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To share is to be a scientist

Wrangling big data is now part of being a biomedical scientist, and mandates on data sharing have 
entered the scene. Mandates can alter behavior, but data sharing also needs incentives and shifts 
in science culture.  
By Vivien Marx

A
s data-spewing instruments 
spread across biomedical labs 
and multimodal approaches are 
embraced, data sharing must be 
powered up, too. Much has been 

achieved, say some researchers in genom-
ics, proteomics, neuroscience and imaging, 
as do some big data producers, wranglers at 
repositories and shepherds of large-scale pro-
jects. Big biodata’s next phase, they say, needs 
resources and shifts in science culture. Here 
are some views on how far things have come 
and what lies ahead.

With data as with pizza, it’s considered 
good manners to share. Whereas pizza shar-
ing is a private affair, data sharing is how 
good citizens of science give collaborators 
and strangers access to results generated 
mainly or entirely with public funds. As of 
January 2023, the US National Institutes of 
Health (NIH) mandates all who apply for fund-
ing must submit a Data Management and  
Sharing plan. The reaction has not been a  
chorus of hurrays.

Some tense moments occurred at this year’s 
American Association for Cancer Research 
(AACR) annual meeting, when program 
officers from the National Cancer Institute’s 
(NCI) Office of Data Sharing presented the 
new NIH data sharing policies and held a 
question-and-answer session.

Some investigators said the mandate had 
been rolled out too suddenly. They asked how 
they are to find the time, skill and funding to 
set up a data management and sharing plan. 
Program officers directed attendees to guid-
ance pages and offered personal conversa-
tions. Scientists can send questions to program 
officers or, in the case of NCI, to NCIOfficeOf-
DataSharing@mail.NCI.gov. The first grant 
proposals with data management and sharing 
plans have been submitted, the NCI Office of 
Data Sharing said in an unattributed statement 
after the conference. The plans are still in study 
section and review, so it’s unclear how much 
back-and-forth will unfold. Says Emily Boja 
from the NCI Office of Data Sharing, who pre-
sented at the AACR session, it’s understandable 

that the mandate can seem overwhelming for 
labs not used to organizing data for sharing, 
“especially when resources are limited.”

 Check for updates
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The culture shift we are striving for is to 
weave data management and sharing 
into the conduct of science, says Heather 
Basehore. 

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01927-7
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://datascience.cancer.gov/data-sharing
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Heather Basehore from the NCI’s office 
of Data Sharing, who also presented, hopes 
researchers don’t consider their data manage-
ment and sharing plan as “just a box that needs 
to be checked off,” or a task that can be left to 
the last minute. “Even though we understand 
that this feels like a burden, the culture shift 
that we are striving for is for data management 
and sharing to be woven into the conduct of 
science, so if you are thinking about this at the 
beginning as part of your research process, 
you will hopefully make adjustments to the 
way you design and conduct the experiments 
at the outset.”

What scientists fear, says Jason Swedlow, a 
quantitative cell biologist at the University of 
Dundee who was present at the AACR session, 
is the ‘unfunded mandate’ or the ‘do more with 
less’ approach. But to his ears, says Swedlow, 
NCI is willing to fund some of the data-sharing 
activities. Although some labs make their own 
arrangements for data sharing, in general, in 
his view, universities and other academic 
institutions and non-profit research institutes 
are “not geared up for this, and their IT infra-
structures and staff are not designed for these  
types of activities.” He was glad to hear the NCI 
program officers say: ‘talk to us’. “It’s going to 
be a conversation,” he says.

Swedlow sees new concepts underpinning 
the mandate: namely, that publicly funded 
research should be published and it’s public 
property, not the property of the researcher 
who did the experiment. This is understood 
in genomics, structural biology and imaging, 
but the NIH is applying this to all research data, 
he says. “That’s quite a step.” Another new 
concept is that data are more than a figure in 
one’s paper, he says. One scientist at the AACR 
event said, rather vociferously, that he had 
been publishing data throughout his career: 
namely, in the figures of his papers. He left 

the room after saying this. But, says Swedlow, 
“I think the trend is that a figure is not ‘data’.”

