To provide a fair comparison at the point of model deploy-
ment, we evaluate both i.i.d. and o.o.d. models on the same subset of 
holdout cells. Different from models trained o.o.d., i.i.d. models have 
seen the remaining holdout cells during training. At evaluation time, 
we use the same set of cells to ensure that results are comparable.

For scRNAseq datasets, we select hyperparameters for autoen-
coder models by doing a grid search over parameters summarized 
in Supplementary Table 1 and selecting the configuration that has 
the smallest reconstruction error over non-zero features. scRNA-seq 
datasets comprise more than 1,000 differentially expressed genes, 
typically assumed to lie in a low-dimensional manifold arising from 
the constraints of the underlying gene regulatory networks12,13. When 
applying CellOT to scRNA data, we use the same encoder that is used 
for SCGEN and embed gene expression data into a 50-dimensional 
latent space before applying CellOT. All models are trained for 250k 
iterations.

CellOT network architecture. As suggested by18, we relax the convex-
ity constraint on gθ and instead penalize its negative weights Wz

l
∈ θ

R (θ) = ∑
Wz

l
∈θ

‖
‖‖max (−

z

W
l
,0)‖‖‖

2

F

. (8)

The convexity constraint on fϕ is enforced after each update by setting 
the negative weights of all Wz

l
∈ ϕ to zero. Thus the full training objec-

tive is

max
ϕ∶Wz

l
≥0,∀l

min
θ

fϕ(∇gθ(x)) − ⟨x,∇gθ(x)⟩ − fϕ(y) + λR(θ). (9)

Hyperparameters. To learn the optimal transport maps, we use a 
batch size of 256, an ICNN architecture of 4 hidden layers of width 64, 
a learning rate of 0.0001 (β1 = 0.5, β2 = 0.9), and λ = 1. f and g are learned 
in an iterative fashion. f is updated by fixing g and maximizing (9) with 
a single iteration. For each iteration, f is then fixed, and an inner loop 
of 10 updates is run to minimize g. To train all networks, we use the 
Adam optimizer81. For all data modalities, i.e., different tasks involv-
ing 4i or scRNA-seq data, the selection of hyperparameters remains 
the same. Hyperparameters for the autoencoder-based baselines, 
however, were selected based on a grid search over parameters listed 
in Supplementary Table 1, which also contains the final choice. When 
comparing cAE to its variational counterpart (cVAE), we found no 
meaningful differences between the representations learned by either 
model. In practice, the weight of the KL term in the VAE is chosen such 
that the likelihood component of the loss is orders of magnitude larger. 
Furthermore, one of the main features of the variational counterpart, 
i.e., the ability to generate new cell states by sampling from the prior 

distribution, is usually not utilized. An extended discussion on the 
baselines and related work can be found in Supplementary Section A.

Evaluation
Metrics. Since we lack access to the ground truth set of control and 
treatment observations on the single-cell level, we analyze the effec-
tiveness of CellOT using evaluations that operate on the level of the 
distribution of real and predicted perturbation states. Three metrics 
are considered, i.e., MMD, ℓ2 feature means, and the average correlation 
coefficient r2 of the feature means.

ℓ2 feature means refers to the ℓ2-distance between means of the 
observed and predicted distributions. Similarly, r2 feature means refers 
to the correlation of the means of the observed and predicted distribu-
tions. However, metrics based only on feature means can be insensitive 
in settings where crucial heterogeneity is not captured. Consider, for 
example, a target distribution with multiple modes. These metrics 
will favorably evaluate a uni-modal predicted distribution that simply 
models the mean of this multi-modal distribution. To this end, we 
include a distributional distance sensitive to this type of behavior by 
measuring differences in the properties of higher moments, i.e., the 
maximum mean discrepancy.

MMD refers to the kernel maximum mean discrepancy33, a met-
ric to measure distances between distributions. Given two random 
variables x and y with distributions p and q, and a kernel function ϕ,  
Gretton et al.33 define the squared MMD as

MMD(p,q;ϕ) = 𝔼𝔼x,x′ [ϕ(x, x′)] + 𝔼𝔼y,y′ [ϕ(y, y′)] − 2𝔼𝔼x,y[ϕ(x, y)].

