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Advancements in sequencing technologies and assembly methods enable
theregular production of high-quality genome assemblies characterizing

complexregions. However, challenges remain in efficiently interpreting
variation at various scales, from smaller tandem repeats to megabase
rearrangements, across many human genomes. We present a PanGenome
Research Tool Kit (PGR-TK) enabling analyses of complex pangenome
structural and haplotype variation at multiple scales. We apply the graph
decomposition methods in PGR-TK to the class Il major histocompatibility
complex demonstrating the importance of the human pangenome

for analyzing complicated regions. Moreover, we investigate the
Y-chromosome genes, DAZ1/DAZ2/DAZ3/DAZ4, of which structural variants
have been linked to male infertility, and X-chromosome genes OPNILW and
OPNIMW linked to eye disorders. We further showcase PGR-TK across 395
complexrepetitive medically important genes. This highlights the power
of PGR-TK to resolve complex variation in regions of the genome that were
previously too complex to analyze.

Studying genomes, the fundamental information contained in allliving
beings, is the foundation for understanding the biology and evolution
ofall organisms, as well as the genetic diseases of humans. Despite the
millions of human genomes that have been sequenced since the onset of
the Human Genome Project*and the dramatic reductionin the cost of
short-read (roughly 150 bp) DNA sequencing, there is still fundamental
informationyetto berevealed in genomics’. Whileitisimportantto rec-
ognize successes so far, including small variant surveys, genome-wide
associationstudies*” and the development of routine laboratory tests
for genetic-based precision medicine®™, there remain fundamental
biological questions that involve structures at greater length scales

that can only be captured using long-range information accessible by
long-read technologies and diploid phased assemblies™ ™.

With the possibility of resolving variants at multiple scales, small
and large, researchers now can fully characterize previously inac-
cessible regions by focusing on single-nucleotide polymorphisms
and small indels alone™'. Examples of such previously inaccessible
regions include centromere, telomeres and complex repeat regions.
Recent results with pangenome-scale de novo human assemblies
and the CHM13 telomere to telomere assembly have already shown
the potential for revealing biological insights*7°, which are the
foundation for understanding complex genetic diseases.
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A concept that becomes powerful in such analyses is that of the
pangenome: that is, a characterization of both the genetic structure
and the genetic variation across diverse individuals of aspecies. How-
ever, such complexity and diversity generate interpretive challenges
thatrequire more advanced tools. Agraphrepresenting many genome
assemblies at once provides a way to visualize and analyze compli-
cated structural variations among different haplotypes® 2. Previously,
distinct approaches to generate graphs representing pangenome
structures have been proposed for various applications. For example,
variant graph”?’ and PanGenie” focus onimproving variant calling and
genotyping with pangenome references. Cactus graphs®, Progressive
Cactus graphs®®, PGGB" and cactus-mingraph'?* build pangenome
graphs aiming for large-scale structural rearrangement comparisons.
Stringomics graph with ‘stringlet”, Seqwish** and de Bruijn graph
based approaches®* provide algorithms and data structures for
improving storage and query efficiency and reduce bias caused
by the alignment processes. These tools provide more accessible
pictures for researchers to understand repeats and rearrange-
ments than using computational intensive and visually complicated
multiple sequence alignments (MSA)*®****, The traditional MSA
view is typically represented as a big matrix where each row
represents a different genome, and the columns represent the
bases. With MSA, the relationships between sequences are not obvious
when there are complicated repeats or structural variations. Instead
of per base alignment, a pangenome graph effectively condenses
the homologous regions and can express the relationship between
those different regions through graph edge connectionsthat are easier
totrace. Meanwhile, although agraphis an elegant data structure for
gathering information from pangenomic assemblies, there remains
a gap in projecting the underlying linear sequences onto a graph
at various scales to reveal and compare features of many different
haplotypes®.