European data-sharing mandates are prob-
ably less structured than the NIH ones right 
now, says Mallory freeberg, who coordinates 
the European Genome-phenome Archive 
(EGA), which is hosted at the European  
Molecular Biology Laboratory/European 
Bioinformatics Institute (EMBL-EBI). It holds 
personally identifiable genetic, phenotypic 
and clinical data. She sympathizes with those 
struggling with a data management and shar-
ing plan. In the excitement of starting a new 
project, she says, it might seem tedious to first 
tend to data management. But waiting until a 
study is completed is not the best way to pack-
age data for sharing through archives.

It’s noble
One of his favorite examples about the ben-
efits of data sharing, says Guy Cochrane 
from the EBI, is the fact that before the 
COVID-19-pandemic, genomic sequence data-
bases held 30,000 coronavirus sequences. 
These data sped up identification and charac-
terization of SARS-CoV-2, the virus that caused 
the pandemic, says Cochrane, who heads the 
European Nucleotide Archive (ENA), a global 
repository for sequence data. The ENA holds 
DNA and RNA sequence data and mirrors  
GenBank in the United States and the DNA 
DataBank of Japan.

Data sharing is “near and dear to my heart,” 
said Monica Bertagnolli, director of the NCI, 
in response to my question during a press 
conference at the AACR annual meeting. She 
has been nominated to direct the NIH. Said 
Bertagnolli, when patients donate their data to 
research, they want them to be used, in trust, 
because they understand the benefit the data 
can bring.

The NIH funds fundamental discoveries, 
research strategies and their application to 
advance human health. This goal, says John 
Quackenbush, computational biologist at the 
T.H. Chan Harvard School of Public Health, 
is not met “if nobody else can replicate my 
results,” if results are somehow suspect or “if I 
make a mistake that somebody else can’t find.” 
Papers that share data are cited more often 
than papers that do not, and in papers present-
ing a software tool, when data are provided, 
more people will use the software tool and cite 
the paper, he says. With data sharing, “genom-
ics has done generally better than most other 
fields,” he says, which is in part due to data 
release practices during the Human Genome 
Project. This tradition has continued and infra-
structure has been built to enable data access.

Past efforts reveal the community-wide last-
ing benefits of such behavior. As former dep-
uty director of the NCI and former deputy 
director for strategic initiatives, Anna Barker is 
familiar with less than cheering reactions from 
the research community about data-sharing 
mandates. She is now chief strategy officer 
at the Ellison Institute for Transformative 
Medicine in Los Angeles. Half of NCI-funded 
research is done by individual investigators 
who care about sharing data but now probably 
feel rather alone as they face this data manage-
ment and sharing mandate, says Barker.

Big labs and institutes such as the Broad 
Institute of MIT and Harvard have long prac-
ticed data sharing and did so along with 
other investigators involved in The Cancer 
Genome Atlas project (TCGA), a program 
Barker co-initiated and shepherded with col-
leagues at the NIH National Human Genome 
Research Institute. TCGA’s 2.5 petabytes of 
data stem from molecular characterizations 
of 20,000 cancer tissues from 33 cancer types 
and include healthy tissue samples from the 
same people. Data sharing was mandated and 
it worked, she says. When people held back 
data, “We said, ‘No, if you want to play with us, 
you've got to play by our rules’.”

When TCGA was launched in late 2005, 
genomics labs had achieved much, espe-
cially related to cancer genes. But if work was 
to continue by amassing cancer gene muta-
tions one at a time, it would take decades to 
compile and characterize cancer genomes. 
At the same time, among cancer researchers, 
TCGA faced an “anti-big science” undercur-
rent, says Barker. The project shows how 
investigator-driven and large-scale projects 
reinforce one another. Big science enables 

Before COVID-19, sequence databases held 
30,000 coronavirus sequences, which sped 
the study of SARS-CoV-2, the virus that 
caused the pandemic, says Guy Cochrane. 

When people held back data, we said you’ve 
got to play by our rules, says Anna Barker. 
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“individual scientists to ask better questions,” 
she says.

Among other aspects, the NIH mandate asks 
researchers to compile a plan that describes 
the data type that will be generated and 
shared. They must indicate the software tools 
needed to work with these data, the applied 
standards and metadata and the repository 
where the data and metadata will go. Among 
the criteria for a repository is that it provide 
broad, equitable and open access to data and 
metadata free of charge, that it have unique 
and persistent identifiers, that it record data 
origin and chain of custody and that it be sus-
tainable for the long term. One of the most 
frequent questions she hears, says Basehore, 
are those related to selecting a data repository. 
On this issue, she encourages investigators to 
reach out to colleagues and, within their insti-
tutions, to data librarians and grants offices.