We report an unbiased estimate of MMD(rk, ̂rk) where the expectations 
are evaluated by averages over the cells in each set. The RBF kernel is 
employed, and as is usually done, reports the MMD as an average over 
several length scales, i.e., np.logspace(1, -3).

Lastly and aligned with previous works, we report the overall aver-
age correlation coefficient r2 between predictions and observations.

Feature selection. For 4i data5, the above metrics are computed using 
all 47 features. The ℓ2 feature means and the average correlation coef-
ficient r2 are also computed on the entire gene set, i.e., ~ 1, 000 genes 
for scRNA-seq or ~ 50 features for 4i data. Due to the high dimensional-
ity of scRNA data, we report the MMD using the top 50 marker genes. 
Marker genes are computed for each perturbation with the scanpy78 
function rank_genes_groups, using the untreated control cells as 
reference. The influence on the number of selected marker genes is 
further analyzed in Supplementary Fig. 7, exemplary on Trametinib 
for the SciPlex 3 dataset31. The analysis thereby demonstrated that the 
MMD computation is biased with increasing dimensionality.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw published data for the SciPlex 3 (ref. 31), patients with lupus38, 
patients with glioblastoma44 and statefate dataset46 are available from 
the Gene Expression Omnibus under accession codes GSM4150378, 
GSE96583, GSE148842 and GSE140802, respectively. Data from the 
cross-species dataset45 are hosted on the BioStudies database of 
EMBL-EBI under code E-MTAB-6754. A full set of links can be found in 
that publication. The processed datasets of all tasks can be accessed at 
https://doi.org/10.3929/ethz-b-000609681. Source data are provided 
with this paper.

Code availability
CellOT is written Python and uses standard Python libraries. The Cel-
lOT library is available at https://doi.org/10.3929/ethz-b-000612005.
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Extended Data Fig. 1 | Analysis of dataset structures for the 4i and SciPlex 3 
dataset. Analysis of dataset structures for the 4i dataset (a, b) and the SciPlex 3 
dataset (c). a, Spearman correlations between all feature pairs computed in 4i 
control cells (bottom) and Sorafenib-treated cells (top). Row colors show the 
mean value of each feature in control cells and column colors show the effect of 
the drug on each feature as computed by the difference in means between control 

and treatment. Correlations that changed the most under the perturbation are 
highlighted in blue. b, Density plot of feature correlations in the control setting 
vs. treated setting for all 35 4i treatments. Sorafenib values (corresponding to 
elements in b are scattered above and light blue points correspond to blue boxes 
in b. c, Feature correlation between in the control setting vs. treated setting for all 
cancer drugs of the SciPlex 3 dataset.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01969-x

Extended Data Fig. 2 | Visualization of the learned vector field.  
The perturbation response on the single-cell level is described for a, Dabrafenib, 
b, Everolimus and c, Trametinib of the 4i dataset for CellOT, the average 
effect and scGen on the first two principal components. Cellular responses 

are computed as the predicted treated state minus the observed control 
state for each individual cell. Arrow tails are placed in a grid within PC space 
and arrowheads correspond to the average response of cells within each 
neighborhood, projected into PC space.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extended analysis of CellOT-predicted responses to 
34 cancer treatments. a, High similarity of measured and CellOT-predicted 
single-cell pERK (phosphor ERK1/2) values at the single-cell level. Scatter 
plots compare the relationship between measured pERK values of cells (left) 
treated with Midostaurin (green dots), Palbociclib (blue dots), Panobinostat 
(red dots) and MLN2480 (purple dots) or (right) predicted for those drugs 
along the horizontal axis to their corresponding 3NN cells on the vertical 
axis. For details on the generation of 3NN data, see Online Methods. X mark, 
square, inverted triangle and circle represent the mean of the respective 
measurements per drug. The dashed gray line indicates the diagonal along 
which the measurements would correlate perfectly. b, The high similarity of 
measured and CellOT-predicted single-cell pERK (phosphor ERK1/2) values at 
the population level across all drug perturbations. Drug average of measured 
(blue dots) and predicted (green dots) pERK values compared to their respective 
3NN measurement (see Online Methods). Drug treatments highlighted in color 
correspond the those presented in panel a. The dashed gray line indicates the 
diagonal along which the measurements would correlate perfectly. c, Projection 
of measured perturbed and predicted perturbed cells in a shared UMAP space. 
Each cell is color-coded according to the perturbation from which it originates. 
d, Projection of mean-corrected measured perturbed cells in a UMAP space. Each 
cell is color-coded according to the perturbation from which it originates. Mean 
correction was achieved by subtracting calculating the mean of every feature for 
all cells in the control condition and subtracting the calculated feature means 