Toaddress this gap, we present ageneralized graph framework as
a software package, PanGenome Research Tool Kit (PGR-TK, https://
github.com/GeneDx/pgr-tk), that is scalable to rapidly represent
multiple samples at varying resolution levels by adopting different
parametersto facilitate exploratory analysis. PGR-TK isable toresolve
and visualize the most complex regions of the human genome that
often affect multiple medical important phenotypes (for example,
LPA,HLA and so on).

We demonstrate the ability of PGR-TK to visualize and enable
deeper insights into complex variants in repetitive genes, including
a gene within nested palindromic and tandem repeats (AMY1A), the
major histocompatibility complex (MHC) region including the complex
human leukocyte antigen (HLA) class Il locus*, the Genome inaBottle
(GIAB) challenging medically relevant gene list* and chrX and chrY
ampliconic genes*. Many genome-wide studies including GIAB have
excluded many of these genes from their analyses because they are
difficult torepresentin VCF and itis challenging to compare differing
representations”. To understand how PGR-TK can help with the chal-
lenge of variant calling, variant representation and comparison across
these genes and genomic loci we use the Human Pangenome Reference
Consortium (HPRC)**® year one 47 human genome assemblies (94
diverse haplotypes). With the ability to survey a large set of genes
swiftly with PGR-TK, we hope to understand how to better provide a
broader benchmark set for challenging genes using HPRC assemblies
in the future. We examine OPNILW and OPNIMW on chromosome X
and DAZ1/2/3/4 on chromosome Y in detail to understand how the
limit due to complicated large-scale genome rearrangement affects
the current methodology of generating variant call benchmarks. Our
initial analysis of the GIAB clinical and medically important genes
(CMRG) with a pangenome graph approach will help the research
community to adapt the pangenome resource for clinical and medical
genetic applications. Tools for visualizing and analyzing complicated
rearrangement loci such as PGR-TK will be essential for better variant

calling and understanding how structural variations with repeats affect
the results for the community.

Results

PGR-TK

The PGR-TK has several different components to facilitate rapid pange-
nome analysis. The general scope and design of the PGR-TK s illustrated
inFig.1a. PGR-TK applies the computation techniques and datastruc-
tures initially developed for fast genome assemblers®* to pangenome
analysis tasks. Instead of building awhole genome graph at once, which
canbe computationally expensive. PGR-TK provides tools for building
anindexed sequence database, fetching and querying sequences of
interest (for example, genes or regions with large-scale structural vari-
ations) from the database to create pangenomics graphs accordingly.
Ituses minimizer anchors to generate pangenome graphs at different
scales without more computationally intensive sequence-to-sequence
alignment or explicitly calling variants with respect to areference. The
generation step of the pangenome graph considersall input sequences
equivalently without a preferential reference. Note that the sequence
fetching step using a query sequence may introduce bias due to missing
orincorrect alignments. We also developed an algorithm to decom-
posetangled pangenome graphs to more manageable units (principal
bundles). With such decomposition, we can easily project the linear
genomics sequence onto the principal bundles. It can provide more
straightforward visualization to generate insight by revealing the con-
trast of the repeat and rearrangement variations among the haplotypes.
Such pangenome-level graph decomposition provides utilities similar
tothe A-deBruijngraph approachforidentifying repeatsand conserved
segmental duplications***, but for the whole human pangenome
collectionat once.

PGR-TK uses the Assembly Genome Compressor*® for storing
pangenome assembly contigs and includes binary for creating the
sparse hierarchical minimizer (SHIMMER) index. For the HPRC year
one data release (94 fully assembled haplotypes from 47 samples), it
takes 18 minutes to create the index file on an Amazon Web Services
c5.12xlarge instance, with the default parameters. This is substantially
faster than building an alignment index for query with tools such as
mimimap2 (Supplementary Table 1). Although PGR-TK was designed
to retrieve homologous sequences from the database, rather than
finding the best alignments, our evaluations indicate that the query
results are generally consistent with other alignment tools (Supple-
mentary Tables 2 and 3).