In genomics, the repository of choice is 
often ENA and its sister resources GenBank 
and DDBJ. The ENA data submission inter-
face has checklists and descriptions about 
data formats and standards used in differ-
ent communities. These were co-developed 
with researchers in those communities, says 
Cochrane. Submitters get general guidance 
about submitting data, which might be about 
oceanic plankton, plant specimens or the 
human gut microbiome.

Queries arrive at the helpdesk mainly via 
e-mail, says Cochrane, not phone. “With a 
dataset arriving every few seconds, you know 
we would never have enough people to do 

that job.” Help for submitters is also on the 
EGA site, which is for personally identifiable 
genetic, phenotypic and clinical data. Access 
is controlled as it is in the US Database of  
Genotypes and Phenotypes (dbGaP) and the 
Japan Genotype-Phenotype Archive. All three 
can take in data from around the world and 
distribute it, which makes them a little like core 
resources, says freeberg. These repositories 
are not mirrored the way GenBank, ENA and 
DDBJ are, but search is linked so users can apply 
for the access they need. Bioinformaticians 
staff the helpdesk, and the team can assist 
users with curating their submissions, she says.

Vistas in proteomics
Having resources such as the Protein Data 
Bank and running the Human Genome Project 
set the stage for data sharing practices in the 
life sciences, says Juan Antonio Vizcaino, the 
EBI’s team leader in proteomics. EBI resources 
receive around 500 proteomic datasets a 
month. Data sharing is something most in 
the community do “without any complaints,” 
he says, which might also be due to journals  
requiring data deposition with papers.  
Except for medical journals, it’s rare that  
proteomics data associated with a paper are 
not made publicly available. Prepping data to 
share is work and involves a learning curve, 
which can be a challenge, especially in smaller 
labs, he says. The EBI proteomics staff offer 
training and help scientists with submissions.

Proteomics researchers recognize how 
important data reuse is, he says, such as for 
machine learning approaches applied to 
the proteomics workflow. Reuse to improve 
biological insight has perhaps had less of 
an impact, but, for example, he sees teams 
applying proteogenomics methods to anno-
tate genomic features. He was also part of 

a project his colleague Pedro Beltrao led in 
which they built a reference human phospho-
proteome and then, using machine learning 
and 112 datasets from over 6,800 mass spec-
trometry runs, assigned functional scores to 
the phospho-sites1.

Open data standards enable interoperabil-
ity between software tools and data reposi-
tories and sustainable development of their 
functionality, says Vizcaino. With mass spec-
trometry information, it’s impossible to sup-
port potentially tens of versions of different 
file formats.

Given the many types of proteomics tech-
niques and instruments, it’s difficult to have 
fully open and interoperable standards. 
Proteomics used to have multiple XML data 
formats for raw data output from spectrom-
eters. In 2008 mzML was born as a joint effort 
between the HUPO Proteomics Standards  
Initiative, which developed mzData, and 
Seattle Proteomics Center, which developed 
mzXML. More stable versions have been devel-
oped since then. Along the way, other stand-
ards were put forward, but mzML has emerged 
as an open format that researchers can read 
and convert their data to.

But mzML is more generic and thus not as 
optimized as the proprietary raw data formats 
from vendors, he says. Problems can occur 
because mass spec files can be big. “But mzML 
is absolutely necessary, for instance, to com-
pare files between different vendors,” he says. 
The mzML format continues to evolve, but it’s 
hard to support all existing use cases in a single 
open file format given the many proteomics 
techniques and diverse instrumentation. The 
issues with the mzML format applies to other 
proteomics data types, too, he says, given the 
many ways researchers are seeking to identify 
and quantify peptides and proteins.

To enable a more unified standard submis-
sion in mass spectrometry as well as to dis-
seminate software analysis pipelines, the 
proteomics community set up ProteomeX-
change. It’s for making data deposition and 
sharing easier across existing resources such 
as the PRIDE database and the PeptideAtlas. 
“I think we can be very proud of the change in 
the culture in the field,” says Vizcaino about 
the last 10 years or so since ProteomeXchange 
formally started. Seeing the proteomics com-
munity adopt data sharing to the degree seen 
in fields such as transcriptomics “is a big 
achievement,” he says. Proteomics is ahead 
of some of its subfields. “This is especially 
clear in the case of metabolomics and sister 
’omics approaches such as lipidomics and 
glycomics.”

