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SCENIC+: single-cell multiomic inference of 
enhancers and gene regulatory networks

Carmen Bravo González-Blas1,2,4, Seppe De Winter    1,2,4, Gert Hulselmans1,2, 
Nikolai Hecker    1,2, Irina Matetovici    1,3, Valerie Christiaens1,2, 
Suresh Poovathingal1, Jasper Wouters    1,2, Sara Aibar1,2 & Stein Aerts    1,2 

Joint profiling of chromatin accessibility and gene expression in individual 
cells provides an opportunity to decipher enhancer-driven gene 
regulatory networks (GRNs). Here we present a method for the inference 
of enhancer-driven GRNs, called SCENIC+. SCENIC+ predicts genomic 
enhancers along with candidate upstream transcription factors (TFs) and 
links these enhancers to candidate target genes. To improve both recall  
and precision of TF identification, we curated and clustered a motif 
collection with more than 30,000 motifs. We benchmarked SCENIC+ on 
diverse datasets from different species, including human peripheral  
blood mononuclear cells, ENCODE cell lines, melanoma cell states and 
Drosophila retinal development. Next, we exploit SCENIC+ predictions  
to study conserved TFs, enhancers and GRNs between human and mouse 
cell types in the cerebral cortex. Finally, we use SCENIC+ to study the 
dynamics of gene regulation along differentiation trajectories and  
the effect of TF perturbations on cell state. SCENIC+ is available at 
scenicplus.readthedocs.io.

Cell identity is encoded by gene regulatory networks (GRNs), in which 
transcription factors (TFs) interact with sets of cis-regulatory ele-
ments (CREs) to control transcription of target genes. CREs are often 
cell-type-specific and consist of specific TF-binding site (TFBS) com-
binations. In-depth knowledge of GRNs is important for mechanistic 
understanding of biological aspects underlying development1,2, evolu-
tion3,4 and disease5; however, knowledge of TF–target relationships at 
the cis-regulatory level is still limited.

Experimental techniques, including chromatin immunoprecipita-
tion and sequencing (ChIP-seq), have yielded a wealth of TF-binding 
datasets. Nevertheless, for tissues with high cell-type diversity 
it remains challenging to map TFBSs because of the need for large 
amounts of homogenous cells. In addition, for most TFs, high-quality 
antibodies are lacking. Alternative approaches have recently been 
described that have increased cellular resolution (for example, 
single-cell CUT&Tag6, nano-CT7 and NTT-seq8) or that rely on genetic 
tagging (for example, DamID9 and nanoDam10), yet such methods are 
still difficult to scale to all TFs.

Computational modeling is an alternative for identifying 
TFBSs. For example, SCENIC combines single-cell RNA-sequencing 
(scRNA-seq) coexpression networks with TF motif discovery11,12, but it 
cannot identify the exact CRE targeted by the TF and it only uses a small 
proportion of a gene’s putative regulatory space13,14. With single-cell 
chromatin-accessibility data, the accuracy of TFBS predictions can be 
improved substantially15. In fact, genomic regions that are specifically 
accessible in a cell type often represent enhancers and are enriched for 
TFBS combinations2,14,16–18.

Here, we developed SCENIC+, a computational framework that 
combines single-cell chromatin accessibility and gene expression data 
with motif discovery to infer enhancer-driven GRNs (eGRNs).

SCENIC+ uses more than 30,000 TF motifs to 
predict eGRNs
SCENIC+ is a three-step workflow that involves identifying candidate 
enhancers, identifying enriched TF-binding motifs and linking TFs 
to candidate enhancers and target genes (Fig. 1a and Supplementary 

Received: 19 August 2022

Accepted: 6 June 2023

Published online: 13 July 2023

 Check for updates

1VIB Center for Brain & Disease Research, Leuven, Belgium. 2Department of Human Genetics, KU Leuven, Leuven, Belgium. 3VIB Tech Watch, VIB 
Headquarters, Ghent, Belgium. 4These authors contributed equally: Carmen Bravo González-Blas, Seppe De Winter.  e-mail: stein.aerts@kuleuven.be

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01938-4
http://orcid.org/0000-0001-7907-1247
http://orcid.org/0000-0003-1693-4257
http://orcid.org/0000-0002-4873-0040
http://orcid.org/0000-0002-7129-2990
http://orcid.org/0000-0002-8006-0315
https://scenicplus.readthedocs.io/en/latest/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-01938-4&domain=pdf
mailto:stein.aerts@kuleuven.be


Nature Methods | Volume 20 | September 2023 | 1355–1367 1356

Article https://doi.org/10.1038/s41592-023-01938-4

TF motif enrichment analysis : pycisTarget

Single-cell multiomics preprocessing : pycisTopic

Enhancer-driven GRN inference : SCENIC+
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Fig. 1 | The SCENIC+ workflow and motif collection. a, SCENIC+ workflow. 
Topics and DARs inferred with pycisTopic are transformed into cistromes 
of directly bound regions by identifying modules that present significant 
enrichment of the regulator’s binding motif using pycisTarget. SCENIC+ 
integrates region accessibility, TF and target gene expression and cistromes 
to infer eGRNs, in which TFs are linked to their target regions and these to their 
target genes. PWM, position weight matrix; UCSC, University of California, Santa 
Cruz. b, Running-time comparison per topic model using cisTopic with Collapsed 
Gibbs Sampling or WarpLDA (blue) and pycisTopic with Collapsed Gibbs 
Sampling or MALLET (red) for parameter optimization. c, Bar-plots showing the 
area under the recovery curve (AUC; enhancer recovery) on the top 10% of the 
ranking based on STARR-seq signal, for the top 5,000 DARs identified by Signac, 
pycisTopic and ArchR and top 5,000 regions from the cell-line-specific topics 
identified by pycisTopic. The AUC value is scaled by dividing by the maximum 
possible AUC at 10% of the ranking. Promoter regions were excluded from the 

analysis. d, Workflow to create motif databases for SCENIC+. The SCENIC+ motif 
collection includes 34,524 unique motifs gathered from 29 motif collections, 
which were clustered with a two-step strategy. Input regions are scored for each 
cluster of motifs using hidden Markov models (HMMs), where each motif of the 
cluster is used as a hidden state. The score-based motif database is used in the 
DEM algorithm, whereas the ranking-based database is used for cisTarget. NES, 
normalized enrichment score. e, Number of TFs in the SCENIC+ motif collection 
annotated by direct evidence or orthology. f, Recovery of TFs from 309 ENCODE 
ChIP-seq datasets using different databases and motif enrichment methods, 
namely Homer, pycisTarget and DEM. The unclustered databases include all 
annotated motifs before clustering (singlets), the archetype databases use the 
consensus motifs of the clusters based on STAMP and the clustered databases use 
the motif clusters, scoring regions using all motifs in the cluster. The x axis shows 
the positions in which the TFs targeted in the ChIP-seq experiment can be found 
and the y axis shows the cumulative number of TFs that are found at that position.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | September 2023 | 1355–1367 1357

Article https://doi.org/10.1038/s41592-023-01938-4

Note 1). The output is a set of enhancer-driven regulons (eRegulons) 
that form an eGRN.

To find candidate enhancers, single-cell analysis of accessible 
chromatin (scATAC-seq) data is preprocessed using pycisTopic, a faster 
Python reimplementation of cisTopic16 (Fig. 1b and Extended Data 
Fig. 1a–f). SCENIC+ uses both differentially accessible regions (DARs) 
and topics, sets of co-accessible regions, across cell types or states as 
enhancer candidates. Topics are more enriched for functional enhancer 
regions compared to DARs (Fig. 1c and Extended Data Fig. 1g).

To discover potential TFBSs in candidate enhancers we make use 
of motif enrichment analysis. For this we created the largest motif 
collection to date (Supplementary Note 2) and built a Python package 
called pycisTarget. pycisTarget implements two algorithms for motif 
enrichment analysis: the cisTarget ranking-and-recovery-based algo-
rithm11,19–21 and a Wilcoxon rank-sum test called differential enrichment 
of motifs (DEM) (Supplementary Note 3).

The motif collection is a secondary database containing 32,765 
unique motifs collected from 29 collections (Fig. 1d and Extended 
Data Fig. 2a,b) along with TF annotations. The collection spans a total 
of 1,553 TFs, 1,357 TFs and 467 TFs, respectively in human, mouse and 
fly (Fig. 1e and Extended Data Fig. 2c). We clustered all motifs based 
on motif-to-motif similarity and found that scoring candidate regions 
using all motifs within a cluster yields a significantly higher precision 
and recall compared to using a single ‘archetype’ motif per cluster  
(Fig. 1f and Extended Data Fig. 2d–h). Both the cisTarget and DEM 
algorithm outperform Homer22 (Fig. 1f and Extended Data Fig. 2d), 
with the DEM algorithm enabling detection of differential motifs in 
sets of regions with a similar motif content (Extended Data Fig. 2i–j).

SCENIC+ next uses GRNBoost2 (ref. 23) to quantify the importance of 
both TFs and enhancer candidates for target genes and it infers the direc-
tion of regulation (activating/repressing) using linear correlation. Motif 
enrichment analysis results are combined with GRNBoost2 inferences 
using a second enrichment analysis to recover the best TF for each set of 
motifs. This forms the eRegulon, a TF with its set of target regions and genes.

The overall running time and memory of the workflow ranges 
from 1 h and 21 Gb to 44 h and 461 Gb for the smallest and largest tested 
dataset, respectively (Extended Data Fig. 3).

Illustration of SCENIC+ on PBMC multiome data
We first analyzed a publicly available single-cell multiomics dataset 
containing 9,409 human peripheral blood mononuclear cells (PBMCs) 
to showcase and validate SCENIC+. Dimensionality reduction based on 
eRegulon enrichment scores separates the main biological cell states 
(Fig. 2a). SCENIC+ identified 53 activator eRegulons, targeting a total 
of 23,470 regions and 6,142 genes. A total of 89% of genes have between 
1–10 predicted enhancers and 49% of enhancers are predicted to most 
likely regulate the most proximal gene (Fig. 2b).

SCENIC+ recovers well-known master regulators of B cells (EBF1, 
PAX5 and POU2F2/POU2AF1), T cells (TCF7, GATA3 and BCL11B), natural 
killer (NK) cells (EOMES, RUNX3 and TBX21), dendritic cells (SPIB and 
IRF8) and monocytes (SPI1 and CEBPA) (Fig. 2c)24–28. The majority of 
the top five cell-type-specific TFs show co-binding to shared enhanc-
ers. Such cooperativity is not observed for TFs that are not specific for 
the same cell type (Fig. 2d). In particular, for B cells SCENIC+ suggests 
cooperativity between EBF1(+), PAX5(+) and POU2F2/AF1(+) (Fig. 2e), 
with a strong overlap of most of their predicted target enhancers with 
EBF1, PAX5 and POU2F2 ChIP-seq data (Fig. 2f–g).

In conclusion, SCENIC+ infers key regulators of different 
PBMC types and genomic target regions of these regulators in a 
high-throughput manner. This can be exploited to infer cooperativity.

Validation of SCENIC+ predictions using ENCODE 
data
We next used simulated single-cell multiome data from eight ENCODE 
deeply profiled cell lines (Fig. 3a)29,30 (GM12878, IMR90, MCF7, HepG2, 

PC3, K562, Panc1 and HCT116) to validate the quality of TFs, target 
regions, region-to-gene relationships and target genes predicted by 
SCENIC+. We benchmarked these predictions to other tools that predict 
(e)GRNs using multiomics data, namely CellOracle31, Pando32, FigR33 
and GRaNIE34, and included SCENIC11,12 as a baseline (Supplementary 
Note 4). SCENIC+ identified 178 TFs. GRaNIE, FigR, SCENIC and Pando 
identified fewer TFs (39, 71, 108 and 157 TFs, respectively), while Cel-
lOracle identified 235 TFs (Fig. 3b). On average SCENIC+ predicts 471 
and 1,152 target genes and regions per eRegulon (Fig. 3b).

To assess whether the predicted GRNs contain enough infor-
mation to recapitulate all biological cell states we performed 
principal-component analysis (PCA) based on regulon enrichment 
scores. SCENIC+ was able to separate all cell lines, whereas other meth-
ods mixed two or more cell lines (Fig. 3c).

Next, we evaluated to what extent the identified TFs are biologically 
relevant by quantifying the recovery of highly differentially expressed 
TFs and TFs with many direct ChIP-seq peaks35,36. SCENIC+ achieved 
the best recovery for both metrics, followed by SCENIC (Fig. 3d,  
Extended Data Fig. 4a–c). Notably, TFs identified by SCENIC+ include 
most of the known lineage TFs, such as GATA1, TAL1, MYB and LMO2 
for K562 (refs. 37–40) or HNF1A, HNF4A, FOXA2 and CEBPB for HepG2 
(ref. 40) or ESR1 and GRHL2 for MCF7 (ref. 41). CellOracle had little 
recovery of differentially expressed TFs, whereas it recovers a large 
fraction of non-cell-line-specific TFs (for example GABPA, YY1 and SP1; 
Extended Data Fig. 4d).

As a third criterion, we evaluated the precision and recall of the 
predicted target regions of each TF based on TF ChIP-seq data in the 
ENCODE cell lines. For this, we used both unprocessed ChIP-seq peaks 
as well as direct ChIP-seq peaks from UniBind35,36 and predicted TF bind-
ing by Enformer42. Overall, the predicted target regions of SCENIC+ 
and GRaNIE have the highest precision and recall, followed by Pando 
and CellOracle (Fig. 3e and Extended Data Fig. 4e–g). Furthermore, the 
predicted target regions by SCENIC+ have the highest enhancer activity 
as measured by STARR-seq (Extended Data Fig. 4h).

As a fourth criterion, we assessed the quality of predicted 
region-to-gene associations making use of deeply sequenced Hi-C 
data on five of the cell lines. SCENIC+ predicts a total of 402,838 links 
and has an average correlation coefficient of 0.25 with the Hi-C data 
(Fig. 3f and Extended Data Fig. 4i,j). The other methods identify fewer 
links, ranging from 13,123 to 311,168, and have a lower correlation with 
Hi-C data (Fig. 3f and Extended Data Fig. 4i,j).

Next, we evaluated target gene predictions using three meth-
ods. First, we reasoned that correct target gene predictions would 
allow for accurate estimation of target gene expression given the 
expression of the upstream TFs. To this end, we trained a regression 
model using each method’s predicted eGRN as a scaffold. Predicted 
gene expression values using links from SCENIC+ had an average 
correlation coefficient of 0.61 with real expression values; this cor-
relation was lower for Pando, GRaNIE, FigR and CellOracle (Extended 
Data Fig. 5a). Second, we quantified recovery of genes that change 
after knockdown of TFs. Across 157 TF perturbation datasets on the 
ENCODE cell lines, predicted target genes of SCENIC+ had the high-
est enrichment score per TF (Extended Data Fig. 5b) and the highest 
precision and recall (Fig. 3g and Extended Data Fig. 5c). Finally, to 
better account for indirect effects of TF knockdown experiments 
either due to indirect interactions or cooperativity (Extended Data 
Fig. 5d,e), we performed in silico TF perturbations based on the GRNs 
inferred by each method. While only a fraction of the variation in gene 
expression can be explained by any of the GRNs, eGRNs inferred by 
SCENIC+ agree the best with the experimental data (Extended Data 
Fig. 5f and Supplementary Table 1).

We performed these benchmark analyses using either motif (or 
ChIP-seq based) databases derived from all consensus peaks or derived 
from the SCREEN43 regions, resulting in similar performance (data 
not shown). We also assessed the effect of sample size and coverage 
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on the predictions of SCENIC+. SCENIC+ does not perform well with 
very few cells with low coverage (80 cells, 3,000 ATAC-seq fragments 
and 5,000 RNA-seq reads), but works accurately at standard coverage 
(Extended Data Fig. 6).

Finally, to test whether the same conclusions can be drawn from a 
real single-cell multiome dataset we repeated the benchmark analyses 
on the PBMC data (Extended Data Fig. 7). GRaNIE is not present in this 
benchmark as it was developed for bulk datasets and did not scale  
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Fig. 2 | SCENIC+ analysis on peripheral blood mononuclear cells. 
 a, t-SNE dimensionality reduction of 9,409 cells based on target gene and  
target region enrichment scores of eRegulons. pDC, plasmacytoid dendritic  
cell; cDC, conventional dendritic cell. b, Top: distribution of the number of 
regions linked to each gene. Bottom: distribution showing whether the nth 
closest region to the target gene has the highest region-to-gene importance 
score. c, Heat map/dot-plot showing TF expression of the eRegulon on a color 
scale and cell-type specificity (RSS) of the eRegulon on a size scale. Cell types 
are ordered on the basis of their gene expression similarity. d, Overlap of target 
regions of eRegulons. The overlap is divided by the number of target regions 

of the eRegulon in each row. fr., fraction. e, Visualization of the eGRN formed 
by EBF1, PAX5, POU2AF1 and POU2F2. TF target nodes are restricted to highly 
variable genes and regions. f, Aggregated ChIP-seq signal of EBF1, PAX5 and 
POU2F2 in GM12878 on target regions of either EBF1, PAX5 or POU2AF1 and 
combinations of two of these factors. g, Chromatin-accessibility profiles across 
cell types and ChIP-seq signal together with peak calls of EBF1, PAX5 and POU2F2 
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Region–gene gradient-boosting machine feature importance scores are encoded 
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using colored ticks and semi-transparent boxes.
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to this larger (10,000 cells) dataset. GRNs from all methods were 
able to recapitulate all biological cell states, except the GRN inferred 
by FigR (Extended Data Fig. 7d). SCENIC+ and Pando performed 
best in terms of identifying biologically relevant TFs, with Pando 
finding additional TFs compared to SCENIC+ (Extended Data  
Fig. 7e,j). SCENIC+ had the highest precision and recall in terms of 
target region predictions (Extended Data Fig. 7f). Note that even 
when only scATAC-seq is used to identify TFs per cell type (for exam-
ple, ArchR44 and Signac45), the majority of known cell-type-specific 
TFs could still be recovered with accurate target region predictions 
(Extended Data Fig. 7g,h), showing that motif discovery is a powerful 
means for cell-type-specific TF prediction; however, using scATAC-seq 
alone resulted in large amounts of false-positive TF predictions, rep-
resenting TFs that are not expressed in the cell type but have a similar 
motif (Extended Data Fig. 7i).

SCENIC+ prioritizes functional enhancers
SCENIC+ uses automatic thresholding procedures, on the TF–gene, 
region–gene and region–motif scores, to obtain discrete sets of eReg-
ulons; however, in some circumstances it may be beneficial to obtain 
a ranking of TFs, regions and genes based on their importance. For 
this reason, we implemented a ranking that quantitatively ranks TF–
region–gene triplets. This ranking is the aggregated ranking46 of the 
TF–region scores, TF–gene scores and region–gene scores (Fig. 3h).

We tested whether the triplet ranking can be used to prioritize 
potential enhancers. Indeed, regions in the top 10% of triplets have 
a higher ChIP-seq signal, as measured experimentally and in silico by 
Enformer and higher enhancer activity as measured by STARR-seq 
(Fig. 3i).

To further illustrate this, we focused on three master regulators 
of HepG2 cells: HNF4A, FOXA2 and CEBPB. Predicted target regions 
of these TFs have a high ChIP-seq coverage for these TFs, as measured 
experimentally and in silico by Enformer (Fig. 3j–l). Regions with high 
ChIP-seq coverage also have a higher TF-to-region ranking, compared 
to those with low coverage (Fig. 3j–l). In comparison, the predicted 
target regions of the same TFs by GRaNIE, Pando or CellOracle are 
very sparse. Only for HNF4A the predicted target regions by GRaNIE 
correspond well to those of SCENIC+; however, GRaNIE identified a 
subset of target regions that have a low Enformer score, even though 
they overlap with a ChIP-seq peak (Fig. 3j).

Next, we zoomed in on the target region of HNF4A that was pre-
dicted to be most important according to the triplet ranking. This 
region is also predicted to be targeted by FOXA2 and CEBPB and is 
predicted to regulate SPP1 (Fig. 3m), a marker gene of HepG2 cells (aver-
age log fold change (FC) of 9.24). The region is specifically accessible 
in HepG2 cells and has a high ChIP-seq signal for HNF4A, FOXA2 and 
CEBPB (Fig. 3n). Altogether, this region is a strong enhancer candidate 
for SPP1 in HepG2.

SCENIC+ simulates phenotype switching of 
cancer cell states
Gene regulatory network analysis of cancer cells holds promise to 
identify stable (attractor) cell states and their regulators. As a case study 
we performed scATAC-seq on nine melanoma cell lines that represent 
different melanoma states47,48 and combined these data with previously 
published scRNA-seq data for the same lines48.

Cells clustered in three states based on eRegulon enrichment 
scores (Fig. 4a). Furthermore, a Boolean model49 based on the top 25% 
TF-to-TF edges from the SCENIC+ network was sufficient to recapitulate 
all the main cell states (Extended Data Fig. 8a,b).