Once the index is built, it can be loaded into memory within
minutes. As showninFig. 1a, there are three main functional modules
using theindex: (1) fetching homologous regions and sequences of the
pangenome database givenaquery sequence, (2) creating a minimizer
anchored pangenome-graph (MAP-graph) and (3) command line tools
and a software library for interactive analysis and visualization on
the generated graph and the underlying sequences. One of the main
applications of PGR-TK is for deconvolving large regions of the human
genome to reveal complex variations. It offers a set of efficient com-
mandlinetoolsforvarioustasks, butalsoallowsformoreinteractiveand
in-depthanalysis through itsintegration with the Jupyter Laboratory*’
and other data science tools. This makes it a valuable resource for
researchers seeking to uncover insights from their genomic data.

The source code and library can be downloaded from
https://github.com/GeneDX/pgr-tk. The documentation of the
Python APIsis at https://genedx.github.io/pgr-tk/.

SHIMMER index

SHIMMER is adata structure extending the minimizer for more efficient
indexing over larger regions. Additional minimizer reduction steps to
generate sparse minimizers are applied to the minimizer sequences
instead of the original base-pair sequences in a hierarchical way™’.
Such sparse minimizers can serve as natural ‘anchors’ or ‘markers’
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Fig.1| The architecture of PGR-TK and minimizer anchored graph
construction. a, Overall architecture and design scope of the PGR-TK library.

b, Each sequence in the database is scanned, and the location of the minimizers
arerecorded to construct the SHIMMER database and MAP-graph. ¢, Each vertex

2
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inthe MAP-graph represents a collection of sequence fragments sharing the two
ending SHIMMERSs in the database. d, The MAP-graph s constructed by merging
all paths from all sequences into a graph.

on genomics sequences without an explicit reference coordinate
system. We use the SHIMMERs for quick sequence queries as initially
proposed by Roberts et al.*s, PGR-TK identifies all neighboring pairs
of SHIMMERs and indexes all the sequence segments between the
pairs. Figure 1b shows a cartoon of the SHIMMERs identified on each
sequence. Then, the pairs of the neighboring SHIMMERSs are used for
indexing the corresponding sequence segments within the paired
SHIMMERs. After that, we build alook-up table of all pairs of SHIMMERs
toall segments with the same pair at both ends (Fig. 1c). For the query,
we compute the neighboring SHIMMER pairs from a query sequence
and search the database for all segments indexed by the same pairs.
Finally, we canfetch all target segments stored in the database to get all
related sequence information for further analysis. PGR-TK provides
functions to refine the raw query results and filter out spurious align-
ments likely caused by repeats outside the region of interest. With the
set of sequences homologous to the query sequence, we can quickly
perform downstream analysis work, for example, variant discovery by
aligning the sequences to each other. Furthermore, we cangenerate a
local pangenomics (MAP-graph) for comparing the sequences in the
pangenome dataset at various scales by adjusting parameters to fit
different analysis tasks.

MAP-graph

PGR-TK provides tools to generate the MAP-graph from a set of homo-
logous sequences. The vertices in a MAP-graph are labeled with the
neighboring SHIMMER pairsrepresenting a set of sequence segments

in the database (Fig. 1c,d and Methods). The edges in the MAP-graph
areinduced when at least one sequence connects the two fragments.
Thus, eachsequence naturally corresponds toapathinthegraph, and
theverticesinthe pathalso containthe segments of other sequencesin
the database that share the same SHIMMER pair label (see the Methods
for aprecise mathematical definition of a MAP-graph). The successful
deployment of minimizer- or minhash- based approachesin sequence
comparison®*** indicates that sequence segments with the same
minimizer labels are also likely to be highly homologous. The homology
between sequences can be further confirmed by explicit sequence
alignment of the segment inside a MAP-graph vertex. However, the
computation intensive base-to-base alignment is not required for
building the MAP-graph.

The MAP-graph construction in PGR-TK is highly efficient, as it
does not rely on traditional sequence-to-sequence alignment. This is
demonstrated by the fastgraph construction foraset of 147 MHC class
Il region sequences from the pangenome reference, which was com-
pletedinunder 5 seconds of wall-clock time using PGR-TK, compared
to the 3.5 minutes using seqwish? and 13 minutes using minigraph*
(Supplementary Table 4).