With data sharing, “genomics has done 
generally better than most other fields,” 
says John Quackenbush. 
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“I think we can be very proud of the change 
in the culture in the field,” says Juan Antonio 
Vizcaino. 
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Of increasing importance, in his view, are 
restrictions to data sharing for sensitive 
human proteomics data2. Given patient con-
sent issues, laws such as the Health Insurance 
Portability and Accountability Act (HIPAA) 
and General Data Protection Regulation 
(GDPR), and the risk of identifying individu-
als, controlled access is needed for these 
data, says Vizcaino. To develop best prac-
tices will take infrastructure development for 
controlled-access sharing and acceptance by 
the research community without undoing the 
years of work it has taken to foster an open 
sharing culture. “This is something that will 
change some aspects of data sharing in prot-
eomics in the near future,” he says. Practices 
related to issues of law and privacy are com-
mon for researchers working with RNA and 
DNA sequence data, “but they are new for 
proteomics researchers.”

Compared to transcriptomics, says Vizcaino, 
proteomics needs better quantification stand-
ards and better ways to share metadata and 
experimental protocols. “This is indeed a big 
gap in the field,” he says. A big stumbling block 
for data reuse is the lack of experimental and 
biological metadata in public repositories, he 
says. “This is really where proteomics is behind 
other fields in terms of data-sharing practices.” 
When ProteomeXchange was started, the 
objective was to generalize data sharing. With 
the resources available at the time, metadata 
collection became secondary, he says.

for effective data reuse, especially in the case 
of quantitative experiments, says Vizcaino,  
existing metadata in public repositories will 
most likely be insufficient. “However, there 
have been improvements in this area as well, 

especially thanks to the development of the 
SDRf-Proteomics format,” an increasingly 
used data standard in the field3.

Quandaries with imaging data
for researchers using imaging such as con-
focal microscopy or electron microscopy, 
data-sharing challenges reach new dimensions 
as imaging modalities multiply. A number  
of online resources hold imaging data, and 
beyond archives there are “added-value 
databases,” which, as Swedlow and his 
co-authors point out4, means that datasets are 
enriched and combined with others through 
“well-designed analysis, expert curation, and 
where possible, meta-analysis.”

The imaging repositories he finds of 
note, says Swedlow, include the EMBL/EBI’s  
BioImage Archive, which holds data from all 
imaging modalities. The data must be associ-
ated with a publication or, as the site notes, 
be “of value beyond a single experiment.” The 
data, he says, have minimal annotation and 
metadata. The Image Data Resource5 is another 
public repository for image datasets associ-
ated with a published study and one he and col-
leagues in the Open Microscopy Environment 
consortium have built. The datasets are anno-
tated and curated, says Swedlow, and there’s 
a public API for the community to use. Japan’s 
RIKEN hosts the Systems Science of Biological 
Dynamics database, which provides imaging 
data to the bioimaging community in Japan.

for smartphone owners, gigabytes are 
common measurement units, but sharing 
photos can quickly become a household 
challenge. Neuroscientist Jeff Lichtman at 
Harvard University and his colleagues inhabit 
a petabyte-scale world. “We’re already talking  
about doing datasets that are an exabyte — 
1,000 petabytes or a million terabytes,” he 
says. Early in his career, a gigabyte sounded 
large, he says, but “today’s terabyte is last 
year’s gigabyte.” Terabytes — a terabyte is 
1,000 gigabytes — are common in many labs 
across neuroscience, genomics, proteomics 
and imaging.

Lichtman admits his lab sits at an extreme 
data-producing end, but the amount of infor-
mation researchers are seeking to share is ris-
ing to astronomic heights, he says. “In my case, 
we share a dataset that’s 1,400 terabytes.” The 
dataset comprises annotated electron micro-
graphs that can be interactively explored. 
Clicks can reveal blood vessels traversing a 
volume of imaged brain tissue or isolate only 
those neurons with dendritic spines.

The dataset is based on raw data over a 
petabyte in size. few places will host 1,400 

terabytes of data for sharing, and it’s techni-
cally difficult to share that, he says. Along with 
colleagues at other institutions, the Lichtman 
lab is part of a project to build a connectomic 
atlas of the mouse brain. Lichtman embraces 
the NIH approach that states that, if NIH funds 
are used to generate data, it must be shared. 
Sharing is expensive. Like some other labs, 
Lichtman has an arrangement with Google 
to host his data to share it with others. But 
not all labs have these options. “If I had to pay 
to share 1,000 terabytes of data, it would be 
way more than an NIH grant just to share it,” 
he says. “I think there is a profound problem 
right now.”