SCENIC+ recovered the known regulators for the melanocytic 
(MEL) state (MITF, SOX10, TFAP2A and RUNX3), the mesenchymal 
(MES) state ( JUN, NFIB and ZEB1) and the intermediate sub-state of 
MEL governed by the MEL TFs supplemented with SOX6, EGR3 and 
ETV4 (Fig. 4b and Extended Data Fig. 8c–g)48,50,51. It was previously 
suggested that RUNX motifs are part of the MEL enhancer code17,48 
but which member of the RUNX family was unclear. Using SCENIC+, 
we predict that it is most likely RUNX3 (Fig. 4b).

It is known that melanoma cells can dynamically shift state from 
MEL to MES and vice versa, driving metastasis and therapeutic resist-
ance, a process called phenotype switching52. Knockouts of specific 
TFs can drive this process48.

To simulate phenotype switching and to prioritize TFs that under-
lie this process, we took inspiration from CellOracle31 and GRaNPA34, by 
using SCENIC+ as a feature selection method and training a random for-
est (RF) regression model for each gene to predict its expression based 
on the expression of their upstream TFs. After fitting the model, we use 
it to predict the effect of a TF perturbation by setting the expression 
of the TF to zero. To account for indirect effects (TFs targeting other 
TFs), perturbed gene expression values are propagated over several 
iterations. The effect of the simulated perturbation can be visualized by 
co-embedding the simulated gene expression matrix with the original 
one (Fig. 4c).

As proof of principle, we simulated the effect of SOX10 KD on 
the MEL state. Notably, the simulated cells, after SOX10 KD, suggest 
that they switch to a more MES-like state, whereby MES genes are 
upregulated and MEL genes are downregulated and this effect stabilizes 
after four iterations of simulation (Fig. 4d). This predicted effect of 
SOX10 knockdown was strongest in the intermediate cell lines and is 
fully recapitulated by experimental SOX10 KD, followed by RNA-seq48  
(Fig. 4e and Extended Data Fig. 8d).

Encouraged by this result, we simulated perturbations of all the 
identified TFs. Simulated knockdowns of RUNX3, SOX10 and MITF 
show the strongest potential to switch cells from MEL to MES; whereas 
knockdowns of ZEB1, SOX4 or SMAD3 are predicted to cause the reverse 
switch from MES to MEL (Fig. 4f–g), consistent with the role of these TFs 
in epithelial-to-mesenchymal transition (EMT)48,53–57. We also identified 

Fig. 3 | Benchmark of SCENIC+ and other single-cell multiomics GRN 
inference methods using ENCODE deeply profiled cell lines. a, Diagram 
of benchmarking strategy. b, Number of TFs identified per method and 
distributions of the number of target genes and regions per regulon and method. 
c, PCA based on target gene and region enrichments and ARI quantification 
(4,000 cells). d, Cumulative recovery, per method, of TFs ranked in descending 
order by maximum logFC based on differential gene expression between all cell 
lines. e, F1 score distributions from the comparison of regulon target regions, 
per method and UniBind. f, Correlation between Hi-C links for top 100 marker 
genes and region–gene scores per method. Two-sided Wilcoxon rank-sum test 
comparing mean correlation of links versus shuffled links. The Holm method 
was used to correct for multiple testing. g, F1 score distributions from the 
comparison of regulon target genes, per method and TF perturbation data.  
h, Diagram of triplet ranking. i, Distributions of experimental and predicted  
TF ChIP-seq coverage and STARR-seq logFC target regions and other consensus 
peaks (not in eRegulon). j–l, Heat maps showing experimental and predicted 

ChIP-seq coverage on the union of predicted target regions per method with 
binary heat map indicating regions found per method and scatter-plot showing 
TF-to-region (TF2R) ranking of SCENIC+ target regions, for the TFs HNF4A 
(j), FOXA2 (k) and CEBPB (l). m, Network for top ten edges, targeted by any of 
FOXA2, HNF4A or CEBPB. Open and closed circles represent regions and genes 
and their color is proportional to the accessibility/gene expression logFC, 
respectively. Region-to-gene edges width and color represent importance scores. 
Arrow indicates the highlighted SPP1 enhancer (chr4:88107462–88107963). 
n, Chromatin-accessibility profiles across cell lines and HNF4A, FOXA2 and 
CEBPB ChIP-seq coverage on the SPP1 locus, with region-to-gene links and the 
SPP1 enhancer highlighted. For box-plots in b, e–g and i, the top/lower hinge 
represents the upper/lower quartile and whiskers extend from the hinge to the 
largest/smallest value no further than 1.5 × interquartile range from the hinge, 
respectively. The median is used as the center. NA, data are not available for the 
method. GRaNIE* was run with simulated single-cell data instead of bulk.
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MXI1 and ZNF487 as potential EMT regulators, warranting further 
research. This strategy can thus be used to prioritize TFs regulating 
cell state and state transitions.

Conservation and divergence of eGRNs in the 
mammalian brain
The mammalian cortex consists of a highly diverse but evolutionary 
conserved set of excitatory (pyramidal) and inhibitory neurons58–60. 

Although several marker TFs have been described for some of these cell 
types, little is known about how precise TF combinations, their binding 
sites and their target genes underlie neuronal identity. We reasoned that 
two independent SCENIC+ analyses on human and mouse cortex could 
reveal conserved, and thereby, high-confidence eGRNs underlying 
cortical cell types. This evaluation, using comparative genomics, also 
serves as a benchmark for robustly detecting eGRNs despite potential 
species and dataset-specific biases.
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For the mouse cortex, we performed 10x single-cell multiome and for 
the human cortex we re-used a previously published multiome dataset60. 
We were able to identify matching cell types in both species, including 
layer-specific excitatory neurons, interneurons derived from the medial 
and caudal ganglionic eminences (MGEs and CGEs, respectively) and 
non-neuronal populations (microglia, astrocytes, endothelial cells, oli-
godendrocytes and oligodendrocyte progenitor cells (OPCs); Fig. 5a,b).

SCENIC+ identified 125 and 142 high-quality eRegulons for mouse 
and human, respectively, out of which 60 are found in both species 
(Fig. 5c,d). Notably, we observed a high correlation of the specific-
ity scores of eRegulons for these orthologous TFs in matching cell 

types (Extended Data Fig. 9a), implying that cell-type identity can be 
decomposed into these 60 eRegulons. Eight out of 60 conserved TFs 
have not been described before in the context of the cortex. These 
include Smad3/SMAD3 in the excitatory neurons of the upper cortical 
layers, Pparg/PPARG and Bhlhe40/BHLHE40 in L4 excitatory neurons, 
Etv5/ETV5 and Nfat5/NFAT5 in L5/6 excitatory neurons, Thrb/THRB 
and Pbx1/PBX1 in L6 excitatory neurons and Meis1/MEIS1 in oligo-
dendrocytes (Fig. 5c,d and Extended Data Fig. 9b–d). Projection of 
SCENIC+ regulons onto spatial transcriptomics data further validated 
layer-specific GRNs in the mammalian cortex (Extended Data Fig. 9e–j 
and Supplementary Note 5).
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Fig. 4 | SCENIC+ analysis using separate scATAC-seq and scRNA-seq data on a 
mix of human melanoma lines. a, PCA of 936 pseudo-multiome cells based on 
target gene and target region enrichment scores. b, Heat map/dot-plot showing 
TF expression of the eRegulon on a color scale and cell-type specificity (RSS) of 
the eRegulon on a size scale. c, Illustration of how predictions from SCENIC+ can 
be used to simulate TF perturbations. Top: SCENIC+ is used as a feature selection 
method and RF regression models are fitted for each gene using TF expressions 
as predictors for gene expression. Middle: the expression of TF(s) is altered in 
silico and the effect on gene expression is predicted using the regression models, 
which is repeated for several iterations to simulate indirect effects. Bottom: the 
original and simulated gene expression matrices are co-embedded in the same 
dimensionality reduction to visualize the predicted effect of the perturbation 

on cell states. d, Predicted logFC of mesenchymal (red shades) and melanocytic 
(yellow shades) marker genes over several iterations of SOX10 knockdown 
simulation. e, Simulated (s) and actual (r) distribution of logFCs of melanocytic 
(n = 523) and mesenchymal (n = 722) marker genes after SOX10 knockdown 
across several melanoma lines. Upper/lower hinge represents upper/lower 
quartile, whiskers extend from the hinge to the largest/smallest value no further 
than 1.5 × interquartile range from the hinge respectively. The median is used 
as the center. f, Simulated shift after SOX10 and ZEB1 knockdown represented 
using arrows. Arrows are shaded based on the distance traveled by each cell 
after knockdown simulation. g, Heat map representing the shift along the first 
principal component of each melanoma line after simulated knockdown of 
several TFs.
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brains. a, Uniform Manifold Approximation and Projection (UMAP) 
dimensionality reduction of 19,485 mouse cortex cells based on target gene 
and region enrichment scores. b, UMAP dimensionality reduction of 84,159 
human motor cortex cells based on target gene and region enrichment scores. 
c, Heat map/dot-plot showing TF expression of the eRegulon on a color scale 
and cell-type specificity (RSS) of the eRegulon on a size scale. The bar-plot above 
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for predicted target regions (top) and target genes (bottom). d, Mouse and 
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a diamond shape and their size represents the logFC of the region accessibility 
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are shown in blue and regions only found in the mouse analysis are shown in gray. 
Genes are shown as a circular shape and their color and size represent the logFC 
of the gene expression in OPCs compared to the rest of the cells. TF–region links 
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coefficients. f, OPC coverage, TFBSs and region–gene links in two loci, Chd7 and 
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ABC/VLMC, vascular leptomeningeal cell; AST, astrocyte; CT, cortico-thalamic; 
ENDO, endothelial cell; IT, intratelencephalic; MGL, microglia; NP, near-
projecting; PER, pericyte; PVM, perivascular macrophage; PT, pyramidal-tract; 
OL, oligodendrocyte; VEC, vascular endothelial cell.
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eRegulons identified in only one of the two species can be either 
species-specific TFs or false negatives in one of the two analyses. 
To distinguish one from the other, we assessed the correlation 
coefficient of cell-type-specificity scores of each mouse eRegulon 
to its human orthologous matching eRegulon by converting the 
mouse predicted target genes to human orthologous genes. We 
found an additional 51 eRegulons with a correlation coefficient >0.6. 

This indicates that these regulators are likely conserved, but were 
missed in the human analysis. For example, while Pou3f1/POU3F1 
and Fezf2/FEZF2, previously described regulators of L5 PT and L5/6 
neurons, respectively59, were only found in the mouse analysis, the 
human-based mouse eRegulons are enriched in the corresponding 
cell types in the human dataset, matching the expression of these 
TFs (Extended Data Fig. 9b).
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Next, we assessed the conservation of predicted target genes and 
regions across human and mouse. Out of the 102,746 regions found 
within human eGRNs, 84,861 could be lifted over (82%), whereas only 
69% of all accessible regions (697,721) could be lifted over. Out of these 
84,861 conserved mouse regions, 61,973 were accessible in the mouse 
cortex. In addition, 312,591 (out of 379,749) region–gene links from the 
human cortex could be lifted over, of which 283,900 corresponded 
to the same region–gene pair in the mouse cortex. On average, 28% 
and 6% of eRegulon target genes and regions, respectively, for each 
orthologous TF were conserved between the two species (Fig. 6c). 
We observed a strong correlation (0.68) of the fraction of conserved 
regions to the fraction of conserved genes per regulon. Thus, despite 
high conservation of TFs per cell type, the target genes (and even more 
so the target regions) are less conserved. This has also been observed 
in previous studies. For example, Bakken et al. reported 25% and 5% 
conservation of differentially expressed genes and DARs, respectively, 
across cell types in the human and marmoset cortex60. Stergachis et al. 
performed DNase I footprinting across 25 mouse tissues, finding that 
only around 20% of TF footprints are conserved in human, whereas 
95% of the TF code is shared61. Genomic relocation and turnover of 
TFBSs and enhancers may partly explain these observations; however, 
the sparsity of the single-cell datasets may also contribute to these 
findings, as we are only capturing a fraction of the transcriptome and 
epigenome in each cell. Overall, we identify 4,798 and 8,318 conserved 
TF–region and TF–gene relationships, respectively (Supplementary 
Table 2). Given the sparsity of direct TF–enhancer and TF–target gene 
relationships in the literature, this is the largest set of conserved TF–
target interactions in the mammalian cortex.

We further studied eGRN conservation in OPCs. While mature 
oligodendrocytes are driven by SOX10 (see further below), OPCs show 
higher activity of Sox2/SOX2, Sox6/SOX6 and Sox8/SOX8, alongside 
Olig2/OLIG2 and Prrx1/PRRX1 (Fig. 5e). These TFs have indeed been 
described previously in the literature as key drivers of OPC prolifera-
tion, migration, quiescence and differentiation62,63. Out of 636 regions 
predicted to be targeted by at least one of these five TFs in mouse and 
linked to at least one conserved target gene in both human and mouse, 
102 TFBS are conserved across the two species (16%).

To further examine the relationship between target region con-
servation and TFBS presence, we zoomed in on two example loci, Chd7 
and Hip1. We observed three distinct scenarios related to enhancer 
turnover: (1) a chromatin-accessibility peak and TFBSs are present in 
one of the species, whereas in the other species there is no accessibility 
and no TFBSs (two cases in the Chd7 loci); (2) a chromatin-accessibility 
peak and the same TFBSs are found in both species (two cases in the 
Hip1 loci); and (3) a chromatin-accessibility peak and at least one TFBS 
are shared across the two species, but additional non-shared TFBSs 
can be found. For the latter case, we also observed cross-species vari-
ations in the peak shape and size for peaks where different/additional 
TFBSs are found (for example, more accessibility in the species where 
additional TFBSs are found or a different peak shape when different 
TFBSs are found), whereas peaks with the same TFBSs have a similar 
shape (Fig. 5e).

Altogether, comparative analysis with SCENIC+ reveals TF lexicon 
conservation across mammalian brains, but divergence of their target 
genes and target regions.

Predicting TFs driving differentiation using GRN 
velocity
Single-cell omics data are often used to sample cells during a dynamic 
biological process such as differentiation. Models, such as RNA veloc-
ity64,65 and MultiVelo66, which try to reconstruct the most likely trajec-
tory from such data are available; however, these approaches do not 
include gene regulatory information to model dynamics.

We reasoned that regulatory relationships derived by SCENIC+ 
could provide additional intrinsic cues to predict cell-state dynamics. 

For example, the expression of a TF may precede accessibility of its 
binding sites and chromatin accessibility in turn may precede target 
gene expression67 (Fig. 6a). Therefore, we have developed a procedure 
to quantify the putative differentiation force of a TF. In this approach, 
cells are ordered along a pseudotime axis and each cell is matched to 
its future cell based on its current TF expression value and the cell with 
the best-matching future target gene expression. The differentiation 
force of a TF in each cell is then defined as the distance to its future cell, 
along the pseudotime axis. These forces can be plotted as arrows on a 
grid in any cell embedding (Fig. 6a).

We first applied this approach to a linear differentiation trajec-
tory from OPCs to mature oligodendrocytes in the mouse brain. This 
revealed a set of TFs (Olig2, Bcl6 and Prrx1) that maintain OPC iden-
tity. On the other hand, Tcf7l2 and Sox10 had a delay between TF and 
target gene expression. This can be seen as arrows pointing toward 
newly forming oligodendrocytes (NFOLs). A final set of TFs (Zeb2, 
Meis1 and Tcf12) were identified as potential drivers of the matura-
tion from NFOLs to oligodendrocytes (Fig. 6b). Notably, Meis1 has 
been previously described to be involved in early neurogenesis and 
hematopoiesis68 but not in oligodendrocyte maturation. In line with 
this, SCENIC+ also identified Meis1 as a conserved TF in human and 
mouse oligodendrocytes (Fig. 5c).

Next, we applied GRN velocity to a branched differentiation tra-
jectory from progenitor cells to photoreceptors or interommatidial 
cells in the developing fly retina. For this, we performed single-cell (sc)
ATAC-seq on the eye field and integrated these data with scRNA-seq and 
scATAC-seq data on the developing eye (Fig. 6c)14. SCENIC+ identified 
105 eRegulons that are active in the eye part. Of note, SCENIC+ found 
a repressor eRegulon for Cut (Ct) that is expressed in the antennae. It 
has been already shown that this acts as a repressor of the eye field69 
and here we predict that it directly represses 13 other TFs, including 
Spineless (ss), Eyeless (ey), Twin of eyeless (toy) and Optix.

As inferred by scVelo and MultiVelo, cells follow a differentiation 
trajectory from progenitors to the morphogenetic furrow (MF) and to 
the second mitotic wave (SMW), which forms a branch point to either 
photoreceptor cells (PRs) or interommatidial cells (INTs) (Fig. 6d,e). 
GRN velocity revealed strong differentiation arrows for Optix,Toy and 
Ey in progenitors, followed by Hairy (hry), Anterior open (aop), Rotund 
(rn) and Atonal (ato) in the MF. BarH1 (B-H1), BarH2 (B-H2), Sine oculis 
(so) and Glass (gl) were found to trigger the differentiation from MF 
toward both PRs and INTs. Lozenge (lz) was found to be the key driver 
of INT identity and Tramtrack (ttk) as the key driver for their matura-
tion. In the photoreceptor branch, Senseless (sens) and Rough (ro) 
were identified as key regulators of differentiation. These are followed 
first by Asense (ase), Lola, Seven up (svp) and Scratch (scrt) and later by 
Shaven (sv) and Onecut (onecut) in mature photoreceptors (Fig. 6f,g). 
Notably, these findings are consistent with a previously described dif-
ferentiation cascade in the eye disc14.

Discussion
CREs are key to control differential gene expression across cell types, 
during development, in evolution and in disease1–5,70. Yet, only few 
GRNs have been characterized to the level of detail where they include 
CREs as nodes2,14. We lack such GRNs mainly due to challenges associ-
ated with high-throughput experimental identification and validation 
of TFBSs. For this reason, we need computational methods that can 
identify TFBSs on a genome-wide scale and at the cell-type-specific 
level. Single-cell chromatin accessibility and gene expression pro-
filing combined with sequence analysis is ideally suited for this and 
led to the concept of eGRNs2,14,31–34. In this work we present SCENIC+,  
a computational method to efficiently infer eGRNs.

By applying SCENIC+ to single-cell multiome data across a range 
of biological systems and across species we showed that SCENIC+ 
can accurately identify key TF combinations for each cell type. More 
notably, it can confidently link these TFs to CREs and target genes. 
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By comparing SCENIC+ to other methods, we could identify several  
elements that improve the quality of eGRN inference. First, the use of 
topic modeling improves unsupervised prioritization of informative 
regions. Second, the use of multiple motifs per TF and the use of a large 
motif collection improve the recall to identify important TFs. Finally, the 
use of motif enrichment analysis instead of motif scanning that is used in  
alternative methods reduces the false-positive rate of TFBS predictions.

One biological application where eGRN inference plays a pivotal 
role is in evolutionary genomics. For example, within the mammalian 
cortex, the majority of cell types were found to be conserved60,71–73; 
however, hundreds of genes are differentially expressed between 
orthologous cell types60. Comparison of eGRNs inferred across species 
can provide insights into these discrepancies. By mapping human and 
mouse eGRNs in the cortex, we found that cell-type-specific TF combi-
nations are strongly conserved; however, TFBSs and enhancers show 
high turnover in line with earlier experimental findings61,74. This alludes 
to the fact that the unique combination of TFs and their interactions 
(the core regulatory complex75) define a cell type.

Another biological application is to study the regulatory underpin-
nings of dynamic cell-state changes. For this, we developed two down-
stream methods that exploit the inferred eGRN. One method predicts 
the effect of a TF perturbation on the transcriptome, which can be used 
to screen for the most important TFs needed to maintain a certain cell 
state. Another method, called GRN velocity, models the effect of each 
TF in a differentiation trajectory. This technique is complementary to 
other methods that infer directionality in differentiation trajectories 
(such as scVelo65 and MultiVelo66).

There are limitations with this study and eGRN inference methods 
in general that may be overcome with future technological advances. 
Benchmarking these methods is challenging due to the lack of stand-
ardized ground-truth data. For example, to evaluate the predicted 
target genes we relied on transcriptome changes after the perturbation 
of a TF, which also causes indirect downstream effects and requires 
one experiment per targeted TF. Another challenge is the validation 
of enhancer–gene relationships, for which we used Hi-C data. Hi-C has 
a limited resolution and the relationship between physical enhancer–
promoter distance and gene expression is still unclear76–78 and warrants 
further research79. Furthermore, even though we show that eGRNs can 
be used to model transcriptome changes upon perturbation, their 
power is still limited. Further improvements may require more sophis-
ticated models, for example using deep neural networks42, to yield 
both quantitative and biologically explainable predictions80. Finally, 
eGRN inference is still biased toward activation and is less accurate in 
identifying repressive interactions (Extended Data Fig. 10 and Sup-
plementary Note 6).