Thesize of verticesinthe MAP-graph, whichrepresents the lengths
ofthe sequence segmentsin the pangenome, can be adjusted by chang-
ing the parameters that determine the distance between minimizers.
This allows us to study genomic features at different length scales
and generate pangenome graphs with varying levels of detail. This is
particularly useful when analyzing features that vary in size, such as
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tandem repeats in the human genome, which can range from a few
hundred base pairs to1-2 kilobases (Supplementary Table 5). By gene-
rating pangenome graphs at different levels of detail, we can gain a
more comprehensive understanding of complex variation patterns
within populations and focus on specific features of interest.

The analysis of pangenomic structure can be adjusted by control-
ling the parameters of minimizer window size (w), minimizer size (k)
and hierarchical reduction factor (r), along withanauxiliary parameter
min_span, which sets the minimum distance between minimizers in
the construction of the SHIMMER index and MAP-graph (Methods).
The length of each vertex in the MAP-graph, representing a sequence
segment, can be modified by adjusting these parameters. This allows
us to study genomics features at different length scales.

Supplementary Fig. lillustrates the vertex length distribution for
different parameter sets using chromosome 1of CHM13 assembly. An
increaseineither wor rresultsinlonger sequences being represented
by each vertex, enabling a sparser sampling of the pangenome. The
choice of parameters depends on the length of the region of interest
and the size of relevant biological features, such as repeat sizes and
distances. For example, when studyinglarge-scale differences, bigger w
and rvalues are preferable to generate a sparse index that can efficiently
capture large-scale differences. Conversely, to compare small-scale
differences, smaller w or r values should be used. Determining the
optimal parameters for the pangenome graph generation step can be
challengingifthe underlyinginteresting features are less understood.
Consideringthis, we have found that the best initial parameter choice
is determined by the length of the sequences of interest to ensure
comprehensibleresults. Based on our observation, we provide asimple
formula for selecting the parameters (Supplementary Table 6, Fig. 2
and Supplementary Fig. 2 for related examples).

Principal bundle decomposition

A pangenome graph can serve as a cornerstone for analyzing repeat
structure variation in population'”, It is usually hard to compare
multiple sequences with complicated repeat structure by examining
pairwise sequence alignments directly. The traditional visualiza-
tion technique of the dot plot*® allows us to perceive the complexity
of the repeats but it does not provide insights into the repeat
structures as linear representations across each individual sequence
directly. Furthermore, only two sequences can be compared with
adotplot.

Asanexample, we use PGR-TK to investigate the repeat structure
of the AMY1A gene (Alpha-amylase 1, an enzyme for the first step of
catalyzing starch and glycogen in saliva) locus. We pick AMYIA as it
has various numbers of copies caused by larger-scale structure vari-
ation related to the repeat surrounding the gene. The dot plots from
randomly picking 36 sequences of a 400 kb region around AMYIA
in the first year HPRC assemblies to the GRCh38 AMYI1A reference
sequence are shown in Supplementary Fig. 3a. Visual inspections of
the dot plots show there are various numbers of copies of forward
and inverted repeats forming palindromic sequences at the scales of
100 kb, and from zero up to five palindrome units. Still, only pairwise
comparisons are enabled with dot plots and, thus, we lack a compre-
hensive assessment.

For comparison, we generate the AMY1A MAP-graphs at two
different scales (Fig. 2) from the HPRC year one assemblies (47 sam-
ples). These canbe generated with PRG-TK in less than 3 minutes from
indexed sequence data. In additional to the MAP-graph, we provide
tools analyzing a MAP-graph to ‘relinearize’ the graph into a set of
‘principal bundles’. We design the algorithm to generate the principal
bundles representing those consensus paths that are most likely cor-
respondingto repeat unitsinthe pangenomes. The algorithm searches
the paths that most of the pangenome sequences go through without
branching as the principal bundles. This is analogous to identifying
the contigs”**in genome assembly algorithms.
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Fig.2| AMY1A MAP-graphin two different scales. a, The left panel shows a
sparse MAP-graph representation of the AMY region with (w, k, r, min_span) = (48,
56,12,12).503 vertices and 699 edges represent the 200-550 kb AMY region.