Beyond the ENA’s sequence information, EBI 
holds data such as imaging data and genome 
assemblies on the scale of tens of petabytes, 
says Cochrane. Overall, the EBI’s data holdings 
add up to hundreds of petabytes — almost half 
an exabyte — and that’s not counting the raw 
data streaming off sequencers. fortunately, 
says Cochrane, just as data pile up, data 
reduction techniques are being developed 
and applied, often before data submission. 
Network bandwidth is used in various ways to 
share data more efficiently, and sequence data 
can be compressed to substantially reduce the 
data’s footprint.

On the subject of data mountains Cochrane 
and other EBI colleagues stay in touch with Big 
Data institutions such as the European Organi-
zation for Nuclear Research (CERN). There’s 
plenty to talk about, but much is particular to 
life science data, says Cochrane.

Compared with high energy physics data, 
the infrastructure for life science data is more 
distributed. This spread-out infrastructure 
grows organically and in response to need, 
he says. In addition to established reposito-
ries such as ENA, GenBank and DDBJ, when a  
biomedical lab or a research community 
wants to share data, scientists set up a digi-
tal resource. Globally, that has led to around 
3,000 digital resources that hold biological 
data, he says. That number is from an ongo-
ing tally just of the resources for which there  
are associated papers describing them,  
he says.

The 3,000 figure is from a survey by the 
Global Bio Data Coalition, an organization 
with which Cochrane is involved. The alliance  
is focused on the sustainability of global  
biodata resources around the world. In a next 
phase, the team is setting out to characterize 
these resources. Given these numbers, it’s not 
surprising that, in some subdisciplines of the 
life sciences, it can be hard to find the right 
repository home for one’s data.

“We share a dataset that’s 1,400 terabytes,” 
says Jeff Lichtman. 
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Setting standards
The value of data for others extends beyond 
the paper in which they are first presented, 
says Lichtman. If and when these datasets are 
made available, they could generate hundreds 
of additional papers. “Genomics has sort of  
figured it out,” he says. Once an animal’s 
genome has been sequenced, many scientists 
can use these data for a wide range of ques-
tions. “In my field that is still rare,” he says.

To make sense of connectomic data, they 
have to be partitioned and analyzed, says 
Lichtman, which is tough work for many. 
The NIH frequently asks him about the 
data-sharing standard in connectomics, 
which, he says, is a great question he can’t 
answer. “There is no norm for connectom-
ics data,” he says, “because connectomics 
is, compared to genomics, in its infancy, so 
there is no one way to do it.” In connectomics,  
“everything is different about every single data 
set,” he says. Tissues can stem from different 
animals of differing ages, and sample volumes 
differ, too. Given the ongoing “explosion of 
new imaging modalities,” he says, such issues 
are true in connectomics and other fields, 
too. Transcriptomics has become an imag-
ing modality and delivers a new data type that 
remains difficult to analyze, and the raw data 
are challenging to share.

Many studies are now multimodal. Lichtman’s 
electron micrographs can have superimposed 
functional data generated using molecular 
labels and with tissue from the same animal. 
“All of that has to be accessible and interpret-
able,” he says, which means researchers must 
annotate it to share it. When I mentioned the 
NIH session at the AACR meeting, Lichtman says 
it does not surprise him that some researchers 
wonder “who is going to do the heavy lifting” 
related to data sharing.

As part of a reaction to size of datasets and 
the emergence of new data types, Lichtman 
sees data science emerging as a scientific  
specialty. Some PhD biologists and postdoc-
toral fellows add data science to their training. 
“I think this is a growth area,” he says, and an 
exciting area for junior scientists. Some might 
not be as interested in the “back-breaking work 
of doing serial electron microscopy or tran-
scriptomics of many cells simultaneously,” 
he says. “But what do you do with the data 
once you get it? That is really a bottleneck 
right now.” Without context for the data, data 
sharing won’t work.