from the feature values of individual cells. e, Projection of single-cell corrected, 
predicted perturbed cells in a UMAP space. Each cell is color-coded according 
to the perturbation model with which it was predicted. See Online Methods 
for details on the single-cell correction. f, Projection of single-cell corrected, 
predicted perturbed cells in a UMAP space. Each cell is color-coded according 
to its assignment to one of the 12 cell states. See Online Methods for details on 
cell state assignment. g, Feature value overview of the 12 identified cell states in 
DMSO-treated (Control) cells. Each column represents a cell state and each row a 
feature. Circles are colored and scaled based on feature value, from small size in 
blue for low feature values, to large circles in yellow for high feature values. h-j, 
Drug effect overview of the 12 identified cell states in h, Staurosporine (apoptosis 
ind.m apoptosis inducer, i, Trametinib (MEKi, MEK inhibitor), MLN2480 
(panRAFi, panRAF inhibitor), j, Trametinib + Midostaurin (Tram + Mido, MEK 
inhibitor + pan Receptor Tyrosine Kinase inhibitor (panRTK)), Midostaurin 
(panRTK). Each column represents a cell state and rows represent features. ‘cell-’ 
stands for mean cell intensity. Circles are scaled based on drug effect, the larger 
the ± effect the larger the circles. Negative values are encoded in hues of blue and 
positive values in red hues of the respective circles. k, Effect of drug treatments 
on levels of cleaved Caspase 3 (cleaved Caspase 3) in the 12 identified cell states. 
Each column represents a cell state, each row a drug treatment. Circles are scaled 
based on drug effect, the larger the ± effect the larger the circles. Negative values 
are encoded in hues of blue, positive values in red hues of the respective circles.
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Extended Data Fig. 4 | Extended analysis of the cross species dataset.  
a, Pairwise average correlation of the PCA embeddings of the control states 
between species. b, Pairwise average correlation of the PCA embeddings of the 
treated states between patients, masked to only those patient pairs that showed 
a positive correlation in the control states. Only rat and mouse show consistent 

responses, that is, a positive correlation of the control states and non-negative 
correlation of the respective target cells and are thus chosen for the o.o.d. 
analysis. I.i.d. and o.o.d. results measured in the average gene expression for both 
c, CellOT and d, scGen.
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Extended Data Fig. 5 | Integration of predicted and observed perturbed state 
in the statefate dataset. Joint UMAP projections are computed for observed, 
CellOT and scGen predictions. In each axis, projections are colored by cell type 

(left), CellOT predictions (middle) and scGen predictions (right). For both our 
method, CellOT and the baseline scGen, the UMAP highlights the observed and 
predicted perturbed cell states.
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Extended Data Fig. 6 | Analysis and results of the glioblastoma dataset 
consisting of seven patients. a, Cells from seven glioblastoma patients are 
measured in an untreated and Panobinostat-treated state. For each sample, we 
train two models, an o.o.d. model trained on cells from all other samples but 
the holdout patient we test on and an i.i.d. model trained with additional access 
to half of the cells in the holdout sample. b, Pairwise average correlation of the 
PCA embeddings of the control states between patients. c, Pairwise average 
correlation of the PCA embeddings of the treated states between patients, 
masked to only those patient pairs that showed a positive correlation in the 
control states. Only patient PW034 positively correlates with all other patients. 

Other patients, such as PW053, correlate and anti-correlate with other patients 
in the treated state. Performance comparison between CellOT and baselines 
for different metrics in the d, i.i.d. setting (mean standard deviation across 7 
samples, 10 bootstraps of the test set per sample), e, o.o.d. setting for all patients 
(box plots show median, minima and maxima), f, o.o.d. setting for a patient 
positively correlating with all patients that are also similar in the control state, 
g, o.o.d. setting for a patient where similar patients in the control state show 
different responses (correlation and anti-correlation) in the treated states. 
Data in f and g are presented as the mean +/- standard deviation across n=10 
bootstraps of the test set.
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