The graph vertices are colored by the principal bundles that correspond to the
principal bundle decomposition of selected genomes on the right panel (gray
vertices are those that are not in the principal bundles). b, The left panel shows
adenser MAP-graph withr = 4. The graph has 3,471 vertices and 2,684 edges,
whichis about 5 times as much as the MAP-graph in a. The principal bundle
decomposition reveals amore detailed repeat structure thanin a.
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Figure 2 shows the principal bundle decomposition of the AMY1A
region MAP-graphin two different scales for comparison. The smaller
choice of ‘r generates a MAP-graph with more vertices in the graph
and each vertex only represents a smaller portion of the pangenome.
This leads to afiner scale of principal bundle decompositions.

Thelinear representation derived from the MAP-graph allows for
efficientidentification and classification of repeat structures, which are
otherwise challenging to characterize. Seven genomes were selected
for analysis in Fig. 2, each demonstrating distinct repeat structures.
For example, HG00438 no. 2 mostly lacks repetitive sequences. The
GRCh38 one has one relatively simple invert repeat (forming a palin-
dromeregion). HG02145 no.1has three copies of non-inverted repeats
(labeled as repeat 1, 2 and 3). HG02257 no. 2 has three palindromic
repeats (labeled as P1, P2 and P3). The two haplotypes from HG002
have similar structures to the GRCh38, except there is an inversionin
the middle of the palindrome repeats in one of the two haplotypes. A
full plot withall 96 repeat structures, including a hierarchical clustering
treeidentifying the similarities, is shownin the Supplementary Fig. 3b.
This decomposition approach canbe used by researchersto effectively
classify the repeat structures of regions of interest.

Pangenome analysis of the MHC class Il locus

The MHCregionin humangenomesis highly polymorphic. The genomic
sequences of the MHC are fundamental for understanding a human’s
adaptive immune system and autoimmune diseases*>**. Owing to its
complexity and polymorphic nature, it has been challenging to get a
complete picture of the MHC genomics in the human population and
tobenchmark variant calling in the most variable regions***. The HPRC
assemblies provide anew opportunity to analyze the MHC sequences
with nearly fully assembled sequences of the region.

To showcase the effectiveness of PGR-TK in analyzing compli-
cated human haplotype structures and sequences, we applieditto the
HLA class Il locus (GRCh38, chr6:32,313,513-32,992,088). We fetched
the HPRC HLA class Il haplotype sequences by anchoring them with
more conserved flanking regions. Our dataset consists of a total of
105 full-length sequences, ranging from 650 to 800 kbp. Figure 3a
shows the principal bundle decomposition of the collection of the
sequence and Fig. 3b illustrates the MAP-graph of the 105 sequences.
The tangled region in the MAP-graph represents highly polymorphic
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Matched MHC class Il gene
haplotype structure

Fig. 3| Principal bundle decomposition reveals distinct haplotype groups.
a, The principal bundle decomposition and annotated HLA class Il genes in
each of the haplotype sequences. The auxiliary tracks below each sequence on
the left panel show the locations of the genes. The colors of the auxiliary tracks
match the genelist of genesidentified for each haplotype on theright. b, The
MAP-graph generated by PGR-TK. ¢, PCA plots of the MHC class Il sequences.
Each panel highlights the different gene haplotype combinations. The vertical

color barsindicate the matched haplotype groupsinb and c. The circled symbols
indicate the haplotypes belong to the corresponding group. The dotted lines
represent the connection between the two haplotypes of individuals included

in the analysis set who possess both haplotypes. The population groups, African
Ancestry(AFR), American Ancestry (AMR), South Asia Ancestry(SAS), East Asia
Ancestry(EAS) and not applicable (NA), are indicated with different markers of
different colors.

by generating the MAP-graphand the prinipal bundle decompostion
ofthe MHC class L.