Yet to fix
“A data file itself is really pointless,” says free-
berg. Data need associated information, which 

might be about the phenotype or disease  
or sample quality, and it’s crucial to data 
sharing. In the case of organoids, metadata 
might include how the organoid was grown 
or collected. With human data, metadata 
can include an individual’s demographic and 
health information. “We definitely see this 
expanding in the human genomic space,” she 
says. When they have new data for a specific 
dataset, researchers can append the previ-
ous data and metadata. Metadata standards 
emerge from communities. for example, for 
the Human Cell Atlas, researchers discussed 
and agreed on what needs to be described in 
single-cell experiments.

Separately, in collaboration with Global  
Alliance for Genomics and Health, says  
freeberg, she and others are developing better 
ways to handle and share data that is sensitive 
to the fact that under-represented communi-
ties have, in the past, been harmed by partici-
pating in research and clinical trials. “How do 
we return results in an ethically sound way?” 
is one of a number of questions researchers 
in this alliance work on. One project to define 
how data can be used is Data Use Ontology.

With data classifications, especially about 
people, it becomes easier to analyze data 
and draw inferences from them. Classifying 
people by ethnicity, geographic region or 
tribe language takes sensitivity. “And there 
isn’t one right way to do this,” she says. “There 
are clearly wrong ways and ways that have 
harmed people in the past.” She and her col-
leagues want to use lessons learned to foster 
a standard terminology for the data. It will be 
built on fAIR principles, which relate to data 
being findable, accessible, interoperable and 

reusable, and a second set of principles, the 
CARE principles, that outline Indigenous data 
governance. These build on fAIR principles 
and includes greater control over the way 
Indigenous data and knowledge are used.

Genetic and genomic data are being  
generated in a basic research and a health 
context. for example, newborns are getting 
their genomes sequenced, and access to these 
data will vary, says freeberg. Just because data 
have been collected doesn’t mean they can 
be deposited in EGA or dbGaP and used in 
research. This holds true for many projects.

As part of a large-scale undertaking, the 
UK Biobank is a resource for which genomic, 
imaging and health data from half a million 
people in the UK are being collected. Other 
large-scale projects include the International 
HundredK+ Cohorts Consortium. As the 
name indicates, it’s about studies involving 
100,000 people or more. Big bio data will be  
getting bigger.

“We have to be honest about how much time 
it takes,” says freeberg about data manage-
ment and sharing plans. Software tools help 
with data prep for sharing and the sharing 
itself. It takes training for users and poten-
tial users, which the EBI offers. “But I think 
research groups and clinical groups have to 
be honest and ask for the support,” she says. 
In her assessment, repositories will need more 
personnel.

“Science as a balancer of the world’s inequi-
ties is, I think, quite powerful,” says Cochrane. 
The EBI is involved in the CABANA project, 
which is building capacity and expertise in 
data science in Central and South America, 
says Cochrane. The project aims to give 
greater access to science, data science and 
eventually infrastructure.

In spite of declarations that data are avail-
able or available upon request, the reality can 
often show a different picture6,7.

Systems must be built to enable sharing 
and provide transparency about data use, 
NCI director Bertagnolli said at the AACR 
annual meeting press conference. Much data 
from across the health system still need to be 
captured, and also data from populations “we 
are not getting to,” she said. She believes it’s 
possible to put in place structures for prop-
erly and respectfully sharing data, across all 
of public health.

In many studies negative data are missing; 
thus they are also missing in the data-sharing 
realm. Says Quackenbush, “Even academic 
negative data, there’s no place to publish it.” 
Looking back on her own research in bioin-
formatics, freeberg says it frustrated her to 

Data need to be shared with associated 
information, such as metadata, says Mallory 
Freeberg. 
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think the analysis she was doing may have pre-
viously been done ten times. But it had not 
yielded a result and thus was not published. 
for both wet-lab and computational negative 
results, “I always personally had this dream 
of having like a journal of negative results,” 
she says.

“We need to publish negative data,” says 
Elizabeth Jaffee, cancer researcher at Johns 
Hopkins University and deputy director of 
the Sidney Kimmel Cancer Center. This neces-
sity applies to work in industry, academia and 
government. Nobody is rewarded for publish-
ing negative data, but, she says, it would yield 
lessons and lead to better treatments faster. 
“Industry has a lot of data associated with new 
drugs that they don’t share but need incentive 
to do so,“ she says.