In conclusion, in this study we present SCENIC+, a tool to infer 
eGRNs from single-cell multiomics data. SCENIC+ and the code for 
downstream analyses is available at https://github.com/aertslab/
scenicplus.
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Methods
SCENIC+ workflow
The SCENIC+ workflow consists of three main analysis steps: (1) unsu-
pervised identification of enhancers with shared accessibility patterns 
from scATAC-seq data; (2) prediction of TFBSs via motif enrichment 
analysis; and (3) prediction of eGRNs combining TF expression, TFBSs, 
region accessibility and gene expression. These steps are performed 
using three Python modules: pycisTopic, pycisTarget and SCENIC+. 
Detailed explanations are described in Supplementary Note 1. Links 
to the tools, SCENIC+ code and tutorials are available at scenicplus.
readthedocs.io.

pycisTopic. Consensus peak calling. Pseudobulk fragment bed files per 
cell type were generated using the fragments file and cell-type anno-
tations provided by the user. Peaks were called using MACS2 (ref. 81) 
with parameters –format BEDPE –keep-dup all–shift 73 –ext_size 146. 
An iterative approach described by Corces et al.82 was used to obtain 
a consensus peak set. Briefly, each peak’s summit was extended with a 
‘peak_half_width’ (default 250 bp) in each direction and overlapping 
and less-significant peaks were filtered out. The original peak was kept 
if there was only a single peak. The original peak with the highest score 
was kept if there were two or more overlapping peaks. This process was 
repeated until there were no more overlapping peaks. The process of 
consensus peak generation was repeated twice: first for each cell type 
separately and, second, after peak score normalization within the cell 
type, using the union of peaks across cell types.

Quality control. The sample-level statistics that we used to assess 
the overall quality of the sample were:

•	 Barcode rank plot
•	 Insertion size
•	 Sample transcription start site (TSS) enrichment
•	 Fraction of reads in peaks (FRiP) distribution
•	 Duplication rate

The barcode-level statistics that we used to differentiate good 
quality cells versus the rest were:

•	 Total number of unique fragments per cell barcode
•	 TSS enrichment per cell barcode
•	 FRiP per cell barcode

Fragment count matrices were generated from the fragments 
files by counting the number of fragments that overlap with consensus 
peaks per high-quality cell barcodes.

Topic modeling was performed either using the serial Latent 
Dirichlet allocation (LDA) algorithm with a collapsed Gibbs sampler83 
or using MALLET84 using the same default parameters as in cisTopic16.  
The model with the optimal number of topics was selected as the 
model based on the topic selection metrics, namely coherence, 
log-likelihood and the metrics described in refs. 85 and 86 (Supple-
mentary Note 1).

Region–topic probabilities were binarized either using the Otsu 
method or by taking the top-n regions per topic.

Dropouts in scATAC-seq data were imputed by matrix multiplica-
tion of the region–topic and cell–topic matrices.

DARs were calculated using a Wilcoxon rank-sum test on the 
imputed probability matrix and selecting regions with a logFC > 0.5 
and Benjamini–Hochberg adjusted P values < 0.05.

pycisTarget. Generation of cisTarget database. For the generation 
of the cisTarget database, a matrix with regions as rows (clusters of) 
motifs as columns and either raw scores (DEM) or ranking of these 
scores (cisTarget) was generated by scoring the DNA sequence of 
consensus peaks using Cluster-Buster87. Briefly, Cluster-Buster uses 

HMMs to score clusters of motifs given a set of DNA sequences. Each 
motif within a cluster is used as a separate hidden state in the model. 
Cluster-Buster was run separately for each (cluster of) motif(s) on the 
DNA sequence of all consensus peaks and the maximum cis-regulatory 
module score per region was used as the score for each region.

cisTarget algorithm. For the cisTarget algorithm19–21, for each 
(cluster of) motif(s) a recovery curve approach was used using a set 
of regions, for which to calculate motif enrichment and the ranking 
database containing ranked (cluster of) motif(s) scores in descending 
order for the (cluster of) motif(s) of interest. The recovery curve was 
defined as the cumulative number of regions within the region set 
found at each position of the ranking. Enrichment was calculated as a 
normalized AUC at the top 0.5% ranking (NES).

NES = AUC −mean (AUC)
s.d. (AUC)

where

mean (AUC) is the average AUC value across all motifs

s.d. (AUC) is the standard deviation of AUC values across all motifs

By default, motifs that obtain an NES >3.0 are kept. To obtain 
the target regions for each motif (motif-based cistrome) the regions 
at the top of the ranking (leading edge) are retained. The top of the 
ranking is defined by an automated thresholding method that retains 
regions with a ranking below the rank at max, which is defined by the 
following formula:

RankAtMax = max(rccmotif − [μ (rccallmotifs) + 2 × s.d. (rccallmotifs)])

where

rccmotif is the recovery curve of the motif of interest.

μ (rccallmotifs) is the average recovery curve over all motifs.

s.d. (rccallmotifs) is the standard deviation of the recovery curve

over all motifs.

DEM algorithm. For each (cluster of) motif(s) a Wilcoxon rank-sum 
test was performed between a foreground and a background set of 
regions using the score distributions for the (cluster of) motif(s). 
Motifs with an adjusted P value < 0.05 (Bonferroni) and logFC > 0.5 
were kept. Regions containing the motif (motif-based cistrome) were 
obtained by taking regions with a cis-regulatory module score >3 for 
each enriched motif.

SCENIC+. Generation of pseudo-multiome data. In cases of non- 
multiome data, pseudo-multiome data were generated by sampling a 
predefined number of cells from each data modality within the same 
cell-type annotation label and averaging the raw gene expression and 
imputed chromatin-accessibility data across these cells to create a 
multiome meta-cell containing data of both modalities.

Calculating TF-to-gene and region-to-gene scores. The Arboreto 
Python package (v.0.1.6) was used to calculate importance scores. 
TF-to-gene importance scores were calculated using gradient-boosting 
machine regression by predicting raw TF expression from raw gene 
expression counts and using the importance score of each feature 
(gene) as the TF-to-gene importance score. Pearson correlation was 
used to separate positive (>0.03) from negative (<−0.03) interac-
tions. The importance score of a TF for itself was set to the maximum 
importance score across all genes added with an arbitrary small value 
of 1 × 10−5. Region-to-gene importance scores were calculated using 
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gradient-boosting machine regression by predicting TF expression 
from imputed region accessibility, using all regions within a gene’s 
search space and using the importance score of each feature (region) 
as the region-to-gene importance score. Spearman rank correlation was 
used to separate positive (>0.03) from negative (<−0.03) interactions. 
A gene’s search space was defined as a minimum of 1 kb and a maximum 
of 150 kb upstream/downstream of the start/end of the gene or the 
promoter of the nearest upstream/downstream gene. The promoter of 
a gene was defined as the transcription starting site of that gene ±10 bp.

Binarizing region-to-gene importance scores. Region-to-gene 
importance scores were binarized by taking the 85th, 90th and 95th 
quantile of the region-to-gene importance scores, the top 5, 10 and 15 
regions per gene based on the region-to-gene importance scores and 
a custom implementation of the BASC88 method on the region-to-gene 
importance scores.

eRegulon creation. For each TF, TF–region–gene triplets were 
generated by taking all regions that are enriched for a motif annotated 
to the TF and all genes linked to these regions, based on the binarized 
region-to-gene links. Gene set enrichment analysis (GSEA) was per-
formed by ranking all genes based on their TF-to-gene importance score 
and calculating enrichment of the set of genes within the TF–region–
gene triplet using the gsea_compute function from GSEApy (v.0.10.8). 
Genes in the top of the ranking (leading edge) were retained and were 
the target genes of the eRegulon. This analysis was run separately for 
TF–gene and region–gene relationships with positive and negative cor-
relation coefficients. eRegulons with fewer than ten predicted target 
genes or obtained from region–gene relationships with a negative 
correlation coefficient were discarded.

eRegulon enrichment. All consensus peaks and all genes were 
ranked respectively by their imputed chromatin accessibility and 
raw gene expression counts per cell. Enrichment for eRegulon target 
regions and target genes is defined as the AUC at 5% of the ranking and 
calculated using the AUCell function from the ctxcore Python package 
(v.0.1.2.dev2+g1ffcf0f).

eRegulon dimensionality reduction. The eRegulon enrichment 
scores for regions and genes were normalized for each cell and used 
as input into the UMAP, t-distributed stochastic neighbor embedding 
(t-SNE) or PCA from the Python package UMAP (v.0.5.2), fitsne (v.1.2.1) 
or Scikit-Learn (v.0.24.2), respectively.

eRegulon specificity scores. eRegulon specificity scores were calcu-
lated, per cell type and eRegulon, using the RSS algorithm as described 
elsewhere12,89 using target region or target gene eRegulon enrichment 
scores as input. Briefly, the Jensen–Shannon divergence was calculated 
by comparing the distribution of enrichment scores per cell type to the 
distribution that was set to all zeros, except for the cell type of interest, 
where it was set to one.

Triplet ranking. For all TF–region–gene triplets from eRegulons, 
rankings of TF-to-gene importance scores, region-to-gene importance 
scores and the best-ranked position of the region across all motifs 
annotated to the TF were aggregated as described by Aerts et al.46

SCENIC+ motif collection
The SCENIC+ motif collection includes more than 49,504 motifs from 29 
motif collections (Supplementary Note 2 and Supplementary Table 3).  
Identical motifs across collections (after rescaling) were merged, 
resulting in 34,524 motifs. Motif-to-motif similarities using TomTom90 
(MEME v.5.4.1). Motifs with equal length and similarity q value < 10−40 
were merged, resulting in 32,766 motifs (unclustered motif collection). 
For motif clustering, motifs, with an information content >5 that were 
similar to at least on other motif with q value < 10−5 and not one of 1,265 
dimer motifs nor part of the Factorbook and Desso collection, were 
used (11,526 motifs), and the remaining were kept as singlets (9,685 
motifs). Motif similarity q values were transformed as follows:

−log10 (TomTomqvalue) + 10−45

Seurat91 (v.4.0.3) was used to normalize, scale and perform PCA. Leiden 
clustering was performed on the top 100 principal components with a 
resolution of 25, resulting in 199 clusters. Sub-clustering was performed 
using STAMP92 (v.1.3; using the -cc -sd –chp options) resulting in 1,986 
subclusters. TF annotations per subcluster were merged based on 
direct and orthology evidence. These subclusters together with singlets 
and dimer motifs form the clustered motif collection.

Benchmarking pycisTarget
Four different cisTarget databases were generated: (1) a database was 
generated using the unclustered motif collection; (2) a database was 
generated using the STAMP-consensus motif per cluster; (3) a database 
was generated using the clustered motif collection; and (4) a database 
was generated using the clustered motif collection but Transfac Pro 
motifs were removed. Motif enrichment analyses using these databases 
and the cisTarget and DEM algorithm and Homer22 were performed 
on 309 ChIP-seq datasets from ENCODE29,30 that were also included 
in UniBind35,36 (Supplementary Note 3). The enrichment of motifs 
annotated to the TFs for which ChIP-seq was performed was assessed.

DEM on SOXE cistromes
cisTarget and DEM were run on regions enriched for motifs anno-
tated to SOX10 in melanoma cell lines (see Melanoma cell line analysis; 
n = 18,506), SOX10 in oligodendrocytes (see Comparative analysis in 
the mammalian brain using SCENIC+; n = 2,553) and SOX9 in astrocytes 
(see Comparative analysis in the mammalian brain using SCENIC+; 
n = 6,817). For DEM, one-versus-all comparisons were made.

Comparison of cisTopic and pycisTopic
A simulated single-cell epigenomics dataset from five melanoma cell 
lines (three melanocytic and two mesenchymal) with 100 cells16 was 
downloaded from https://github.com/aertslab/cisTopic. cisTopic 
(v.2.1.0) using Collapsed Gibbs Sampling and WarpLDA and pycisTopic 
(v.1.0.1.dev21+g8aa75d8) using Collapsed Gibbs Sampling and MALLET, 
using 150 iterations and 21 cores for 21 models (starting from 2 topics 
and from 5–100, increasing by 5), were run. For all models α was set to 
50 divided by the number of topics and β was set to 0.1, as previously 
described16,93.

Cell-type discovery benchmark with ArchR, Signac and 
pycisTopic
scATAC-seq datasets from ENCODE deeply profiled cell lines were 
simulated (see Benchmark of GRN inference methods), with different 
coverages (20,000, 10,000 and 3,000 fragments per cell) and num-
bers of cells (25,000, 10,000, 1,000 and 80 cells). In all cases, the bulk 
consensus peaks were used to generate the fragment count matrix 
(see Benchmark of GRN inference methods). pycisTopic was run as 
described in the corresponding sections. ArchR and Signac were run 
using default parameters. Briefly, Signac (v.1.9.0) was run using latent 
semantic indexing (LSI), using the top 30 PCs (excluding the first PC 
as recommend) for dimensionality reduction and clustering. ArchR 
(v.1.0.2) was run with default parameters, using iterative LSI, using the 
top 30 PCs for dimensionality reduction and clustering. Dimensionality 
reduction was performed using UMAP, using the PC matrix (ArchR and 
Signac) or the topic contribution matrix (pycisTopic). To calculate the 
adjusted Rand index (ARI) in the power analysis based on simulated 
data from ENCODE, hierarchical clustering was performed on these 
matrices, making eight partitions based on the hierarchical tree using 
the cutree() function from the stats R package. In the mouse cortex, 
batch correction (per sample) was performed using the recommended 
approaches from each method. For pycisTopic, data were corrected 
using harmonypy (v.0.0.5) on the scaled cell–topic matrix (see Com-
parative analysis in the mammalian brain using SCENIC+). For Signac, 
the integrated LSI approach was used, as described in the scATAC-seq 
data integration vignette from the package. Briefly, LSI was performed 
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in each sample separately, integration anchors were identified with 
FindIntegrationAnchors() (using dims of 2:30) and LSI embeddings 
were integrated using IntegrateEmbeddings() (using dims.to.integrate 
of 1:30). For ArchR, the addHarmony() function was used to correct the 
iterative LSI embedding. Dimensionality reduction was performed 
using UMAP, using the corrected PC matrix (ArchR and Signac) or the 
corrected topic contribution matrix (pycisTopic).

Enhancer discovery benchmark with ArchR, Signac and 
pycisTopic
DARs and regulatory topics were inferred using a simulated single-cell 
scATAC-seq dataset from ENCODE deeply profiled cell lines (see Bench-
mark of GRN inference methods). Briefly, pycisTopic was run with 
default parameters, using MALLET with 500 iterations for topic mode-
ling and generating 21 topics (2 topics and from 5–100, increasing by 5),  
selecting the model with 40 topics based on the model selection met-
rics (see Benchmark of GRN inference methods). Signac45 (v.1.9.0) was 
run using LSI, using the top 30 PCs (excluding the first PC as recom-
mended) for dimensionality reduction and clustering. DARs were 
determined using the FindMarkers() function, keeping regions with  
P value < 0.005. ArchR44 (v.1.0.2) was run with default parameters, using 
iterative LSI, using the top 30 PCs for dimensionality reduction and 
clustering. DARs were determined using the getMarkerFeatures() func-
tion, using the bulk consensus peaks (as used to generate the fragment 
count matrix used for pycisTopic and ArchR) as peak set, accounting for 
potential biases based on TSS enrichment and cell coverage and using 
false discovery rate (FDR) ≤ 0.1 and logFC ≥ 0.5 as threshold.

These regions were compared to whole-genome STARR-seq 
data on K562, HepG2, HCT116 and MCF7. Data were downloaded 
from ENCODE29,30 (ENCFF045TVA (K562), ENCFF047LDJ (HepG2), 
ENCFF428KHI (HCT116) and ENCFF826BPU (MCF7)) and intersected 
with the consensus peaks. Promoter regions, defined as the TSS of each 
gene ±500 bp, were excluded from this analysis. For each cell line, regions 
with STARR-seq data available were ranked based on the logFC value. 
Enrichment of the top 500 DARs and region–topic contributions (for 
cell-line-specific topics) in the top of this ranking was assessed for each of 
the four cell lines separately by calculating the AUC at 10% of the ranking.

SCENIC+ time and memory complexity analysis
Several scATAC-seq datasets from the deeply profiled cell lines with 
different coverages (20,000, 10,000 and 3,000 fragments per cell) 
and numbers of cells (25,000, 10,000, 1,000 and 80 cells) were simu-
lated. In all cases, the bulk consensus peaks were used to generate the 
fragment count matrix (see Benchmark of GRN inference methods). 
For pycisTopic, only the mandatory steps for the SCENIC+ workflow 
(namely object creation, topic modeling, dimensionality reduction, 
dropout imputation and DAR inference) were run using default param-
eters. pycisTarget was run using default parameters with cisTarget and 
DEM, using the bulk consensus peaks motif databases (see Benchmark 
of GRN inference methods). SCENIC+ was run with default parameters 
(Supplementary Table 5). The analyses were run on an Intel(R) Xeon(R) 
Platinum 8360Y (IceLake), with 300 GB memory and 20 cores.

PBMC analysis
Data. Filtered feature barcode matrices and fragments files were 
downloaded from the 10x Genomics website (https://cf.10xgenomics.
com/samples/cell-arc/1.0.0/pbmc_granulocyte_sorted_10k/pbmc_
granulocyte_sorted_10k_filtered_feature_bc_matrix.h5 and https://
cf.10xgenomics.com/samples/cell-arc/1.0.0/pbmc_granulocyte_
sorted_10k/pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz).

Quality control of scRNA-seq and cell-type annotation. The 
scRNA-seq part of the multiome dataset was preprocessed using 
Scanpy94 (v.1.8.2). Briefly, genes expressed in fewer than three cells 
were removed. Cells that expressed fewer than 200 genes or more 

than 6,000 genes or had more than 30% counts in mitochondrial genes 
were removed. Doublets were detected and removed using Scrublet95 
(v.0.2.3) with a doublet score threshold of 0.17. This resulted in 11,101 
high-quality cells. Cells were annotated using ingest label transfer, 
using the sc.tl.ingest function included in Scanpy94 (v.1.8.2) and by 
matching transferred labels to Leiden clusters (resolution 0.8) based 
on maximum overlap using the annotated PBMC dataset included in 
the Scanpy package as a reference (sc.datasets.pbmc3k_processed()).

Quality control of scATAC-seq and topic modeling. The scATAC-seq 
part of the multiome dataset was preprocessed using pycisTopic 
(v.1.0.1.dev21+g8aa75d8). Briefly, consensus peaks (342,044) were called 
as described above using the downloaded fragments file and cell-type 
labels from the scRNA-seq side. Cells with fewer than 1 × 103.3 total number 
of unique fragments, FRiP <0.45 and TSS enrichment <5 were removed. 
Doublets were detected and removed using Scrublet95 (v.0.2.3) with a 
doublet score threshold of 0.33. This resulted in 10,955 high-quality cells. 
Topic modeling was performed as described above using LDA with the 
collapsed Gibbs sampler. A model of 16 topics was selected based on the 
stabilization of the metrics described in refs. 85,86,96 and log-likelihood.

Motif enrichment analysis. Motif enrichment analysis was performed 
using pycisTarget (v.1.0.1.dev17+gd2571bf) as described above. For 
this, a custom score and ranking database was generated using cre-
ate_cisTarget_databases Python package using the DNA sequences 
of consensus peaks and all annotated motifs as input. Motif enrich-
ment was performed using both the cisTarget and DEM algorithm on 
cell-type-based DARs (logFC > 1.5), top 3,000 regions per topic and 
topics binarized using the Otsu method. The motif enrichment analy-
sis was run both including promoters and excluding them. Promoters 
were defined as regions within 500 bp up- or downstream of the TSS of 
each gene. TSSs for each gene were downloaded from BioMart (http://
sep2019.archive.ensembl.org) using the pybiomaRt package (v.0.2.0).

SCENIC+ analysis. The raw gene expression count matrix, imputed 
accessibility and motif enrichment results were used as input into 
the SCENIC+ workflow, keeping 9,409 cells with both high-quality 
ATAC-seq and RNA-seq profiles. The SCENIC+ workflow was run using 
default parameters and as described above. Briefly, a search space of 
a maximum between either the boundary of the closest gene or 150 kb 
and a minimum of 1 kb upstream of the TSS or downstream of the end 
of the gene was considered for calculating region–gene relationships 
using gradient-boosting machine regression. TF–gene relationships 
were calculated using gradient-boosting machine regression between 
all TFs and all genes. Genes were considered as TFs if they were included 
in the TF list available on http://humantfs.ccbr.utoronto.ca/ (ref. 97). 
Final eRegulons were constructed using the GSEA approach in which 
region–gene relationships were binarized based on gradient-boosting 
machine regression importance scores using the 85th, 90th and 95th 
quantile; the top 5, 10 and 15 regions per gene and the BASC method88 
for binarization. Only eRegulons with a minimum of ten target genes 
were retained. For each eRegulon cell enrichment scores (AUC) of target 
genes and regions were calculated using the AUCell algorithm11. eRegu-
lons for which the correlation coefficient between semi-pseudobulked 
per cell type (100 meta-cells per cell type and 5 cells per meta-cell) TF 
expression and region AUC scores was >0.7 or <−0.8 were considered 
as high quality and used for downstream analysis. This resulted in 63 
regulons, with a median of 296 genes and 528 regions per regulon. 
Analyses can be explored in SCope at https://scope.aertslab.org/#/
scenic-v2 and the UCSC Genome Browser at https://genome-euro.ucsc.
edu/s/Seppe%20De%20Winter/scenicplus_pbmc.

ChIP-seq enrichment in eRegulon target regions. PAX5, EBF1 and 
POU2F2 ChIP-seq bigWig and summit bed files were downloaded from 
ENCODE (https://www.encodeproject.org/)29,30 using the following 
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accession numbers: ENCFF702MTT and ENCSR000BHD for PAX5; 
ENCFF107LDM and ENCSR000BGU for EBF1; and ENCFF803HIP and 
ENCFF934JFA for POU2F2 for bigWig and summit bed files, respec-
tively. The target regions of PAX5(+), EBF1(+) and POU2AF1(+) and 
regions targeted by any combination of two eRegulons were inter-
sected with the ChIP-seq summits; the original region was kept if a 
region did not intersect with the summit. ChIP-seq coverage was cal-
culated on these regions using the pyBigWig package (v.0.3.18) using 
50 bins. Coverage was min–max normalized by using the minimum 
and maximum across all regions per ChIP-seq dataset. ChIP-seq data, 
along with pseudobulk accessibility, were visualized using the Signac45 
R package (v.1.3.0).

Comparison of region-to-gene links with Hi-C data. Hi-C data on 
GM12878 were downloaded from ENCODE (https://www.encodepro-
ject.org/)29,30 (ENCFF053VBX). SCALE-normalized scores across bins of 
5 kb using Juicer Tools98 (v.2.13.05) were extracted, keeping only links 
with scores >10 and involving a bin that overlaps at least one of the 
consensus peaks and a TSS (±1,000 bp), resulting in 4,842,692 region–
gene links. Spearman rank correlations between the Hi-C scores and 
region-to-gene importance scores (gradient boost importance score 
and Spearman correlation coefficient) were calculated for all B-cell 
marker genes (logFC > 1.5 and adjusted P value < 0.05).

CellOracle analysis. CellOracle was run as described at https://
morris-lab.github.io/CellOracle.documentation/. Briefly, scRNA-seq 
data were analyzed using Scanpy94 (v.1.9.1), using flavor = ‘cell_ranger’ 
and n_top_genes = 2,000 to identify highly variable genes and 14 PCs 
for dimensionality reduction. scATAC-seq data were processed with 
Cicero99 (v.1.3.4.11) with a window of 500,000, which inferred 21,592 
region–gene connections with coaccess ≥ 0.8 and TSS annotation 
obtained from BioMart (http://sep2019.archive.ensembl.org). Next, 
gimmemotifs100 (v.0.17.1) was used to identify TFBSs using the gim-
memotifs motif collection with default parameters. After inferring 
the links, we filtered links with the filter_links function using P = 0.001, 
weight = ‘coef_abs’ and threshold_number = 2,000. This resulted in 
100 regulons, with a median of 40 genes and 43 regions per regulon.

Pando analysis. Pando was run as described at https://quadbiolab.
github.io/Pando/. Briefly, the data were processed using Signac45 
(v.1.8.0). MotifMatchR (v.1.16.0) was used with motifs from Jaspar and 
CisBP. To infer the GRN the infer_grn function was used with default 
parameters (peak_to_gene_method = ‘GREAT’, upstream = 1 × 105, down-
stream = 0 and extend = 1 × 106). The GRN edges were filtered using 
the find_modules function with default parameters (P_thresh = 0.1, 
nvar_tresh = 2, min_genes_per_module = 1 and rsq_thresh = 0.05). This 
resulted in 525 regulons, with a median of 24 genes and 28 regions per 
regulon.

FigR analysis. FigR was run as described at https://buenrostrolab.
github.io/FigR/. Briefly, we used the pycisTopic cell–topic matrix (with 
16 topics, as derived in the SCENIC+ workflow) to infer the kNN matrix 
for smoothing the data (with k = 30). We kept peak–gene correlations 
with P value < 0.05 and kept TF–domains of regulatory chromatin 
(DORC) associations with at least five significant peaks per gene for 
each DORC and abs(score) > 1. This resulted in 455 regulons, with a 
median of four genes per regulon.

SCENIC analysis. SCENIC was run as described at https://pyscenic.
readthedocs.io/en/latest/ using default parameters and using the v.9 
motif collection (SCENIC motif collection). This resulted in 253 regu-
lons, with a median of 49 per regulon.

Signac analysis. Signac45 (v.1.9.0) was run using LSI, using the top 
30 PCs (excluding the first PC as recommend) for dimensionality 

reduction and clustering. DARs were determined using the FindMark-
ers() function, keeping regions with P value < 0.005. Motif enrichment 
on DARs was performed using the JASPAR2022 motif collection (as 
recommended) using the FindMotifs() function from Signac (v.1.9.0), 
keeping motifs with adjusted P value < 0.01. Regions with enriched 
motifs were used to create cistromes, based on the motif annotations. 
ChromVAR cistromes were derived using the RunChromVAR() function 
from the Signac package.

ArchR analysis. ArchR44 (v.1.0.2) was run with default parameters, 
using iterative LSI, using the top 30 PCs for dimensionality reduction 
and clustering. Marker peaks were identified using the getMarkerFea-
tures(), using FDR ≤ 0.1 and logFC ≥ 0.5 as thresholds and the consensus 
peaks from pycisTopic as peak set, accounting for potential biases 
based on TSS enrichment and cell coverage. Motif enrichment on DARs 
was performed using the peakAnnoEnrichment, using the cisbp motif 
collection (default) and FDR ≤ 0.1 and logFC ≥ 0.5 as thresholds. We kept 
motifs with log10(adjusted P value) > 2. Regions with enriched motifs 
were used to create cistromes based on the motif annotations. We 
assessed the enrichment of the tracks in the ENCODE TFBS annotation 
from ArchR using the same approach. Finally, we also ran ChromVAR 
using the wrapper functions included in ArchR, addBgdPeaks() and 
addDeviationsMatrix(), using the cisbp motif collection.

Dimensionality reduction based on eRegulon enrichment scores 
obtained from different methods. AUC values were calculated on 
target genes and target regions (if present) of all regulons obtained 
from SCENIC+, CellOracle, Pando, FigR and SCENIC using AUCell. 
This was performed separately for target genes/regions that have a 
positive/negative contribution (separate regulons were generated for 
repressors and activators). AUC scores were scaled using the Standard-
Scaler function from Scikit-Learn (v.0.24.2) and t-SNE dimensionality 
reductions were generated using the TSNE function from Scikit-Learn 
(v.0.24.2) separately for target gene and target region (if present) 
and for the combined enrichment scores. Scaled AUC matrices were 
clustered using Leiden clustering with a resolution of 2.0. ARI were 
calculated by comparing this clustering with the cell-type labels, using 
the adjusted_rand_score function from Scikit-Learn (v.0.24.2).

Comparison of predicted target regions with ChIP-seq data. Accu-
racy of target regions of TFs inferred by SCENIC+, CellOracle, Pando, 
ArchR and Signac was assessed using ChIP-seq data. All TF ChIP-seq 
data on the cell lines BLaER1 (B-cell precursor), GM08714 (B lympho-
cyte), GM12878 (B lymphocyte), GM12891 (B lymphocyte), GM12892 
(B lymphocyte), HL-60 (promyeloblast), K562 (hematopoietic cancer) 
and NB4 (blood cancer) were downloaded from ENCODE (https://www.
encodeproject.org/)29,30. This resulted in a total of 527 ChIP-seq tracks 
and 333 unique TFs, 142 of which overlapped with the union of TFs 
identified by SCENIC+, CellOracle, Pando, FigR and SCENIC, and 259 of 
which overlapped with the union of TFs identified by SCENIC+, ArchR 
and Signac. All consensus peaks were scored for these ChIP-seq tracks 
using pyBigWig (v.0.3.18) by taking the maximum coverage across 
the consensus peak. Precision and recall were assessed by binarizing 
the ChIP-seq scores of all TFs on the consensus peaks. For SCENIC+, 
CellOracle and Pando this threshold was set dynamically by choosing 
the threshold that optimizes the F1 score for each TF and method. For 
Signac and ArchR this threshold was set dynamically by taking the 99th 
percentile on the ChIP-seq scores.

Gene Ontology enrichment analysis on TFs identified by several 
methods. Gene ontology enrichment analysis was run using Gprofiler 
assessing enrichment of human protein atlas and human phenotype 
gene ontology terms for TFs found exclusively by Signac, ArchR, Pando 
and CellOracle or the union of TFs found by Signac, ArchR and SCENIC+ 
and the union of TFs found by SCENIC+, Pando and CellOracle.
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Benchmark of GRN inference methods
Simulated single-cell multiomics data. Data from ENCODE deeply 
profiled cell lines were downloaded from https://www.encodepro-
ject.org/ (refs. 29,30). Single-cell multiome data was simulated 
using bulk RNA-seq and ATAC-seq data from eight ENCODE deeply 
profiled cell lines, namely MCF7 (breast cancer, ENCFF136ANW and 
ENCFF772EFK, for RNA-seq and ATAC-seq, respectively), HepG2 
(hepatocellular carcinoma, ENCFF660EXG and ENCFF239RGZ), PC3 
(prostate cancer, ENCFF874CFD and ENCFF516GDK), GM12878 (B cell, 
ENCFF626GVO and ENCFF415FEC), K562 (leukemia, ENCFF833WFD 
and ENCFF512VEZ), Panc1 (pancreatic cancer, ENCFF602HCV 
and ENCFF836WDC), IMR90 (lung fibroblast, ENCFF027FUC and 
ENCFF848XMR) and HCT116 (colon cancer, ENCFF766TYC and 
ENCFF724QHH). Briefly, 500 single-cell multiomics profiles were 
simulated by randomly sampling 50,000 reads and 20,000 fragments 
from each bulk RNA-seq and ATAC-seq profiles, respectively, resulting 
in a dataset with 4,000 simulated single cells. The scRNA-seq count 
matrix was generated using featureCounts (Subread v.1.6.3) and 
the GRCh38.86 genome annotation. After calling peaks with MACS2  
(ref. 81) (v.2.1.2.1) on the bulk ATAC-seq samples, we generated a set of 
642,982 consensus peaks that was used to generate the scATAC-seq 
matrix, as previously described. Analyses can be explored in SCope 
at https://scope.aertslab.org/#/scenic-v2 and the UCSC at https://
genome.ucsc.edu/s/cbravo/SCENIC%2B_DPCL.

Methods. The simulated dataset was analyzed with different 
state-of-the-art methods. For all methods, we used a search space of 
150 kb for inferring region–gene relationships and kept regulons with 
at least 25 target genes:

•	 SCENIC+: pycisTopic was run with default parameters, using 
MALLET with 500 iterations for topic modeling and generating 
21 topics (2 topics and from 5–100, increasing by 5), selecting 
the model with 40 topics based on the model selection metrics. 
SCENIC+ was run using both consensus peaks (642,982 peaks) 
and SCREEN regions43. SCENIC+ was run with default parameters, 
using http://oct2016.archive.ensembl.org/ as the BioMart host. 
High-quality regulons were selected based on the correlation 
between gene-based regulon AUC and region-based regulon AUC 
(>0.7). This resulted in 178 regulons, with a median of 437 genes 
and 774 regions per regulon.

•	 CellOracle31: CellOracle was run as described at https://morris-lab.
github.io/CellOracle.documentation/. Briefly, scRNA-seq data 
were analyzed using Scanpy94 (v.1.8.2), using flavor = ‘cell_ranger’ 
and n_top_genes = 3,000 to identify highly variable genes and 
seven PCs for dimensionality reduction. scATAC-seq data were 
processed with Cicero99 (v.1.6.2) with window = 150,000, which 
inferred 13,123 region–gene connections with coaccess ≥ 0.8. Next, 
gimmemotifs100 (v.0.17.1) was used to identify TFBSs using the 
gimmemotifs motif collection with default parameters. After infer-
ring the links, we filtered links with the filter_links function using 
P = 0.001, weight = ‘coef_abs’ and threshold_number = 2,000. 
This resulted in 157 regulons, with a median of 49 genes and 50 
regions per regulon.

•	 Pando32: Pando was run as described at https://quadbiolab.github.
io/Pando/. Briefly, the data were processed using Signac45 (v.1.3.0) 
and SCREEN regions43 were used in the initiate_grn function. Motif-
MatchR (v.1.10.0) was used with motifs from Jaspar and CisBP. To 
infer the GRN (infer_grn), we used peak_to_gene_method = ‘Signac’, 
method = ‘glm’, upstream = 150,000, downstream = 150,000. This 
resulted in 235 regulons, with a median of 43 genes and 42 regions 
per regulon.

•	 FigR33: FigR was run as described at https://buenrostrolab.github.
io/FigR/. Briefly, we used the pycisTopic cell–topic matrix (with 40 
topics, as derived in the SCENIC+ workflow) to infer the kNN matrix 

for smoothing the data. We kept peak–gene correlations with  
P value < 0.05 and kept TF–DORC associations with abs(score) > 1, 
resulting in 10,757 TF–gene pairs. This resulted in 71 regulons, with 
a median of 39 genes per regulon.

•	 GRaNIE34: GRaNIE was run as described at https://grp-zaugg.
embl-community.io/GRaNIE/, initially using the bulk data; how-
ever, its performance was very poor (likely to the reduced size 
of the dataset), only finding 26 TFs and 11,106 TF–region–gene 
links. Notably, when we applied it to our simulated single-cell 
dataset (with adaptations), its recovery increased (finding 39 TFs 
and 44,666 TF–region–gene links); hence, we report the latter 
results. Briefly, we used the binary matrix (with a pseudocount of 1)  
as input, normalizing the scATAC-seq data using ‘Deseq_sizeFactor’  
and the scRNA-seq data with ‘quantile’. Motif scanning was per-
formed using the default motif collection (Hocomoco). In add-
Connections_peak_gene we used promoterRange = 150,000. To 
filter the GRN, we used 0.2 as the FDR threshold. This resulted in 39 
regulons, with a median of 176 genes and 68 regions per regulon.

•	 SCENIC11,12: SCENIC was run as described at https://pyscenic.
readthedocs.io/en/latest/. To assess the effect of clustering in 
the motif collection, we also benchmarked SCENIC using the 
non-clustered and the clustered databases at the same time, 
obtaining similar results. For each collection, we generated two 
gene–motif rankings (10 kb around the TSS or 500 bp upstream 
the TSS). Using both collections at the same time, we found 108 
regulons with a median of 322 genes.

Cell-state recovery. To assess whether the predicted GRNs for each 
of the tools correspond with the number of stable states in the biologi-
cal data, AUC values were calculated based on predicted target genes 
for each TF using the AUCell method11,12. PCA was performed to assess 
whether the two first PCs recapitulated the different cell lines. To cal-
culate the ARI, hierarchical clustering was performed on the two first 
PCs, making eight partitions based on the hierarchical tree using the 
cutree() function from the stats R package.

TF recovery. To assess whether the methods recover relevant TFs 
for the cell lines, TFs included in UniBind for these cell lines (https:// 
unibind.uio.no/) were ranked based on the number of target regions in 
the database. Next, a cumulative recovery curve was generated for each 
method, where the value is the cumulative number of TFs found at each 
ranked position. AUCs were calculated using the first 40 positions of the 
ranking. Tau values for each TF were calculated using tispec (v.0.99.0) 
and plots using UpsetR (v.1.4.0). As a complementary approach, dif-
ferential gene expression analysis was performed between the cell 
lines, keeping genes with adjusted P value < 0.01 and logFC > 1.5. Next, 
TFs were ranked based on their maximum logFC across all cell types (in 
descending order) and we built a cumulative recovery curve for each 
method, where the value is the cumulative number of TFs found at each 
ranked position. AUCs were calculated using the first 40 positions of 
the ranking. Precision–-recall curves were calculated using the precrec 
R package (v.0.12.9).

TF–region. To assess the quality of the TF–region relationships inferred 
by the methods, three different standards were used: (1) UniBind 
peaks35,36 (optimal ChIP-seq peaks with TF motif); (2) ENCODE ChIP-seq 
coverage29,30; and (3) Enformer prediction scores42. For all, precision, 
recall and the F1 metric were calculated. For UniBind, predicted TF 
target regions from 309 ChIP-seq datasets performed on the deeply 
profiled cell lines used in this study were used (Supplementary Table 4).  
For the ChIP-seq and Enformer standard, all consensus peaks were 
scored using either the ChIP-seq data (using pyBigWig (v.0.3.18)) or the 
Enformer model. For both only TF ChIP-seq data or predicted data that 
were generated in one of the eight deeply profiled cell lines used in this 
study was used. For the ChIP-seq data this was a total of 539 ChIP-seq 
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tracks for 217 unique TFs. For the Enformer model this was a total of 334 
predicted ChIP-seq tracks for 126 unique TFs. For both, the maximum 
coverage (either predicted or real) for each consensus peak was used as 
the score of that consensus peak. Precision and recall were assessed by 
binarizing the scores of all TFs on the consensus peaks. This threshold 
was set dynamically by choosing the threshold that optimizes the F1 
score for each TF and method.

Enhancer activity was assessed on the predicted target regions 
using whole-genome STARR-seq data on K562, HepG2, HCT116 and 
MCF7. Data were downloaded from ENCODE29,30 (ENCFF045TVA, ENCF-
F047LDJ, ENCFF428KHI and ENCFF826BPU) and intersected with the 
consensus peaks and taking the maximum score, for each consensus 
peak, across the four cell lines. We assessed the distribution of scores 
for all predicted target regions.

FigR and SCENIC were excluded from the comparison as they do 
not report TF–region relationships.

Region–gene. To assess the quality of the region–gene relationships 
inferred by the methods, Hi-C data on five of the cell lines (namely 
IMR90 (ENCFF685BLG), GM12878 (ENCFF053VBX), HCT116 (ENCF-
F750AOC), HepG2 (ENCFF020DPP) and K562 (ENCFF080DPJ)) from 
ENCODE (https://www.encodeproject.org/)29,30 were used. Briefly, 
for each dataset, SCALE-normalized scores across bins of 5 kb were 
extracted using Juicer Tools98 (v.2.13.05), keeping only links with score 
>10 and involving a bin that overlaps at least one of the consensus peaks 
and a TSS (±1,000 bp), resulting in 4,076,222 region–gene links on 
average. Finally, for each cell line, the correlations between the scores 
given by the methods and the Hi-C scores for the top 100 marker genes 
of that cell line were calculated. In this comparison, Pando and SCENIC 
were excluded. Pando reports a score per TF–region–gene triplet, and 
because generally several TFs can bind to the same region, this results in 
several scores for the same region–gene pair. SCENIC does not calculate 
region–gene relationships.

To assess the quality of region–gene relationships inferred by 
several regression models region–gene links were calculated using 
the following linear regression models implemented in Scikit-Learn 
(v.0.24.2): ridge regression, lasso regression, elastic net regression, 
least-angle regression, stochastic gradient descent and support vector 
machine using a linear kernel and the methods available in SCENIC+: 
Spearman rank correlation, gradient-boosting machine regression and 
RF regression for the top 100 differentially expressed genes for all cell 
lines. For all methods, the correlation between the feature importance 
scores/coefficients and the Hi-C scores was assessed.

TF–gene. To assess the quality of the predicted target genes for each 
TF, two different approaches were used. First, we tested the predict-
ability capacity of the methods, in other words, how well the regulons 
predicted by the methods could predict the transcriptome. Briefly, for 
each method and for each gene a gradient-boosting machine regression 
model (Scikit-Learn v.0.24.2) was trained using as features the expres-
sion of the TFs that are predicted to regulate the gene, using 80% of the 
data. Next, these models were used to predict gene expression for the 
remaining 20% of the cells. As a quality metric, the correlation between 
the observed and predicted values was used. Second, we assessed 
whether gene expression changes upon TF knockdown coincide with 
predicted target genes of the different methods, using 157 TF pertur-
bation datasets from ENCODE (https://www.encodeproject.org/)29,30 
(Supplementary Table 1). The logFC between control and perturbed 
samples were calculated with DESeq2 (ref. 101) (v.1.28.1) and the effect 
of these perturbation on all regulons of the different methods was 
assessed by performing a GSEA, where genes are ranked based on the 
logFC compared to control data and predicted target genes for the 
TFs are used as gene sets. F1 score, precision and recall, across all TFs, 
were calculated using the threshold where the F1 score is maximized 
in each case. In addition, we also performed in silico TF perturbations 

based on the eGRNs returned by the method (see Melanoma cell line 
analysis). Briefly, regression models per gene that were previously 
trained were used, but now the TF expression was set to zero to simulate 
a knockdown. The predicted expression matrix was used again to pre-
dict downstream changes over five iterations. Predicted logFC values 
were compared to DESeq2 logFC using Spearman rank correlation.