Science is built on falsifiability, says  
Quackenbush. “That’s the acid test: you 
develop a theory and test it.” Data and find-
ings need scrutiny, and from that scrutiny 
insight emerges. Open science and data shar-
ing play a crucial role in that scrutiny. Back 
in 2012 he and colleagues in multiple insti-
tutions were building a classifer method to 
predict drug response and looked at the data 
in two Nature papers. These were large-scale 
studies from the Cancer Cell Line Encyclo-
pedia and the Cancer Genome Project8,9 
that assessed with different methods and 
platforms how well cancer drugs worked on 
cell lines, which had been characterized in 
terms of gene expression and mutations. Of 

the large group of tested drugs and cell lines, 
15 drugs and 471 cell lines were tested in both 
studies. “When we trained the method on one 
data set and applied it on the other one, it 
failed,” he says. The gene expression profiles 
were noisy — it was 2012 — but standards had 
been applied and the expression profiles cor-
related well. Correlation was poor between 
the findings of the two studies in terms of sen-
sitivity to drugs and the associated genomic 
features of cells.

“There is no way with available data to deter-
mine which study is more accurate,” Quacken-
bush and colleagues noted in their paper10. 
“Users of both data sets should be cautious in 
their interpretation of results derived from 
their analyses.” The day his paper was pub-
lished, he received calls that he was ruining 
careers, says Quackenbush.

In the News & Views that accompanied the 
paper11, MD Anderson Cancer Center research-
ers John Weinstein and Philip Lorenzi noted 
that the findings “sound a note of caution” 
about interpreting data from such projects 
but “do not undermine their value.” Many 
variables, they note, can affect the quantita-
tive results from the different pharmacologic 
assays used. There are “too many differences 
between cultured cells and patients,” espe-
cially in regard to the delicate balance between 
beneficial and toxic effects of cancer drugs. In 
their view, cell-line pharmacological data are 
useful to generate hypotheses and to elabo-
rate on other hypotheses, “rather than for for-
mal statistical prediction.” They suggested 
a “joint effort by the teams” to pin down the 
differences between assays. That would be 
a way to “support the activities of the many 
researchers who are using, or will use, these 
rich data resources.” Eventually, the author 
teams of the two papers worked out reasons 
for the differing results.

Sometimes, says freeberg, submitters don’t 
approach EGA until they're ready to publish 
their paper. “We do what we can,” she says, to 
lobby for a needed “cultural shift.” Mandates 
from the NIH and other funders to set up a data 
management and sharing plan at the outset of 
a project are “one way to sort of get the shift in 
culture to happen.”

Swedlow sees room for scientists “to 
establish themselves as sources of reference 
datasets.” Most importantly, in his view NIH 
and all other funders “need to support the 
development of tools and platforms to oper-
ate in compliance with the new rules.” The 
Open Microscopy Environment he and his 

colleagues lead aspires to do some of this for 
bioimaging, “but there is so much more to do.”

Junior scientists are more likely to engage 
data-sharing concepts and embrace the need 
to share, “so hearts and minds, plus technol-
ogy development that engages with junior  
scientists, would be a great idea,” says Swedlow.  
The NIH move to mandate data sharing by 
the researchers it funds with submitted data 
management and sharing plans, “while radi-
cal, is correct and timely,” he says. “It will be 
uncomfortable, but it will drive the change 
that is needed.”

Barker would like to see more theoreticians 
and mathematicians involved in biomedicine, 
who will bring new ways of looking at data. 
They can shape the culture of biological 
research culture itself. A scientist on his or 
her own usually faces a statistically underpow-
ered dataset, which limits the science that can 
be done with it. Data collection is necessary, 
but the journey from terabytes to petabytes 
and beyond has to involve converting data 
into information, says Barker. To enable this 
conversion, more data are needed and con-
text must be brought to the task, she says. “If 
you can’t bring context, it’s just entropy; it’s 
just noise.”

Indeed, some are unwilling to share data, 
says Barker. “That’s not going to go away until 
we change the reward system in universities,” 
she says. “You tend to get the behavior you 
reward.” By rewarding scientists for sharing 
data, it becomes apparent how much value 
sharing has. “Just turn that little knob, you 
know, and say, instead of hanging on to your 
data, let’s reward you for sharing it because 
that’s going to change the world.”

Vivien Marx 
Nature Methods.  

 e-mail: v.marx@us.nature.com
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It’s understandable that the data-sharing 
mandate can seem overwhelming for labs 
not used to data sharing, says Emily Boja. 
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