Benchmark of motif and TF ChIP-seq-based databases. TF ChIP-seq 
databases for cisTarget and DEM were generated using 1,660 TF 
ChIP-seq tracks from ENCODE29,30. Briefly, bigWig files were down-
loaded from https://www.encodeproject.org/ and the average signal on 
the target regions (in this case, consensus peaks) was calculated using 
bigWigAverageOverBed (Kent), resulting in a score-based database 
with regions as rows, TF ChIP-seq tracks as columns and average signal 
scores as values. Regions were ranked in decreasing order per track 
based on their score, resulting in TF ChIP-seq rank databases. The code 
used to generate these databases is available at https://github.com/
aertslab/create_cisTarget_databases. Each track was annotated to the 
TF that was targeted in the experiment. cisTarget and DEM were run as 
previously explained. SCENIC+ was run using cistromes derived from 
using only the motif-based databases, only the track-based databases 
or both. The derived eGRNs were compared using the benchmarks 
described above.

Sensitivity analysis benchmark of SCENIC+. To assess the sensi-
tivity of SCENIC+, single-cell multiomics datasets were simulated 
using the ENCODE cell lines, with different numbers of cells and cov-
erage. Specifically, we simulated a low-coverage dataset (with 3,000 
scATAC-seq fragments per cell and 5,000 scRNA-seq reads per cell), 
a medium-coverage dataset (with 10,000 scATAC-seq fragments per 
cell and 20,000 scRNA-seq reads per cell) and a high-coverage dataset 
(with 20,000 scATAC-seq fragments per cell and 50,000 scRNA-seq 
reads per cell). From each of these datasets, four datasets with dif-
ferent numbers of cells, 80, 1,000, 10,000 and 25,000 cells, were 
derived. SCENIC+ was run in each dataset as previously described 
and the derived eGRNs from each analysis were compared using the 
benchmarks described above.

ChIP-seq and Enformer-predicted ChIP-seq coverage for 
HNF4A, FOXA2 and CEBPB predicted target regions
Experimental and Enformer-predicted ChIP-seq coverage of HNF4A 
(ENCFF080FZD), FOXA2 (ENCFF626IVY) and CEBPB (ENCFF003HJB) 
in HepG2 cells on the union of regions predicted to be targeted by cor-
responding TFs by the tools GRaNIE, Pando, CellOracle and SCENIC+ 
were visualized using heat maps with the color scaled to the fifth per-
centile region and 95th percentile region, based on Enformer scores 
on all consensus peaks, for both the ChIP-seq and the Enformer heat 
map. The regions were sorted based on the maximum Enformer score 
across each region.

Melanoma cell line analysis
scATAC-seq (10x Genomics). Two rounds of scATAC-seq (10x Genom-
ics) were performed on a mix of MM050, MM099, MM116, MM001, 
MM011, MM057 and MM087 (run 1) and a mix of MM031, MM074, 
MM047 and MM029 (run 2).

Cell culture. Patient-derived melanoma cell lines used in this study 
were obtained from the laboratory of G.-E. Ghanem (Institut Jules 
Bordet). The identity of each line was determined using RNA-seq and 
ATAC-seq. Cell cultures used for experiments providing data to this 
study were tested for Mycoplasma contamination and were found to 
be negative. Cells were cultured in Ham’s F10 nutrient mix (Thermo 
Fisher Scientific) supplemented with 10% fetal bovine serum (Thermo 
Fisher Scientific) and 100 µg ml−1 penicillin–streptomycin. Cell cul-
tures were kept at 37 °C and 5% CO2. Before nuclei isolation, cells were 
washed with 1× PBS (Thermo Fisher Scientific), detached using trypsin 
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(Thermo Fisher Scientific) and centrifuged at 250g for 5 min to remove 
the medium.

Nuclei isolation. To isolate nuclei from the different melanoma 
cell lines, protocol CG000169 (10x Genomics) was followed. Briefly, 
cells were washed with PBS + 0.04% BSA and cell concentration was 
determined with the LUNA-FL Dual Fluorescence Cell Counter. For each 
cell line, 500,000 cells were resuspended in 100 µl nuclei lysis buffer 
(10 mM Tris-HCl, pH 7.4; 10 mM NaCl; 3 mM MgCl2; 0.1% Tween-20; 
0.1% NP40; 0.01% digitonin and 1% BSA in nuclease-free water). After 
5 min incubation on ice, 1 ml chilled wash buffer was added to the lysed 
cells (10 mM Tris-HCl, pH 7.4; 10 mM NaCl; 3 mM MgCl2; 0.1% Tween-
20 and 1% BSA in nuclease-free water). The lysed cell suspension was 
centrifuged at 500g for 5 min at 4 °C and the pellet was resuspended 
in 1× nuclei buffer.

Library preparation. Single-cell libraries were generated using 
the GemCode Single-Cell Instrument and Single-Cell ATAC Library & 
Gel Bead Kit v.1-v.1.1 and ChIP kit (10x Genomics). Briefly, single nuclei 
suspended in 1× nuclei buffer were incubated for 60 min at 37 °C with a 
transposase that fragments the DNA in open regions of the chromatin 
and adds adaptor sequences to the ends of the DNA fragments. After 
generation of nanoliter-scale gel-bead-in-emulsions (GEMs), GEMs 
were incubated in a C1000 Touch Thermal Cycler (Bio-Rad) under the 
following program: 72 °C for 5 min; 98 °C for 30 s; 12 cycles of 98 °C for 
10 s, 59 °C for 30 s, 72 °C for 1 min; and hold at 15 °C. After incubation, 
single-cell droplets were broken and the single-strand DNA was isolated 
and cleaned using Cleanup Mix containing Silane Dynabeads. Illumina 
P7 sequence and a sample index were added to the single-strand DNA 
during library construction via PCR: 98 °C for 45 s; 9–13 cycles of 98 °C 
for 20 s, 67 °C for 30 s, 72 °C for 20 s; 72 °C for 1 min; and hold at 15 °C. 
The sequencing-ready library was cleaned up with SPRIselect beads.

Sequencing. Before sequencing, the fragment size of every library 
was analyzed using the Bioanalyzer high-sensitivity chip. All 10x scATAC 
libraries of run 1 were sequenced on NextSeq2000 instrument (Illu-
mina) with the following sequencing parameters: 51 bp for read 1, 8 bp 
for index 1, 24 bp for index 2 and 51 bp for read 2 and those of run 2 on 
a NovaSeq6000 instrument (Illumina) had the following sequencing 
parameters: 50bp for read 1, 8 bp for index 1, 16 bp for index 2 and 49 
bp for read 1. For both scATAC-seq runs, reads were mapped to GRCh38 
and fragments files generated using CellRanger-ATAC count command 
(v.2.0.0) using default parameters.

Cell line annotation of scATAC-seq and scRNA-seq cells. To 
determine the identity of the scRNA-seq cells, demuxlet was used as 
described in Wouters et al.48. To determine the identity of scATAC-seq 
cells, demuxlet was used using sample-specific mutations obtained 
from bulk ATAC-seq data on individual cell lines. Genotypes of the indi-
vidual cell lines were called using the bcftools mpileup command (v.1.11; 
options, –max-depth 8,000 and –skip-indels) and bcftools call com-
mand (v.1.11; options, –multiallelic-caller, -variants-only, –skip-variants 
indels and–output-type b). Only variants that were single-nucleotide 
polymorphisms and not homozygous across samples were kept. To 
run demuxlet for the scATAC-seq, bam files were filtered to only con-
tain reads covering single-nucleotide polymorphisms and having a 
cell barcode (based on CB tag); reads were piled up using the popscle 
dsc-pileup command using default parameters and demuxlet was run 
using the popscle demuxlet command (using the option –field GT).

Quality control of scRNA-seq. The scRNA-seq data of baseline 
MM-lines, as available on the Gene Expression Omnibus (GEO) under 
accession no. GSE134432, were preprocessed using Scanpy (v.1.8.2)94. 
Briefly, genes expressed in fewer than three cells were removed and cells 
that were expressed in fewer than 200 genes or more than 4,000 genes 
or had more than 15% counts in mitochondrial genes were removed. 
Doublets were detected and removed using Scrublet (v.0.2.3)95 with 
default parameters. This resulted in 3,557 high-quality cells.

Quality control of scATAC-seq and topic modeling. The scATAC-seq 
data were preprocessed using pycisTopic (v.1.0.1.dev21+g8aa75d8). 
Briefly, cell line annotation was used to call consensus peaks (total 
of 360,302 peaks), as described above. Cells with fewer than 3.25 and 
3.8 log number of unique fragments per cell, FRiP < 0.5 and TSS enrich-
ment <4 and <5, respectively, for scATAC-seq run 1 and run 2 and dou-
blets based on Scrublet (v.0.2.3)95 calls with a threshold of 0.25 were 
removed. This resulted in 5,509 high-quality cells. Topic modeling 
was performed as described above using LDA with the collapsed Gibbs 
sampler. A model of 30 topics was selected based on the stabilization 
of the metrics described in refs. 85,86,96 and log-likelihood.

Motif enrichment analysis. Motif enrichment analysis was performed 
using pycisTarget (v.1.0.1.dev17+gd2571bf) as described above. For 
this, a custom score and ranking database was generated using cre-
ate_cisTarget_databases Python package using the DNA sequences of 
consensus peaks and all annotated motifs as input. Motif enrichment 
was performed using both the cisTarget and DEM algorithm on cell line- 
and cell state (melanocytic, mesenchymal or intermediate)-based DARs 
(logFC > 1.5) and the top 3,000 regions per topic. The motif enrichment 
analysis was run both including promoters and excluding them. Pro-
moters were defined as regions within 500 bp up- or downstream of the 
TSS of each gene. TSSs for each gene were downloaded from BioMart 
(http://www.ensembl.org), using the pyBioMart package (v.0.2.0).

SCENIC+ analysis. Pseudo-multiome data were generated for cell lines 
present in both scRNA-seq and scATAC-seq data, as described above 
using five cells per meta-cell for a total of 936 meta-cells. The SCENIC+ 
workflow was run using default parameters and as described above. 
Briefly, a search space of a maximum between either the boundary of 
the closest gene or 150 kb and a minimum of 1 kb upstream of the TSS 
or downstream of the end of the gene was considered for calculating 
region–gene relationships using gradient-boosting machine regres-
sion. TF–gene relationships were calculated using gradient-boosting 
machine regression between all TFs and all genes. Genes were con-
sidered as TFs if they were included in the TF list available on http://
humantfs.ccbr.utoronto.ca/. (ref. 97). Final eRegulons were con-
structed using the GSEA approach in which region–gene relation-
ships were binarized based on gradient-boosting machine regression 
importance scores using the 85th, 90th and 95th quantile; the top 5, 10 
and 15 regions per gene and the BASC method88 for binarization. Only 
eRegulons with a minimum of ten target genes were retained. For each 
eRegulon cellular enrichment scores (AUC) of target genes and regions 
were calculated using the AUCell algorithm11. eRegulons for which the 
correlation coefficient between semi-pseudobulked per cell type (100 
meta-cells per cell type and 5 cells per meta-cell) TF expression and 
region AUC scores was >0.65 or <−0.75 were considered as high quality 
and used for downstream analysis. This resulted in 51 regulons, with 
a median of 176 genes and 183 regions per regulon. Analyses can be 
explored in SCope at https://scope.aertslab.org/#/scenic-v2 and UCSC 
Genome Browser at http://genome-euro.ucsc.edu/s/Seppe%20De%20
Winter/scenicplus_mix_melanoma.

ChIP-seq enrichment in eRegulon target regions. MITF, SOX10 and 
TFAP2A ChIP-seq fastq files were downloaded from GEO using the 
respective accession nos. GSE61965 (MITF and SOX10) and GSE67555 
(TFAP2A). Reads were mapped to Grch38 using Bowtie2 (v.2.4.4) using 
default parameters. Genomic coverage was calculated and stored as 
bigWig files using the bamCoverage function from deepTools (v.3.5.0; 
options -binSize 10, –effectiveGenomeSize 2913022398 and –nor-
malizeUsing RPGC). ChIP-seq coverage was calculated on the target 
regions of MITF(+), SOX10(+) and TFAP2A(+) and the regions targeted 
by any combination of two eRegulons using the pyBigWig package 
(v.0.3.18) using 50 bins. Coverage was min–max normalized by using 
the minimum and maximum across all regions per ChIP-seq dataset.
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Perturbation simulation. To simulate TF perturbations, first an RF 
regression model was trained to predict gene expression from TF 
expression, using the GradientBoostingRegressor fit function from 
the Scikit-Learn Python package (v.0.24.2) for each gene using the TFs 
predicted to regulate that gene as predictors for the gene. TFs that 
were predicted to regulate their own expression were excluded from 
the list of predictors before training the model. To simulate the effect 
of a TF knockout, a simulated gene expression matrix was generated 
by predicting the expression of each gene using the expression of the 
predictor TFs, while setting the expression of the TF of interest to zero. 
This simulation was repeated over several iterations, always using the 
newly simulated TF expression values as new predictor values for each 
gene. To visualize the effect of the perturbation in an embedding, first 
the shift of the cells in the original embedding (delta embedding) is esti-
mated as described in Kamimoto et al.31 based on eRegulon gene-based 
AUC values calculated using the simulated gene expression matrix. 
The delta embedding is used to draw arrows on the original embed-
ding, using the streamplot or quiverplot function from the matplotlib 
(v.3.5.2) Python package. To prioritize TFs for their effect of driving 
melanocytic–mesenchymal transitions, or vice versa, average shifts 
along the first principal component, based on the delta embedding 
after five iterations of simulation, were calculated.

SOX10 KD RNA-seq analysis. Fastq files of bulk RNA-seq of MM001, 
MM011, MM031, MM057, MM074 and MM087 after SOX10 knockdown 
and non-targeting controls48 were downloaded from GEO accession 
no. GSE134432. After trimming, sequencing adaptors from reads using 
fastq-mcf (v.1.05; default parameters) reads were mapped to GRCh38 
using STAR (v.2.7.9a; options –alignIntronMax 1, –alignIntronMin 2), 
only reads with a mapping quality of minimum 4 were kept and a count 
matrix was generated using htseq-count (v.0.9.1; options -a 0, -m union 
and -t exon). The logFC values of SOX10 knockdown over non-targeting 
control were calculated using the rlogTransformation command from 
DESeq2 (ref. 101) (v.1.34.0).

Comparison of target regions with enhancer activity assays. Consen-
sus regions were intersected with STARR-seq data, based on H3K27ac 
and ATAC-seq peaks, from Mauduit et al.18. Enhancer activity was  
compared in consensus regions in eRegulons versus consensus peaks 
not in eRegulons and the signal was correlated with the triplet ranking.

CellOracle analysis. CellOracle was run as described at https://
morris-lab.github.io/CellOracle.documentation/. Briefly, scRNA-seq 
data were analyzed using Scanpy94 (v.1.9.1), using flavor = ‘cell_ranger’ 
and n_top_genes = 2,000 to identify highly variable genes and nine 
PCs for dimensionality reduction. scATAC-seq data were processed 
with Cicero99 (v.1.3.4.11) with window = 500,000, which inferred 21,001 
region–gene connections with coaccess ≥ 0.8 and TSS annotation 
obtained from BioMart (http://may2015.archive.ensembl.org). Next, 
gimmemotifs100 (v.0.17.1) was used to identify TFBSs using the gim-
memotifs motif collection with default parameters. After inferring 
the links, we filtered links with the filter_links function using P = 0.001, 
weight = ‘coef_abs’ and threshold_number = 2,000. This resulted in 97 
regulons, with a median of 36 genes and 39 regions per regulon.

Pando analysis. Pando was run as described at https://quadbiolab.
github.io/Pando/. Briefly, computationally paired data (see SCE-
NIC+ analysis) were processed using Signac45 (v.1.8.0). MotifMatchR 
(v.1.16.0) was used with motifs from Jaspar and CisBP. To infer the 
GRN the infer_grn function was used with default parameters (peak_
to_gene_method = ‘GREAT’, upstream = 1 × 105, downstream = 0 and 
extend = 1 × 106). The GRN edges were filtered using the find_mod-
ules function with default parameters (P_thresh = 0.1, nvar_tresh = 2, 
min_genes_per_module = 1 and rsq_thresh = 0.05). This resulted in 
887 regulons, with a median of 237 genes and 724 regions per regulon.

FigR analysis. FigR was run as described at https://buenrostrolab.
github.io/FigR/. Briefly, computationally paired data (see SCENIC+ 
analysis) were preprocessed using Seurat91 (v.4.3.0) and we used 
the cell-principal components matrix (with ten PCs) based on the 
scRNA-seq to infer the kNN matrix for smoothing the data (with k = 30). 
We kept peak–gene correlations with P value < 0.05 and kept TF–DORC 
associations with at least five significant peaks per gene for each DORC 
and abs(score) > 1. This resulted in 514 regulons, with a median of three 
genes per regulon.

SCENIC analysis. SCENIC was run as described at https://pyscenic.
readthedocs.io/en/latest/ using default parameters and using the v.9 
motif collection (SCENIC motif collection).

GRaNIE analysis. GRaNIE was run as described at https://grp-zaugg.
embl-community.io/GRaNIE/. Briefly, computationally paired data (see 
SCENIC+ analysis) were used as input with a pseudocount of 1 added to 
the scATAC-seq matrix. The scATAC-seq data were normalized using the 
‘Deseq_sizeFactor’ and the scRNA-seq data with ‘quantile’. Motif scan-
ning was performed using the default motif collection (HOCOMOCO) 
and default settings were used to infer the GRN. To filter the GRN, we 
used default settings. This resulted in 45 regulons, with a median of 
five genes and one region per regulon.

Dimensionality reduction based on eRegulon enrichment scores 
obtained from different methods. AUC values were calculated on 
target genes and target regions (if present) of all regulons obtained 
from SCENIC+, CellOracle, Pando, FigR, GRaNIE and SCENIC using 
AUCell. This was conducted separately for target genes/regions that 
have a positive/negative contribution (separate regulons were gener-
ated for repressors and activators). AUC scores were scaled using the 
StandardScaler function from Scikit-Learn (v.0.24.2) and t-SNE dimen-
sionality reductions were generated using the TSNE function from 
Scikit-Learn (v.0.24.2) separately for target gene and target region (if 
present) enrichment scores and for the combined enrichment scores. 
Scaled AUC matrices were clustered using Leiden clustering with a 
resolution of 2.0. ARIs were calculated by comparing this clustering 
with the cell-type labels, using the adjusted_rand_score function from 
Scikit-Learn (v.0.24.2).

BoolODE analysis. Boolean networks were generated and formatted 
as described in the documentation of BoolODE (https://murali-group.
github.io/Beeline/BoolODE.html) for all TF–TF edges inferred by 
GRaNIE, SCENIC and CellOracle and for the top 10%, 25% and 50% 
of edges, based on the triplet score, of SCENIC+. The number of TFs 
targeting a single gene was randomly down sampled to 15 if the gene 
was targeted by more than 15 TFs. BoolODE was run separately for 
all Boolean networks simulating 500 cells with the model type hill, 
a simulation time of 20, with kinetic parameters set to one sampled 
value using a standard deviation of 0.5. Simulated gene expression 
matrices from the final BoolODE iteration were scaled using the 
StandardScaler function and PCA was run using the PCA function from 
Scikit-Learn (v.0.24.2) using 50 principal components. The PC matri-
ces of the simulated and real data were integrated using harmonypy, 
using default settings. The distance between each simulated cell and 
its five nearest neighbors was quantified in the harmony-corrected 
and integrated data using the NearestNeighbors function from 
Scikit-Learn (v.0.24.2). The first two PCs of the integrated data were 
used for visualization.

Comparative analysis in the mammalian brain using SCENIC+ 
Human cortex data. Human motor cortex data were downloaded  
from https://data.nemoarchive.org/publication_release/Lein_2020_
M1_study_analysis/Multimodal/sncell/SNARE/human/processed/
counts/counts/M1/ (scRNA-seq count matrix and cell metadata) and  
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(scATAC-seq fragment files).

Mouse cortex data. Mouse cortex dissection. All animal experiments 
were conducted according to the KU Leuven ethical guidelines and 
approved by the KU Leuven Ethical Committee for Animal Experimen-
tation (approved protocol no. ECD P007/2021). Mice were maintained 
in a specific-pathogen-free facility under standard housing conditions 
(temperature 20–24 °C and humidity 45–65%) with continuous access 
to food and water. Mice used in the study were 57 d old and were main-
tained on 14 h light, 10 h dark–light cycle from 7:00 to 21:00. In this 
study, cortical brain tissue from male P57 BL/6Jax was used. Animals 
were anesthetized with isoflurane and decapitated. Cortices were col-
lected and immediately snap-frozen in liquid nitrogen.

Sample preparation. Five multiome experiments were performed, 
with small variations in sample preparation. For the sample labeled as 
‘10x_complex’ we used a modified protocol from the Nuclei Isolation 
from Complex Tissues for Single-Cell Multiome ATAC + Gene Expres-
sion Sequencing Protocol (CG000375) from 10x Genomics. Briefly, a 
~1-cm3 frozen piece of mouse cortex tissue was transferred to 0.5 ml 
ice-cold homogenization buffer (salt-Tris solution of 10 mM NaCl, 
10 mM Tris, pH 7.4, 3 mM MgCl2, 0.1% IGEPAL CA-63, 1 mM dithiothrei-
tol and 1 U µl−1 Protector RNase inhibitor (Sigma)) in a Dounce homog-
enizer mortar and thawed for 2 min. The tissue was homogenized with 
ten strokes of pestle A and ten strokes of pestle B until a homogene-
ous nuclei suspension was achieved. The resulting homogenate was 
filtered through a 70-µm cell strainer (Corning). The homogenizer 
and the filter were rinsed with an additional 0.5 µl homogenization 
buffer. The tissue material was pelleted at 500g and the supernatant 
was discarded. The tissue pellet was resuspended in wash buffer (1% 
BSA in PBS + 1 U µl−1 Protector RNase inhibitor (Sigma)). The obtained 
nuclei were stained with 7AAD (Thermo Fisher Scientific) and viabil-
ity sorted on a BD FACS Fusion into 5-ml low-bind Eppendorf tubes 
containing BSA with RNase inhibitor. The sorted nuclei were pelleted 
at 500g and the supernatant was discarded. Next, the nuclei were 
permeabilized by resuspending the pellet in 0.1× lysis buffer (salt-Tris 
solution of 10 mM NaCl, 10 mM Tris, pH 7.4, 3 mM MgCl2, 0.1% IGEPAL 
CA-63, 0.01% digitonin, 1% BSA, 1 mM dithiothreitol and 1 U µl−1 Pro-
tector RNase inhibitor (Sigma)) and incubated on ice for 2 min. Then, 
1 ml wash buffer (salt-Tris solution of 10 mM NaCl, 10 mM Tris, pH 7.4, 
3 mM MgCl2, 0.1% Tween-20, 1% BSA, 1 mM dithiothreitol and 1 U µl−1 
Protector RNase inhibitor (Sigma)) was added and the nuclei were 
pelleted at 500g and the supernatant was discarded. The nuclei pellet 
was resuspended in diluted nuclei buffer (1× Nuclei buffer Multiome 
kit (10x Genomics)), 1 mM dithiothreitol and 1 U µl−1 Protector RNase 
inhibitor (Sigma)).

For the sample labeled as ‘10x_no_perm’ we used the above- 
described modified protocol from the Nuclei Isolation from Complex 
Tissues for Single-Cell Multiome ATAC + Gene Expression Sequenc-
ing Protocol (CG000375) from 10x Genomics, omitting the nuclei  
permeabilization step. After sorting the nuclei were pelleted at  
500g and the supernatant was discarded. The nuclei pellet was resus-
pended in diluted nuclei buffer (1× Nuclei buffer Multiome kit (10x 
Genomics)), 1 mM dithiothreitol and 1 U µl−1 Protector RNase inhibitor 
(Sigma)).

For the sample labeled as ‘TST’ nuclei isolation we used a modified 
protocol from De Rop et al.102. Briefly, a ~1-cm3 frozen piece of mouse 
cortex tissue was transferred to 0.5 ml ice-cold homogenization buffer 
(salt-Tris solution of 146 mM NaCl, 10 mM, Tris pH 7.5, 1 mM CaCl2, 
21 mM MgCl2, 250 mM sucrose, 0.03% Tween-20, 1% BSA, 25 mM KCl, 
1× cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail (Roche), 
1 mM dithiothreitol and 1 U µl−1 Protector RNase inhibitor (Sigma)) in 
a Dounce homogenizer mortar and thawed for 2 min. The tissue was 

homogenized with ten strokes of pestle A and ten strokes of pestle B 
until a homogeneous nuclei suspension was achieved. The resulting 
homogenate was filtered through a 70-µm cell strainer (Corning). 
The homogenizer and the filter were rinsed with an additional 0.5 ml 
homogenization buffer. The tissue material was pelleted at 500g and 
the supernatant was discarded. The tissue pellet was resuspended 
in a homogenization buffer without Tween-20. An additional 1.65 ml 
homogenization buffer was topped up and mixed with 2.65 ml gradient 
medium (75 mM sucrose, 1 mM CaCl2, 50% Optiprep (Stemcell), 5 mM 
MgCl2, 10 mM Tris, pH 7.5, 0.5× cOmplete, Mini, EDTA-free Protease 
Inhibitor Cocktail (Roche), 1 mM dithiothreitol and 1 U µl−1 of Protec-
tor RNase inhibitor (Sigma)). Then, 4 ml 29% iodoxanol cushion was 
prepared with a diluent medium (250 mM sucrose, 150 mM KCl, 30 mM 
MgCl2 and 60 mM, Tris pH 8) and was loaded into a 13.2-ml ultracen-
trifuge tube. The 5.3 ml sample in homogenization buffer + gradient 
medium was gently layered on top of the 29% iodoxanol cushion. The 
sample was centrifuged at 10,139.3g at 4 °C for 30 min, and the super-
natant was gently removed without disturbing the nuclei pellet. The 
nuclei pellet was resuspended in diluted nuclei buffer (1× Nuclei buffer 
Multiome kit (10x Genomics)), 1 mM dithiothreitol, 1 U µl−1 Protector 
RNase inhibitor (Sigma)).

For the sample labeled as ‘10x_complex_UC’ we designed a proto-
col where we combined the ‘10x_complex’ with ‘TST’. Briefly, a ~1-cm3 
frozen piece of mouse cortex tissue was transferred to 0.35 ml ice-cold 
homogenization buffer (salt-Tris solution of 10 mM NaCl, 10 mM Tris, 
pH 7.5, 3 mM MgCl2, 0.1% IGEPAL CA-63, 1 mM dithiothreitol and 1 U µl−1 
of Protector RNase inhibitor (Sigma)) in a Dounce homogenizer mortar 
and thawed for 2 min. The tissue was homogenized with ten strokes of 
pestle A and ten strokes of pestle B until a homogeneous nuclei suspen-
sion was achieved. The resulting homogenate was filtered through a 
70-µm cell strainer (Corning). The homogenizer and the filter were 
rinsed with an additional 0.65 ml homogenization buffer. The homoge-
nate was incubated on ice for 5 min, pelleted at 500g and the superna-
tant was discarded. Then, 1 ml permeabilization buffer (PBS 1×, BSA 
1%, 0.1% IGEPAL CA-63, 0.01% digitonin and 1 U µl−1 Protector RNase 
inhibitor (Sigma)) was added and incubated on ice for 2 min. Next, the 
pellet was resuspended, incubated on ice for extra 5 min and pelleted at 
500g. The pelleted nuclei were resuspended in 1 ml wash buffer (PBS 1×, 
BSA 1% and 0.5 U µl−1 Protector RNase inhibitor (Sigma)). An additional 
1.65 ml wash buffer was topped up and mixed with 2.65 ml gradient 
medium (75 mM sucrose, 1 mM CaCl2, 50% Optiprep (Stemcell), 5 mM 
MgCl2, 10 mM Tris, pH 7.5 and 1 mM dithiothreitol). Then, 4 ml 29% 
iodoxanol cushion was prepared with a diluent medium (250 mM 
sucrose, 150 mM KCl, 30 mM MgCl2 and 60 mM, Tris pH 8) and was 
loaded into a 13.2-ml ultracentrifuge tube. Then, 5.3 ml sample in wash 
buffer + gradient medium was gently layered on top of the 29% iodox-
anol cushion. The sample was centrifuged at 10,139.3g, 4 °C for 30 min 
and the supernatant was gently removed without disturbing the nuclei 
pellet. The nuclei pellet was resuspended in diluted nuclei buffer (1× 
Nuclei buffer Multiome kit (10x Genomics)), 1 mM dithiothreitol and 
1 U µl−1 Protector RNase inhibitor (Sigma)).

For the sample labeled as ‘TST_NP40_004’ we designed a protocol 
starting from ‘TST’. Briefly, a ~1-cm3 frozen piece of mouse cortex tissue 
was transferred to 0.5 ml ice-cold homogenization buffer (salt-Tris 
solution of 146 mM NaCl, 10 mM Tris, pH 7.5, 1 mM CaCl2, 21 mM MgCl2, 
250 mM sucrose, 0.03% Tween-20, 0.01% BSA, 25 mM KCl, 1× cOmplete, 
Mini, EDTA-free Protease Inhibitor Cocktail (Roche), 1 mM dithiothrei-
tol and 1 U µl−1 Protector RNase inhibitor (Sigma)) in a Dounce homog-
enizer mortar and thawed for 2 min. The tissue was homogenized with 
ten strokes of pestle A and ten strokes of pestle B until a homogeneous 
nuclei suspension was achieved. The resulting homogenate was filtered 
through a 70-µm cell strainer (Corning). The homogenizer and the filter 
were rinsed with an additional 500 ml homogenization buffer. The 
homogenate was pelleted at 500g and the supernatant was discarded. 
Then, 0.3 ml permeabilization buffer (salt-Tris solution of 10 mM NaCl, 
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10 mM Tris, pH 7.5, 3 mM MgCl2, 1%, BSA, 25 mM KCl, 250 mM sucrose, 
0.04 % IGEPAL CA-63, 0.01% digitonin, 1 mM dithiothreitol, 1× cOm-
plete, Mini, EDTA-free Protease Inhibitor Cocktail (Roche) and 0.5 U µl−1 
Protector RNase inhibitor (Sigma)) was added and incubated on ice 
for 5 min. The homogenate was pelleted at 500g and the supernatant 
was discarded. The tissue pellet was resuspended in 1 ml wash buffer 
(salt-Tris solution of 10 mM NaCl, 10 mM Tris, pH 7.5, 3 mM MgCl2, 1%, 
BSA, 25 mM KCl, 250 mM sucrose, 1 mM dithiothreitol, 1× cOmplete, 
Mini, EDTA-free Protease Inhibitor Cocktail (Roche) and 0.5 U µl−1 Pro-
tector RNase inhibitor (Sigma)). An additional 1.65 ml wash buffer was 
topped up and mixed with 2.65 ml gradient medium (75 mM sucrose, 
1 mM CaCl2, 50% Optiprep (Stemcell), 5 mM MgCl2, 10 mM Tris, pH 7.5  
and 1 mM dithiothreitol). Then, 4 ml 29% iodoxanol cushion was pre-
pared with a diluent medium (250 mM sucrose, 150 mM KCl, 30 mM 
MgCl2 and 60 mM Tris, pH 8) and was loaded into a 13.2-ml ultracen-
trifuge tube. Then, 5.3 ml sample in wash buffer + gradient medium 
was gently layered on top of the 29% iodoxanol cushion. The sample 
was centrifuged at 10,139.3g, 4 °C for 30 min, and the supernatant was 
gently removed without disturbing the nuclei pellet. The nuclei pellet 
was resuspended in diluted nuclei buffer (1× Nuclei buffer Multiome 
kit (10x Genomics)), 1 mM dithiothreitol and 1 U µl−1 Protector RNase 
inhibitor (Sigma)).

Nuclei suspension quality control. Nuclei yield, morphology and 
presence of clumps/debris were evaluated by mixing 9 µl sample with 
1 µl arginine orange/propidium iodide stain, loaded onto a LUNA-FL 
slide and visualized with the LUNA-FL Automated cell counter (Logos 
Biosystems).

Library preparation. Single-nuclei libraries were generated using 
the 10x Chromium Single-Cell Instrument and NextGEM Single-Cell 
Multiome ATAC + Gene Expression kit (10x Genomics) according to 
the manufacturer’s protocol. Briefly, the single mouse brain nuclei 
were incubated for 60 min at 37 °C with a transposase that fragments 
the DNA in open regions of the chromatin and adds adaptor sequences 
to the ends of the DNA fragments. After generation of nanoliter-scale 
GEMs, GEMs were incubated in a C1000 Touch Thermal Cycler (Bio-Rad) 
under the following program: 37 °C for 45 min, 25 °C for 30 min and 
hold at 4 °C. Incubation of the GEMs produced 10x barcoded DNA from 
the transposed DNA (for ATAC) and 10x barcoded, full-length cDNA 
from poly-adenylated mRNA (for GEX). Next quenching reagent (Multi-
ome 10x kit) was used to stop the reaction. After quenching, single-cell 
droplets were dissolved and the transposed DNA and full-length com-
plementary DNA were isolated using Cleanup Mix containing Silane 
Dynabeads. To fill gaps and generate sufficient mass for library con-
struction, the transposed DNA and cDNA were amplified via PCR at 
72 °C for 5 min; 98 °C for 3 min; seven cycles of 98 °C for 20 s, 63 °C for 
30 s, 72 °C for 1 min; 72 °C for 1 min; and hold at 4 °C. The pre-amplified 
product was used as input for both ATAC library construction and 
cDNA amplification for gene expression library construction. Illumina 
P7 sequence and a sample index were added to the single-strand DNA 
during ATAC library construction via PCR at 98 °C for 45 s; 7–9 cycles of 
98 °C for 20 s, 67 °C for 30 s, 72 °C for 20 s; 72 °C for 1 min; and hold at 
4 °C. The sequencing-ready ATAC library was cleaned up with SPRIselect 
beads (Beckman Coulter). Barcoded, full-length pre-amplified cDNA 
was further amplified via PCR at 98 °C for 3 min; 6–9 cycles of 98 °C for 
15 s, 63 °C for 20 s, 72 °C for 1 min; 72 °C for 1 min; and hold at 4 °C. Sub-
sequently, the amplified cDNA was fragmented, end-repaired, A-tailed 
and index adaptor-ligated, with SPRIselect cleanup in between steps. 
The final gene expression library was amplified by PCR at 98 °C for 
45 s; 5–16 cycles of 98 °C for 20 s, 54 °C for 30 s, 72 °C for 20 s. 72 °C for 
1 min; and hold at 4 °C. The sequencing-ready GEX library was cleaned 
up with SPRIselect beads.

Sequencing. Before sequencing, the fragment size of every library 
was analyzed using the Bioanalyzer high-sensitivity chip. All 10x Mul-
tiome ATAC libraries were sequenced on NovaSeq6000 instruments 
(Illumina) with the following sequencing parameters: 50 bp for read 

1, 8 bp for index 1 (i7), 16 bp for index 2 (i5) and 49 bp for read 2. All 10x 
Multiome GEX libraries were sequenced on NovaSeq6000 instruments 
with the following sequencing parameters: 28 bp for read 1, 10 bp for 
index 1 (i7), 10 bp for index 2 (i5) and 75 bp for read 2. The generated 
fastq files were processed with CellRanger-ARC (v.2.0.0) count func-
tion, with include introns = true option. Reads were aligned to Mus mus-
culus reference genome (ATAC-CellRanger-ARC-mm10-2020-A-2.0.0).

Human cortex data analysis. High-quality cells (84,159) selected by 
Bakken et al.60 were used for the analysis. scRNA-seq data were analyzed 
using Seurat91 (v.4.0.3), using 47 PCs for dimensionality reduction and 
Leiden clustering (with resolution of 0.6). This resulted in 30 clusters 
(corresponding to 19 cell types) that were manually annotated based 
on marker gene expression. These cell-type labels were used to cre-
ate pseudobulks from which peaks were called with MACS2 (ref. 81) 
(v.2.1.2.1) and consensus peaks were derived using the iterative-filtering 
approach (as previously described), resulting in 697,721 regions. Topic 
modeling was performed using MALLET, using 500 iterations and 
models with 10 topics and from 25 to 500 by an increase of 25, select-
ing the model with 50 topics based on the model selection metrics. 
pycisTarget (v.1.0.1.dev17+gd2571bf) was run using a custom database 
with the consensus regions, on DARs and binarized topics (with Otsu 
thresholding), with and without promoters and using pycisTarget and 
DEM. SCENIC+ was run with default parameters, using http://jul2018.
archive.ensembl.org/ as a BioMart host. High-quality regulons were 
selected based on the correlation between gene-based regulon AUCs 
and region-based regulon AUCs (>0.4) and on the number of target 
genes (>30). This resulted in 142 regulons, with a mean of 315 genes 
and 768 regions per regulon.

Mouse cortex data analysis. scRNA-seq data were first analyzed using 
VSN (v.0.27.0). Briefly, cells with at least 100 genes expressed and less 
than 1% of mitochondrial reads were kept. Doublets were removed using 
Scrublet95 (v.0.2.3), with default parameters. Fifty PCs were used as input 
for harmony, which was used to correct batch effects due to the sample 
preparation protocol and the corrected PCs were used for dimensional-
ity reduction and Leiden clustering (resolution 1). This resulted in 41 clus-
ters that were annotated based on marker gene expression. Cell types 
not belonging to the cortex (such as medium spiny neurons from the 
striatum) were removed and the dataset was reanalyzed using Seurat91 
(v.4.0.3), using 52 PCs as input for harmony, as previously described, 
which were used for dimensionality reduction. This resulted in a dataset 
with 21,969 high-quality cells (based on scRNA-seq). These cell-type 
labels were used to create pseudobulks from which peaks were called 
with MACS2 (ref. 81) (v.2.1.2.1) and consensus peaks were derived using 
the iterative-filtering approach (as previously described), resulting in 
568,403 regions. We further filtered the dataset based on the scATAC-seq 
quality, keeping cells with at least 1,000 fragments, FRiP > 0.4 and 
TSS > 4, resulting in 19,485 cells. Topic modeling was performed using 
MALLET, using 500 iterations and models with 2 topics and from 5–100 
by an increase of 5, selecting the model with 60 topics based on the 
model selection metrics. pycisTarget (v.1.0.1.dev17+gd2571bf) was 
run using a custom database with the consensus regions on DARs and 
binarized topics (with Otsu thresholding), with and without promoters 
and using pycisTarget and DEM. SCENIC+ was run with default param-
eters, using http://nov2020.archive.ensembl.org/ as a BioMart host. 
High-quality regulons were selected based on the correlation between 
gene-based regulon AUCs and region-based regulon AUCs (>0.4) and 
on the number of target genes (>30). This resulted in 125 regulons, with 
a mean of 295 genes and 694 regions per regulon.

Cross-species comparison. Mouse gene names were converted to their 
orthologous human gene names based on the orthology table at http://
www.informatics.jax.org/downloads/reports/HOM_MouseHuman 
Sequence.rpt. Gene-based human and mouse-to-human regulons were 
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intersected, calculating the percentage of agreement as the number of 
overlapping genes divided by the size of the smallest regulon. Human 
region-based regulons were lifted over to mm10 using UCSC Liftover 
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) with default param-
eters and regions overlapping mouse cortex consensus peaks and 
linked to the same (orthologous) gene in the two species were kept. 
Region-based human-to-mouse and mouse regulons were intersected, 
calculating the percentage of agreement as the number of overlapping 
regions divided by the size of the smallest regulon. Human bigWig 
files were lifted over to the mm10 genome using CrossMap (v.0.6.0). 
Analyses can be explored in SCope at https://scope.aertslab.org/#/
scenic-v2 and UCSC Genome Browser at https://genome-euro.ucsc.
edu/s/cbravo/SCENIC%2B_Cortex.

GRN velocity
GRN velocity calculation. First, cells were ordered by pseudotime. 
For each TF (TF), a standardized generalized additive model (GAM) 
was fitted along the pseudotime axis for its expression and its target 
genes’ (or regions, TG and TR, respectively) AUC values, using the 
LinearGAM() function from pyGAM (v.0.8.0) with a spline term and 
automatic parameter grid search.

g (TF) = β0 + s (pseudotime)

g (TG) = β0 + s (pseudotime)

g (TR) = β0 + s (pseudotime)

Next, each cell (C) in a certain quantile of the GAM TF expression 
model was mapped to a future cell in the same quantile of the GAM 
regulon AUC curve (posterior in the pseudotime axis). By default, the 
curve fitted on the target genes AUC values (g(TG)) was used. If there 
was no posterior cell in that quantile the cell was mapped to itself. Only 
positive interactions were considered in this analysis.

CTF
g(TF) ↔ CTG

g(TG) where g (TF) = g (TG)

if pseudotime (CTF
g(TF)) < pseudotime (CTG

g(TG)) elseC
TF
g(TF) ↔ CTF

g(TF)

We define the differentiation force of a cell as the distance from 
the TF expression curve to its matching cell in the regulon AUC curve.

GRNforce = pseudotime (CTG
g(TG)) − pseudotime (CTF

g(TF))

Differentiation forces can be plotted as an arrow grid in any dimen-
sionality reduction of the data and prioritized per group of cells to 
identify key drivers in differentiation transitions. To visualize a regulon 
differentiation force, the distance in the embedding between matching 
cells is calculated (delta embedding).

Δ⃗ = CTG
g(TG)(x,y)

− CTF
g(TF)(x,y)

where g (TF) = g (TG)

if pseudotime (CTF
g(TF)) < pseudotime (CTG

g(TG)) else Δ⃗ = (0,0)

The delta embedding is used to draw arrows between the cells, 
using the streamplot or quiverplot function from the matplotlib 
(v.3.5.2) Python package.

When having multiple differentiation paths, the same strategy is 
applied separately in each path (p) and then an average across all the 
paths is taken (P). In addition, as the data are standardized before fitting 
the GAM model, a penalization curve standardized on the whole dataset 
is used (TFglobal). This will prevent false arrows from being drawn if a TF 

(or its target) is not present in the branch. By default, the penalization 
threshold (tp) is 0.03.

Δ⃗ =
P
∑
p
CTG|p
g(TG|p)(x,y)

− CTF
g(TF)(x,y)

if pseudotime (CTF
g(TF)|p) < pseudotime (CTG|p

g(TG|p))

if |g(TFp)CTF
g(TF)

− g (TFglobal)CTF
g(TF)

| < tp

GRN velocity along oligodendrocyte differentiation in the mouse 
cortex. Oligodendrocyte cells (OPCs and oligodendrocytes) were sub-
setted from our in-house mouse cortex dataset, resulting in 4,435 cells. 
The eRegulon AUC matrix was processed using Scanpy94 (v.1.8.2) and the 
embedding-based pseudotime was derived using the diffmap and dpt 
functions. Differentiation arrows were inferred for cells above the 70% 
quantile of TF expression and default parameters. Prioritization of differ-
entiation forces was conducted using the regulon specificity score (RSS) 
metric using arrow lengths in each cell for each regulon as input values.

GRN velocity along the fly retina differentiation. Data. scRNA-seq 
and scATAC-seq from the third instar larvae eye-antennal disc from 
Bravo et al.14 were used. In addition, we performed an additional 
scATAC-seq run using only eye discs (by cutting the antenna out of 
the eye-antennal disc), using the same protocol as described by Bravo 
et al.14. The analysis can be explored in SCope at https://scope.aertslab.
org/#/scenic-v2 and UCSC Genome Browser at http://genome.ucsc.
edu/s/cbravo/SCENIC%2B_EAD.

SCENIC+ analysis. scATAC-seq annotated cells by Bravo et al.14 
were used to create pseudobulks from which peaks were called with 
MACS2 (ref. 81) (v.2.1.2.1) and consensus peaks were derived using 
the iterative-filtering approach (as previously described), resulting 
in 39,732 regions. Additional Drosophila cisTarget regions that did 
not overlap with these peaks were used, resulting in a dataset with 
127,711 regions. cisTarget regions are defined by partitioning the entire 
noncoding Drosophila genome based on cross-species conservation, 
resulting in more than 136,000 bins with an average size of 790 bp, and 
we found that using this region set increases the resolution for rare 
cell types, in which peak calling is difficult due to low amounts of cells.

Combining high-quality cells from all the runs (based on Cell-
Ranger), a dataset with 23,317 cells was obtained. Topic modeling 
was performed using MALLET, using 500 iterations and models with 
2 topics and from 5–100 by an increase of 5, selecting the model 
with 80 topics based on the model selection metrics. pycisTarget 
(v.1.0.1.dev17+gd2571bf) was run using a custom database with the 
consensus regions on DARs and binarized topics (with Otsu threshold-
ing), with and without promoters and using pycisTarget and DEM. Next, 
scATAC-seq and scRNA-seq data were mapped into a virtual template 
of the eye-antennal disc using ScoMAP (v.0.1.0), as described by Bravo 
et al.14. This resulted in a dataset with 5,058 multiome pseudocells, 
for which both scRNA-seq and scATAC-seq measurements are avail-
able. These data were used as input for SCENIC+. SCENIC+ was run 
with default parameters, using http://dec2017.archive.ensembl.org as 
BioMart host and a 50 kb window for the inference of region–gene links 
(instead of 150 kb). High-quality regulons were selected based on the 
correlation between gene-based regulon AUCs and region-based regu-
lon AUCs (>0.4) and on the number of target genes (>10). This resulted 
in 153 regulons, with a mean of 216 genes and 323 regions per regulon.

GRN velocity. Differentiating cells in the eye disc were subset-
ted, resulting in a dataset with 3,104 cells. The eRegulon AUC matrix 
was processed using Scanpy94 (v.1.8.2). Cell annotations were refined 
based on Leiden clustering on the eRegulon AUC matrix, resulting in 
nine clusters along the fly retina differentiation. To identify branching 
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points, PAGA (included in Scanpy) was used, using 0.24 as threshold 
for paga_compare. The UMAP representation was recalculated using 
init_pos = ‘paga’. The embedding-based pseudotime was derived using 
the diffmap and dpt functions. Differentiation arrows were inferred for 
cells above the 70% quantile of TF expression; a value of 0.2 was used as 
branch penalization and default parameters along the two differentia-
tion paths (from progenitors to photoreceptors and from progenitors 
to interommatidial cells). Prioritization of differentiation forces was 
conducted using the RSS metric using arrow lengths in each cell for 
each regulon as input values. Prioritization of differentiation forces 
was conducted using the RSS metric using arrow lengths in each cell 
for each regulon as input values.

Comparison with scVelo and MultiVelo. Spliced and unspliced 
scRNA-seq count matrices were generated using featureCounts, count-
ing only reads in exons or in the whole gene body, respectively. Velocity 
was calculated using scVelo (v.0.2.5) in the virtual template cells, using 
velocity with mode = ‘stochastic’. scVelo pseudotime was calculated 
using velocity_pseudotime with default parameters. MultiVelo was 
run with default parameters, using the imputed scATAC-seq data, the 
spliced and unspliced scRNA-seq counts of the cells paired in the virtual 
template and the region–gene links derived by SCENIC+, using all genes.

Spatial GRN mapping
Human cerebellum 10x Visium. Data. 10x Visium data from the human 
cerebellum were downloaded from https://www.10xgenomics.com/
resources/datasets/human-cerebellum-whole-transcriptome-analysis
-1-standard-1-2-0. The 10x single-cell multiome data from the human 
cerebellum were downloaded from https://www.10xgenomics.
com/resources/datasets/frozen-human-healthy-brain-tissue
-3-k-1-standard-1-0-0. The analysis can be explored in SCope at https://
scope.aertslab.org/#/scenic-v2 and UCSC Genome Browser at https://
genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_cerebellum.

SCENIC+ analysis and regulon mapping. Cells with at least 500 
scRNA-seq reads and less than 5% of mitochondrial reads were kept and 
doublets were removed using Scrublet95 (v.0.2.3) with default param-
eters. scRNA-seq data were analyzed using Seurat91 (v.4.0.3), using  
37 PCs for dimensionality reduction and Leiden clustering (with resolu-
tion 0.6). This resulted in 15 clusters (corresponding to 13 cell types) 
that were manually annotated based on marker gene expression. These 
cell-type labels were used to create pseudobulks from which peaks 
were called with MACS2 (ref. 81) (v.2.1.2.1) and consensus peaks were 
derived using the iterative-filtering approach (as previously described), 
resulting in 435,834 regions. The dataset was further filtered based 
on the scATAC-seq quality, keeping cells with at least log(unique frag-
ments) > 3.5, FRiP > 0.2 and TSS > 4, resulting in 1,736 cells. Topic mod-
eling was performed using MALLET, using 500 iterations and models 
with 2 topics and from 5–50 by an increase of 5, selecting the model 
with 40 topics based on the model selection metrics. pycisTarget 
(v.1.0.1.dev17+gd2571bf) was run, using a custom database with the 
consensus regions, on DARs and binarized topics (with Otsu thresh-
olding), with and without promoters and using pycisTarget and DEM. 
SCENIC+ was run with default parameters, using http://www.ensembl.
org as a BioMart host. High-quality regulons were selected based on 
the correlation between gene-based regulon AUCs and region-based 
regulon AUCs (>0.6) and on the number of target genes (>10). This 
resulted in 111 regulons, with a mean of 100 genes and 171 regions per 
regulon. The 10x Visium data were processed using Seurat (v.4.0.3). 
SCENIC+ regulons were scored in the spots using AUCell (with the 
spot–gene matrix as input), with default parameters.

Molecular Cartography in the mouse cortex. Gene panel selection. 
One hundred genes were selected based on their gene expression 
patterns (marker genes for a cell type or group of cell types) on our 
in-house mouse cortex dataset and literature (Supplementary Table 6).  
In addition, dimensionality reduction using only these 100 genes was 

performed to ensure that all cell types could be distinguished with this 
gene panel.

Probe design. The probes for the 100 selected genes were designed 
using Resolve’s proprietary design algorithm. Briefly, the probe design 
was performed at the gene level. For every targeted gene, all full-length 
protein-coding transcript sequences from the ENSEMBL database were 
used as design targets if the isoform had the GENCODE annotation tag 
‘basic’103. To speed up the process, the calculation of computationally 
expensive parts, especially the off-target searches, the selection of 
probe sequences was not performed randomly, but limited to sequences 
with high success rates. To filter highly repetitive regions, the abundance 
of k-mers was obtained from the background transcriptome using Jelly-
fish104. Every target sequence was scanned once for all k-mers and those 
regions with rare k-mers were preferred as seeds for full probe design. 
A probe candidate was generated by extending a seed sequence until a 
certain target stability was reached. A set of simple rules was applied to 
discard sequences that were found experimentally to cause problems. 
After these fast screens, every kept probe candidate was mapped to 
the background transcriptome using ThermonucleotideBLAST105 and 
probes with stable off-target hits were discarded. Specific probes were 
then scored based on the number of on-target matches (isoforms), 
which were weighted by their associated APPRIS level106, favoring prin-
cipal isoforms over others. A bonus was added if the binding site was 
inside the protein-coding region. From the pool of accepted probes, the 
final set was composed by greedily picking the highest scoring probes. 
Gene names and catalog numbers for the specific probes designed by 
Resolve Biosciences are included in Supplementary Table 6.

Tissue sections. Mouse brain samples were fixed with PAXgene Tis-
sue FIX solution (Resolve Biosciences) for 24 h at room temperature fol-
lowed by 2 h in PAXgene Tissue Stabilizer (Resolve Biosciences) at room 
temperature. Samples were cryoprotected in a 30% sucrose solution 
(w/v) overnight at 4 °C and frozen in 2-methylbutane (Sigma-Aldrich, 
106056) on dry ice. Frozen samples were sectioned with a cryostat 
(Leica CM3050) and 10-µm thick sections were placed within the cap-
ture areas of cold Resolve Biosciences slides. Samples were then sent 
to Resolve Biosciences on dry ice for analysis. Upon arrival, tissue 
sections were thawed and rehydrated with isopropanol, followed by 
1-min washes in 95% ethanol and 70% ethanol at room temperature. The 
samples were used for Molecular Cartography (100-plex combinatorial 
single molecule fluorescence in situ hybridization) according to the 
manufacturer’s instructions (protocol v.1.3; available for registered 
users), starting with the aspiration of ethanol and the addition of buffer 
DST1 followed by tissue priming and hybridization. Briefly, tissues 
were primed for 30 min at 37 °C followed by overnight hybridization 
of all probes specific for the target genes (see below for probe design 
details and target list). Samples were washed the next day to remove 
excess probes and fluorescently tagged in a two-step color develop-
ment process. Regions of interest were imaged as described below 
and fluorescent signals were removed during decolorization. Color 
development, imaging and decolorization were repeated for multiple 
cycles to build a unique combinatorial code for every target gene that 
was derived from raw images as described below.

Imaging. Samples were imaged on a Zeiss Celldiscoverer 7, using 
the ×50 Plan Apochromat water immersion objective with an NA of 1.2 
and the ×0.5 magnification changer, resulting in a ×25 final magnifica-
tion. Standard CD7 LED excitation light source, filters and dichroic 
mirrors were used together with customized emission filters optimized 
for detecting specific signals. Excitation time per image was 1,000 ms 
for each channel (4,6-diamidino-2-phenylindole (DAPI) was 20 ms). A 
z-stack was taken at each region with a distance per z-slice according 
to the Nyquist–Shannon sampling theorem. The custom CD7 CMOS 
camera (Zeiss Axiocam Mono 712, 3.45-µm pixel size) was used. For 
each region, a z-stack per fluorescent color (two colors) was imaged 
per imaging round. A total of eight imaging rounds were conducted 
for each position, resulting in 16 z-stacks per region. The completely 
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automated imaging process per round (including water immersion 
generation and precise relocation of regions to image in all three dimen-
sions) was realized by a custom Python script using the scripting API of 
the Zeiss ZEN software (open application development).

Spot segmentation. The algorithms for spot segmentation were 
written in Java and are based on the ImageJ library functionalities. Only 
the iterative closest point algorithm is written in C++ based on the lib-
pointmatcher library (https://github.com/ethz-asl/libpointmatcher).

Preprocessing. As a first step, all images were corrected for back-
ground fluorescence. A target value for the allowed number of maxima 
was determined based upon the area of the slice in µm² multiplied by 
the factor 0.5. This factor was empirically optimized. The brightest 
maxima per plane were determined, based upon an empirically opti-
mized threshold. The number and location of the respective maxima 
was stored. This procedure was conducted for every image slice inde-
pendently. Maxima that did not have a neighboring maximum in an 
adjacent slice (called a z group) were excluded. The resulting maxima 
list was further filtered in an iterative loop by adjusting the allowed 
thresholds for (Babs-Bback) and (Bperi-Bback) to reach a feature target 
value (Babs, absolute brightness; Bback, local background; and Bperi, 
background of periphery within one pixel). These feature target values 
were based upon the volume of the three-dimensional (3D) image. Only 
maxima still in a z group of at least two after filtering were passing the 
filter step. Each z group was counted as one hit. The members of the z 
groups with the highest absolute brightness were used as features and 
written to a file. They resemble a 3D point cloud.

Final signal segmentation and decoding. To align the raw data 
images from different imaging rounds, images had to be corrected. To 
do so the extracted feature point clouds were used to find the trans-
formation matrices. For this purpose, an iterative closest point cloud 
algorithm was used to minimize the error between two point clouds. 
The point clouds of each round were aligned to the point cloud of 
round one (reference point cloud). The corresponding point clouds 
were stored for downstream processes. Based upon the transformation 
matrices the corresponding images were processed by a rigid transfor-
mation using trilinear interpolation. The aligned images were used to 
create a profile for each pixel consisting of 16 values (16 images from 
two color channels in eight imaging rounds). The pixel profiles were 
filtered for variance from zero normalized by total brightness of all 
pixels in the profile. Matched pixel profiles with the highest score were 
assigned as an ID to the pixel. Pixels with neighbors having the same ID 
were grouped. The pixel groups were filtered by group size, number 
of direct adjacent pixels in group and number of dimensions with size 
of two pixels. The local 3D maxima of the groups were determined as 
potential final transcript locations. Maxima were filtered by number 
of maxima in the raw data images where a maximum was expected. 
Remaining maxima were further evaluated by the fit to the correspond-
ing code. The remaining maxima were written to the results file and 
considered to resemble transcripts of the corresponding gene. The 
ratio of signals matching to codes used in the experiment and signals 
matching to codes not used in the experiment were used as estimation 
for specificity (false positives).

Downstream analysis. Final image analysis was performed in 
ImageJ (v.2.3.0/1.53f) using the Polylux tool plugin (v.1.6.1) from Resolve 
Biosciences to examine specific Molecular Cartography signals. Nuclei 
segmentation was performed using CellProfiler (v.4.2.1) based on the 
DAPI signal, using 30 and 100 as minimum and maximum diameter 
of objects, an adaptative threshold strategy and Otsu as threshold-
ing method. Nuclei were expanded by 50 pixels. Cell-type labels and 
whole-transcriptome gene expression data from our in-house mouse 
cortex atlas were mapped using Tangram (v.1.0.2), after library size 
correction, log normalization and correction of the gene expression 
values by sample using Combat (Scanpy94 v.1.8.2). SCENIC+ regulons 
were scored on the nuclei using AUCell (with the nuclei–gene matrix 
as input), using default parameters.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data generated in this manuscript, namely scATAC-seq in mela-
noma cell lines, 10x multiome in the mouse cortex and scATAC-seq 
in the Drosophila eye disc, are available in GEO under accession code 
GSE210749. GRCh38.86 genome annotation used in this study is avail-
able at https://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/
Homo_sapiens.GRCh38.86.chr.gtf.gz. The GRCh38 genome index used 
in this study is available at https://cf.10xgenomics.com/supp/cell-arc/
refdata-cellranger-arc-GRCh38-2020-A-2.0.0.tar.gz. The mm10 genome 
index used in this study is available at https://cf.10xgenomics.com/
supp/cell-arc/refdata-cellranger-arc-mm10-2020-A-2.0.0.tar.gz. Data 
from ENCODE deeply profiled cell lines were downloaded from https://
www.encodeproject.org/, including bulk RNA-seq and ATAC-seq for 
eight cell lines, namely MCF7 (ENCFF136ANW and ENCFF772EFK, for 
RNA-seq and ATAC-seq, respectively), HepG2 (ENCFF660EXG and ENCF-
F239RGZ), PC3 (ENCFF874CFD and ENCFF516GDK), GM12878 (ENCFF-
626GVO and ENCFF415FEC), K562 (ENCFF833WFD and ENCFF512VEZ), 
Panc1 (ENCFF602HCV and ENCFF836WDC), IMR90 (ENCFF027FUC 
and ENCFF848XMR) and HCT116 (ENCFF766TYC and ENCFF724QHH); 
and Hi-C data on five of the cell lines (IMR90 (ENCFF685BLG), GM12878 
(ENCFF053VBX), HCT116 (ENCFF750AOC), HepG2 (ENCFF020DPP) and 
K562 (ENCFF080DPJ)). STARR-seq data were downloaded from ENCODE 
(ENCFF045TVA (K562), ENCFF047LDJ (HepG2), ENCFF428KHI (HCT116), 
ENCFF826BPU (MCF7)). ChIP-seq bigWig and summit bed files were 
downloaded from ENCODE using the following accession numbers: 
ENCFF702MTT and ENCSR000BHD for PAX5; ENCFF107LDM and ENC-
SR000BGU for EBF1; ENCFF803HIP and ENCFF934JFA for POU2F2 for 
bigWig and summit bed files respectively. The bulk RNA-seq experiments 
upon perturbation in these cell lines and ChIP-seq datasets are described 
in Supplementary Tables 1 and 4, respectively. The 10x multiome data on 
PBMCs were downloaded from the 10x website. scRNA-seq data of base-
line MM-lines and bulk RNA-seq data after SOX10 knockdown were down-
loaded from GEO (GSE134432). MITF, SOX10 and TFAP2A ChIP-seq data 
were downloaded from GEO (GSE61965 (MITF and SOX10) and GSE67555 
(TFAP2A)). SNARE-seq2 data on the human cortex were downloaded 
from Bakken et al.60 scATAC-seq and scRNA-seq data from the Drosophila 
eye-antennal disc were downloaded from GEO (GSE115476). The 10x 
Visium data and 10x single-cell multiome data from the human cerebel-
lum were downloaded from the 10x website. All analyses can be explored 
in SCope (https://scope.aertslab.org/#/scenic-v2) and UCSC in the follow-
ing sessions: PBMCs (https://genome-euro.ucsc.edu/s/Seppe%20De%20
Winter/scenicplus_pbmc), ENCODE cell lines (https://genome.ucsc.
edu/s/cbravo/SCENIC%2B_DPCL), melanoma (http://genome-euro.ucsc.
edu/s/Seppe%20De%20Winter/scenicplus_mix_melanoma), mouse and 
human cortex (https://genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_Cor-
tex), eye-antennal disc (http://genome.ucsc.edu/s/cbravo/SCENIC%2B_
EAD) and human cerebellum (https://genome-euro.ucsc.edu/s/cbravo/
SCENIC%2B_cerebellum). The SCENIC+ motif collection is available at 
https://resources.aertslab.org/cistarget/motif_collections.

Code availability
pycisTopic is available at https://github.com/aertslab/pycisTopic 
and deposited in Zenodo at https://doi.org/10.5281/zenodo.7857024. 
pycisTarget is available at https://github.com/aertslab/pycistarget and 
deposited in Zenodo at https://doi.org/10.5281/zenodo.7857022. SCE-
NIC+ is available at https://github.com/aertslab/scenicplus and depos-
ited in Zenodo at https://doi.org/10.5281/zenodo.7857017. Detailed 
tutorials and documentation on the SCENIC+ workflow are available at 
scenicplus.readthedocs.io and tutorials on pycisTopic and pycisTarget 
(within the SCENIC+ workflow and as standalone packages) are avail-
able at pycisTopic.readthedocs.io and pycistarget.readthedocs.io, 

http://www.nature.com/naturemethods
https://github.com/ethz-asl/libpointmatcher
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE210749
https://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.chr.gtf.gz
https://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.chr.gtf.gz
https://cf.10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-GRCh38-2020-A-2.0.0.tar.gz
https://cf.10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-GRCh38-2020-A-2.0.0.tar.gz
https://cf.10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-mm10-2020-A-2.0.0.tar.gz
https://cf.10xgenomics.com/supp/cell-arc/refdata-cellranger-arc-mm10-2020-A-2.0.0.tar.gz
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.encodeproject.org/files/ENCFF136ANW
https://www.encodeproject.org/files/ENCFF772EFK/
https://www.encodeproject.org/files/ENCFF660EXG/
https://www.encodeproject.org/files/ENCFF239RGZ/
https://www.encodeproject.org/files/ENCFF239RGZ/
https://www.encodeproject.org/files/ENCFF874CFD/
https://www.encodeproject.org/files/ENCFF516GDK/
https://www.encodeproject.org/files/ENCFF626GVO/
https://www.encodeproject.org/files/ENCFF626GVO/
https://www.encodeproject.org/files/ENCFF415FEC/
https://www.encodeproject.org/files/ENCFF833WFD/
https://www.encodeproject.org/files/ENCFF512VEZ/
https://www.encodeproject.org/files/ENCFF602HCV/
https://www.encodeproject.org/files/ENCFF836WDC/
https://www.encodeproject.org/files/ENCFF027FUC/
https://www.encodeproject.org/files/ENCFF848XMR/
https://www.encodeproject.org/files/ENCFF766TYC/
https://www.encodeproject.org/files/ENCFF724QHH/
https://www.encodeproject.org/files/ENCFF685BLG/
https://www.encodeproject.org/files/ENCFF053VBX/
https://www.encodeproject.org/files/ENCFF750AOC/
https://www.encodeproject.org/files/ENCFF020DPP
https://www.encodeproject.org/files/ENCFF080DPJ/
https://www.encodeproject.org/files/ENCFF045TVA/
https://www.encodeproject.org/files/ENCFF047LDJ/
https://www.encodeproject.org/files/ENCFF428KHI/
https://www.encodeproject.org/files/ENCFF826BPU/
https://www.encodeproject.org/files/ENCFF702MTT
https://www.encodeproject.org/files/ENCSR000BHD
https://www.encodeproject.org/files/ENCFF107LDM
https://www.encodeproject.org/files/ENCSR000BGU
https://www.encodeproject.org/files/ENCSR000BGU
https://www.encodeproject.org/files/ENCFF803HIP
https://www.encodeproject.org/files/ENCFF934JFA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134432
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61965
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67555
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115476
https://scope.aertslab.org/#/scenic-v2
https://genome-euro.ucsc.edu/s/Seppe%20De%20Winter/scenicplus_pbmc
https://genome-euro.ucsc.edu/s/Seppe%20De%20Winter/scenicplus_pbmc
https://genome.ucsc.edu/s/cbravo/SCENIC%2B_DPCL
https://genome.ucsc.edu/s/cbravo/SCENIC%2B_DPCL
http://genome-euro.ucsc.edu/s/Seppe%20De%20Winter/scenicplus_mix_melanoma
http://genome-euro.ucsc.edu/s/Seppe%20De%20Winter/scenicplus_mix_melanoma
https://genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_Cortex
https://genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_Cortex
http://genome.ucsc.edu/s/cbravo/SCENIC%2B_EAD
http://genome.ucsc.edu/s/cbravo/SCENIC%2B_EAD
https://genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_cerebellum
https://genome-euro.ucsc.edu/s/cbravo/SCENIC%2B_cerebellum
https://resources.aertslab.org/cistarget/motif_collections
https://github.com/aertslab/pycisTopic
https://doi.org/10.5281/zenodo.7857024
https://github.com/aertslab/pycistarget
https://doi.org/10.5281/zenodo.7857022
https://github.com/aertslab/scenicplus
https://doi.org/10.5281/zenodo.7857017
https://scenicplus.readthedocs.io/en/latest/
https://pycistopic.readthedocs.io/en/latest/
https://pycistarget.readthedocs.io/en/latest/


Nature Methods

Article https://doi.org/10.1038/s41592-023-01938-4

respectively. Code to generate custom cisTarget databases is available 
at https://github.com/aertslab/create_cisTarget_databases. Our imple-
mentation of Cluster-Buster is available at https://github.com/ghuls/
cluster-buster/tree/change_f4_output. Notebooks to reproduce the 
analyses presented in this manuscript are available at https://github.
com/aertslab/scenicplus_analyses.
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Extended Data Fig. 1 | Cell type and enhancer discovery benchmark with 
pycisTopic, cisTopic, Signac and ArchR. a. Feature comparison between 
cisTopic and pycisTopic. b. Model selection for models (for 100 cells simulated 
from melanoma cells lines) with different parameter optimization methods, 
namely Collapsed Gibbs Sampler (CGS) and WarpLDA with cisTopic and CGS and 
Mallet with pycisTopic. cisTopic relies on the log-likelihood per model; while 
pycisTopic incorporates additional measurements including coherence (Minmo 
(2010)), a density-based metric (Cao Juan (2009) and a divergence-based metrics 
(Arun (2010)). c. Cell-topic dimensionality reduction for each of the models (100 
cells). Red clusters denote the 2 mesenchymal cell lines, blue clusters depict the 3 
melanocytic cell lines. d. Cell-topic enrichment heat map for each of the models. 
General topics are shown in black; mesenchymal, in red; melanocytic, in blue; 

cell line specific in green; and low contributing in gray. e. AUCell enrichment of 
topics between different models. f. Adjusted Rand Index (ARI) for pycisTopic, 
Signac and ArchR in simulated datasets with different coverage per cell (3 K, 10 K, 
or 20 K fragments per cell) and number of cells, using as ground truth the bulk 
label from which cells were simulated. Data was simulated from bulk ATAC-seq 
and bulk RNA-seq data from ENCODE’s Deeply Profiled Cell Lines. g. Recovery 
curves for top 5 K Differentially Accessible Regions (DARs) identified by Signac, 
pycisTopic and ArchR and top 5 K regions in the cell line specific topics identified 
by pycisTopic. Genome-wide STARR-seq in HCT116, MCF7, K562 and HepG2 is 
ranked in descending order (x axis) when a region of the ranking is found in a 
region set an increasing step along the y axis is taken. Dashed line represents the 
top 10% of the ranking.
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Extended Data Fig. 2 | The SCENIC+ motif collection. a. Number of motifs 
per motif collection that are shared or unique for one collection. b. Workflow 
depicting the motif collection cluster strategy. c. Number of motifs annotated 
directly or by orthology per motif collection. d. F1 score (top), precision (middle) 
and recall (bottom) distributions of TF cistromes from motif enrichment on 
309 TF ChIP-seq data sets from ENCODE, using different databases and motif 
enrichment methods, namely Homer, pycisTarget and DEM. The unclustered 
databases (u) include all annotated motifs before clustering (singlets), the 
archetype databases (a) use the consensus motifs of the clusters based on STAMP 
and the clustered databases uses the motif clusters (c), scoring regions using 
all motifs in the cluster and the public databases (p) is the clustered database 
without licensed Transfac Pro motifs. Upper/lower hinge represent upper/lower 
quartile, whiskers extend from the hinge to the largest/smallest value no further 
than 1.5 times the interquartile range from the hinge respectively. Median is 

used as center. e. Distribution of the correlation between scores (on chr19) using 
archetypes or all motifs in a cluster. f. Distribution of the correlation between 
scores (on chr19) using all motifs in a cluster or all motifs except for Transfac 
Pro motifs. g. Correlation between scores (on chr19) for cluster 4.3 using the 
archetype or all motifs. h. Correlation between scores (on chr19) for cluster 
4.3 using all motifs or all motifs except for Transfac Pro motifs. i. Top 30 motifs 
identified by cisTarget using regions in the SOX cistromes from melanoma, 
oligodendrocytes and astrocytes clustered using motifStack. Colors indicate 
the TF family of the motifs (in this case, SOX). j. Ternary plot showing enrichment 
scores of motifs found in melanoma, oligodendrocyte and astrocyte SOX regions. 
Each corner represents a cell-type-specific SOX topic, dots represent enriched 
motifs and axes represent average enrichment scores for each topic. The colors 
of the dots are used to indicate the TF family to which the motifs belong.
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Extended Data Fig. 3 | Time and memory complexity analysis of the SCENIC+ 
workflow using simulated datasets with different coverage per cell (3 K, 
10 K, or 20 K fragments per cell) and number of cells. a. Running times for 
the minimal preprocessing steps with pycisTopic, pycisTarget and SCENIC+. 

The times specified for topic modeling correspond to the average running time 
for one model. The running times specified for pycisTarget correspond to the 
average running time for one region set. b. Maximum memory used for the 
minimal preprocessing steps with pycisTopic, pycisTarget and SCENIC+.
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Extended Data Fig. 4 | TF, target region and region-to-gene relationships 
recovery performance by single-cell multiomics methods. a. Cumulative TF 
recovery, TFs are ranked based on the number of Unibind peaks in descending 
order (top) and Area Under the Curve (AUC) per method on top 40 TFs (bottom). 
b-c. Precision-recall curves of TFs found per method using different thresholds 
on the TF ChIP-seq based ranking (b, top) and LogFC of TF expression (c, top)  
and AUC values (b, c, bottom). d. Overlap between identified TFs per method 
(top), GAM fitted Tau values for the TFs (middle) and distribution of Tau  
values per method. e-g. Violin plots of F1 score (f, g), precision and recall (e’, e’)  
distributions from the comparison of regulon target regions, per method 
and Unibind (e), ChIP-seq peaks (f) and Enformer predicted ChIP-seq (g). The 
numbers indicate the number of regulons. h. Violin plot showing distribution of 
maximum enhancer activity as measured using STARR-seq data from ENCODE 
on K562, HepG2, HCT116 and MCF7 regions. i. Barplots showing the number of 
region-gene links found per method. Non-transparent bars show the number of 

links in the eGRN, transparent bars show the number region-gene links before 
eGRN construction. Pando and SCENIC are excluded from the comparison since 
they do not report (unique) region-gene relationships. j. Correlation between 
Hi-C links for the top 100 markers genes for each of the cell lines where Hi-C is 
available (IMR90, GM12878, HCT116, HepG2 and K562) and region-gene scores 
from different region-gene inference models (Spearman correlation, Random 
Forest (RF), GBM (Gradient Boosting Machine), ENET (Elastic Net), Lasso, 
Support Vector Machine (SVM) with linear kernel, Ridge, Least-Angle Regression 
(LARS) and Stochastic Gradient Descent (SGD)). For boxplots in panels d and j: 
Upper/lower hinge represent upper/lower quartile, whiskers extend from the 
hinge to the largest/smallest value no further than 1.5 times the interquartile 
range from the hinge respectively. Median is used as center. Difference in mean 
between methods (e-h) and shuffled links (i) assessed using two-sided Wilcoxon 
rank-sum test, correction for multiple testing using Benjamini–Hochberg 
procedure. GRaNIE* was run with simulated single-cell data instead of bulk.
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Extended Data Fig. 5 | Target gene recovery performance by single-cell 
multiomics methods. a. Boxplot depicting the correlation between observed 
and predicted gene expression values using the eGRNs inferred from each 
method, together with scatter plots showing the correlation between the 
predictions by each method and the observed expression values for SPI1 (a’). b. 
NES distribution based on GSEA analysis using TF knockdown data as ranking 
and target genes derived by each method as gene set, with examples on K562 
upon STAT5A (b’) and HOXB9 (b’) knockdowns showing GSEA -log10 adjusted 
p value and NES for different eGRNs found by SCENIC+. c. Boxplots represent 
the F1 score (c), precision (c’) and recall (c’) distributions of the predicted target 
genes per TF compared to TF perturbation data. d. Network showing TF-target 

gene interactions for selected genes. e. Heat map showing the overlap between 
the regions of the regulons indicated by the rows and columns, divided by the 
size of the regulons in the columns. f. Spearman correlation between predicted 
LogFC with in silico TF perturbation for each method versus the observed LogFC 
changes upon TF perturbation, together with the comparison between predicted 
and observed LogFC changes upon GATA1 KD (f ’) and ARID3A KD (f ’). Dots in red 
indicate genes in the GATA1 or ARID3A regulons, respectively. In boxplots, upper/
lower hinge represent upper/lower quartile, whiskers extend from the hinge to 
the largest/smallest value no further than 1.5 times the interquartile range from 
the hinge respectively. Median is used as center.
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Extended Data Fig. 6 | Performance of SCENIC+ upon variations in coverage 
and sample size. a. Number of TFs identified per analysis. b. Number of genes 
per regulon per analysis. c. Number of regions per regulon per analysis. d. 
Cumulative TF recovery for each method using as x axis TFs ranked based on 
the number of ChIP-seq peaks and AUC values per method using the top 40 TFs. 
e. Cumulative TF recovery for each method using as x axis TFs ranked based on 
the maximum LogFC across the cell lines and AUC values per method. f. Number 
of region-gene links inferred (non-transparent links indicate that the links are 
included in the final eGRN). g. Boxplot showing the correlation with the Hi-C 

links for the top 100 marker genes for each of the cell line where Hi-C is available 
(IMR90, GM12878, HCT116, HepG2 and K562). h. F1 score (h), precision (h’) and 
recall (h’) distributions of the predicted regions per TF using Unibind regions 
as standard. i. Boxplots representing the F1 score (i), precision (i’) and recall (i’) 
distributions of the predicted target genes per TF compared to TF perturbation 
data. In boxplots, upper/lower hinge represent upper/lower quartile, whiskers 
extend from the hinge to the largest/smallest value no further than 1.5 times the 
interquartile range from the hinge respectively. Median is used as center.
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Extended Data Fig. 7 | Benchmark of SCENIC+ and other methods on PBMC 
single-cell multiomics data. a. Scatter plot showing number of target regions 
versus TF expression-to-region AUC Pearson correlation coefficients for each 
eRegulon inferred in the PBMC data set. eRegulons are selected based on a 
threshold on the correlation coefficient, indicated by dotted line. b. Distribution 
of the number of regions linked to each gene based on Hi-C in GM12878 (using a 
minimum score of 1) and the rank, based on absolute distance, for each region 
and the gene with the highest Hi-C score in GM12878. c. Boxplots showing 
the distribution of Spearman correlation coefficients between Hi-C scores in 
GM12878 and region-to-gene importance score and region-to-gene correlation 
coefficients (rho) as calculated by SCENIC+ for B-cell marker genes. Upper/
lower hinge represent upper/lower quartile, whiskers extend from the hinge to 
the largest/smallest value no further than 1.5 times the interquartile range from 
the hinge respectively. Median is used as center. Random controls are obtained 
by shuffling the gradient boost importance scores (GBM_rnd) and correlation 

coefficients (rho_rnd). Difference in the mean to the random control is assessed 
using the Mann-Whitney U test. d. Adjusted Rand Index (ARI) quantifying how 
well cell types are separated based on the AUC scores for the PBMC data set. e. 
Heat maps showing whether a TF is found across different methods comparing 
SCENIC+ to Signac and ArchR. Signac and ArchR were run using different options. 
(1) DEM: Differentially Enriched Motifs or ChIP-seq tracks in differentially 
accessible regions and (2) ChromVAR deviations. f. Scatter plot showing 
enrichment of top 10 Human Protein Atlas and Human Phenotype GO terms for 
TFs found exclusively by Signac, Archr or all methods including SCENIC+. g. Heat 
maps showing whether a TF is found across different methods. GRaNIE is not 
included because the analysis ran out of memory (tested on a machine with 72 
cores Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40 GHz and 2 TB of memory). 
h. Scatter plot showing enrichment of top 10 Human Protein Atlas and Human 
Phenotype GO terms for TFs found exclusively by Pando, CellOracle or all 
methods including SCENIC+.
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Extended Data Fig. 8 | Benchmark of SCENIC+ and other methods on the 
melanoma cell lines data set. a. Boolean networks were generated from gene 
regulatory networks inferred from SCENIC+, CellOracle, FigR and GRaNIE. For 
SCENIC+ the top 10%, 25% and 50% of edges based on the triplet score were 
used. 500 cells were simulated using the boolODE method using a simulation 
time of 20 and the hill activation function. Simulated cells were co-embedded 
in PCA space with real cells after Harmony batch effect correction. b. Violin 
and jitter plot of the average distance of each simulated cell to its three nearest 
neighbors in the first 2 principal components of PCA space. Difference in mean 
is assessed using two-tailed Mann-Whitney U test and p values are adjusted using 
the Benjamini–Hochberg procedure. y axis is sorted by the median average 
distance. c. ChIP-seq enrichment of SOX10, MITF and TFAP2A in target regions 
of SOX10, MITF and TFAP2A and all combinations of two. Signal is scaled across 
all comparisons between 0 and 1. d. -log10 p value (t-test) and average log2 fold 

change of target genes of eRegulons after SOX10 knockdown in MM001. Color 
scale encodes log2 fold change of the expression of the TF corresponding to each 
eRegulon after SOX10 knockdown. e. Scatter and jitter plot showing enhancer 
activity as measured by the STARR-seq method18 in regions targeted by any of 
the regulons and regions targeted by None. f. Scatter plot comparing enhancer 
activity as measure by the STARR-seq method (y axis)18 to the minimum of the 
triplet score over all TFs targeting and genes targeted by the region (x axis). 
Labels of the regions are according to the labels in Mauduit et al.18. Difference in 
mean is assessed using two-tailed Mann-Whitney U test and p values are adjusted 
using the Benjamini–Hochberg procedure. x axis is sorted by the median average 
distance. g. Heat map showing whether a TF is found across different e(GRN) 
inference methods (present: green; absent: red). Only TFs found by SCENIC+ are 
shown.
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Extended Data Fig. 9 | Conservation and spatial visualization of enhancer-
GRNs in the mammalian brain. a. Heat map showing the scaled correlation 
between the RSS values for each regulon in each cell type. b. Human cortex UMAP 
(84,159) showing TF expression (red) and AUC enrichment of the mouse regulon 
(converted to human genes). c. Barplot showing the number of conserved 
genes between the matching human and mouse regulons. d. Barplot showing 
the number of conserved regulons between the matching mouse and human 
regulons. e. Mapping of cell types in the mouse cortex into our smFISH map using 
Tangram. f. Visualization of regulons AUC enrichment in our smFISH map of the 
mouse cortex. g. Representative layer-specific gene regulatory network. The 

network depicted from L2/3 to L6 corresponds to excitatory neurons, while in the 
white matter corresponds to oligodendrocytes. h. SCENIC+ UMAP containing 
1,736 cells from the human cerebellum. i. Human cerebellum 10x Visium slide 
annotated with anatomical regions in the cerebellum. j. Visualization of regulons 
AUC enrichment on the 10x Visium data. AST: Astrocytes, BG: Bergman Glia, CGE: 
Caudal Ganglionic Eminescence, ENDO: Endothelial cells, GC: Granule Cell, GP: 
Granule cell Progenitor, MGE: Medial Ganglionic Eminescence, MGL: Microglia, 
MG: Muller Glia, OL: Oligodendrocyte, OPC: Oligodendrocyte Precursor Cells, 
PURK: Purkinje cells, WM: White Matter.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Repressor predicitons of SCENIC+ in melanoma and 
eye-antennal disc. a. TFs of the same family for which the expression is anti-
correlated in a system can cause spurious repressor predictions. Scenario 1 (left): 
TF1 is a potential repressor which is expressed in cell type A and actively closes 
chromatin in that cell type. Scenario 2 (right): TF2 is a potential activator of the 
same TF family as TF1 which is expressed in cell type B and opens the chromatin 
in that cell type. Both scenarios lead to the same gene expression and chromatin-
accessibility measurements and can thus not be disentangled if both TF1 and 
TF2 are present in the same system. b. Principal-Component Analysis (PCA) 
projection of 936 pseudo mutli-ome cells based on cellular enrichment (AUC 
scores) of predicted target genes and regions from SCENIC+ eRegulons colored 
by gene expression. Shared motif used by the pair of TFs in each plot is shown  
on the top right. c. Heat map-dotplot showing TF expression of the eRegulon  
on a color scale and cell type specificity (RSS) of the eRegulon on a size scale.  

d. Venn diagram showing overlap of predicted target regions of SOX10 and SOX9, 
MITF and TCF4; and MXI1 and TCF4. e. Principal-Component Analysis (PCA) 
projection of 936 pseudomutli-ome cells based on cellular enrichment (AUC 
scores) of predicted target genes and regions from SCENIC+ eRegulons colored 
by the expression of MITF and HES1. Shared motif used by the pair of TFs in each 
plot is shown on the top right. f. Log(CPM) expression of HES1 (top, x axis) and 
MITF (bottom, x axis) versus MITF target region AUC value (y axis). Line fit using 
linear regression, least squares method. g. Network showing subset of MITF and 
HES1 target regions. Diamonds represent regions circles represent genes and are 
color-coded by the average accessibility LogFC of corresponding regions in the 
melanocytic state. h. Virtual eye-antennal disc with 5,058 pseudocells colored 
by Ct expression and AUC values of the repressive Ct regulon. i. Targets of the Ct 
repressive regulon, showing in red targets that are transcription factors.
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