rial nature of haplotype variation, such as the appearance of different
combinations of HLA class Il gene types in different haplotypes, in
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We constructed a hierarchical dendrogram ontop of the principal
bundle decomposition to study the relationships of highly polymor-
phic haplotypes in the MHC region of the human population. The
PGR-TK provides acommand line tool to compute a distance metric
derived from pairwise sparse alignment of the bundles between two
sequences and generate a dendrogram from all pairwise distances.
Known HLA class Il gene sequences were also mapped to 105 pange-
nome sequences. The fullannotated principal bundle decomposition,
whichwas annotated with HLA class Il genes and the hierarchical clus-
teringdendrogram, is showninFig. 3a. The highly polymorphicregion
inthe MAP-graph was found to correspond to the DRB-1/3/4/5, DOB and
DOA1/2 region. By clustering the full set of haplotype sequences, we
can identify the combination of bundles in the entire region that cor-
respond to the gene combinations of each cluster. Our approach uses
the principal bundles to classify the complete sequence, rather than
relying solely on gene fragments. This classification has the potential
tofacilitate new applications forimproved genotyping or haplotyping
oflarger populationdatain this complex region. The results could offer
valuable insights into the relationship between haplotype sequences
and gene combinations in the context of genetic variation and disease
susceptibility.

We canalso use the verticesinthe MAP-graphto conduct aprinci-
pal component analysis (PCA) of the MHC class Il regions. We collected
allverticesinthe MAP-graph to form the basis of vectors. Then, we con-
structed abinary vector for each haplotype path by indicating whether
the path of the haplotype passes through the vertex. Figure 3c displays
the principal component plot of the haplotype path vectors, along with
the ethnic groups. The dotted line connects the two haplotypes of an
individual in the sample. We have highlighted four different groups
based onthe HLA class Il gene combinations (excluding the subtypes).
Each group contains 10-49 haplotypes. With the current dataset of
alimited number of haplotypes, we have not found any statistically
significant patterns yet. However, as additional data will be released
from HPRC in the coming years, we anticipate that the MAP-graph
canbe used to systematically analyze this region and better understand
itsimpact on human disease within ethnic group structure.

Analyzing medically relevant amplicon genes

GIAB is using the fully assembled HGOO2 chrX and chrY from T2T
to form new small variant and structural variant benchmarks. The
assembly fully resolves the medically relevant ampliconic genes****
OPNILW/OPNIMW/OPNIMW2/OPNIMW3and DAZ1/DAZ2/DAZ3/DAZ4,
butthevariationinthese genesis too complex for currentapproaches
to make reliable variant calls compatible with current benchmarking
tools.

For example, the genes OPNIMW and OPNIMW2areinside a 74 kb
deletion in HGOO2 relative to GRCh38, so HG002 contains only two
of the four copies of the array in GRCh38: OPNILW and one copy of
OPNIMW/OPNIMW2/OPNIMW3. Dipcall*® can call the 74 kb deletion
and variants in the other gene copies, but it may be possible to align
the assembly to GRCh38 in alternative ways. The visualization from
PGR-TK makes clear the varying number of genes in this array in each
haplotypein Fig.4a, whichisimportant for some phenotypes such as
color blindness, since seeing full color requires OPNILW and at least
one copy of OPNIMW/OPNIMW2/OPNIMW3 (refs. 56,59).

Another important gene family DAZI/DAZ2/DAZ3/DAZ4 are in a
set of nested palindromic repeats. It has been reported that partial
deletions in this region may cause male infertility””. It would be use-
ful to understand the natural distribution of non-pathogenic struc-
tural variants across this ampliconic gene cluster. DAZI and DAZ2 are
roughly 1.5 Mbp (megabasepairs) from DAZ3 and DAZ4, and HGO02
has alto2Mbp inversion relative to GRCh38 with breakpoints in the
segmental duplications that contain the DAZ genes (Fig. 4b). In addi-
tion to the large inversion, the DAZ genes contain structural variants,
including a roughly 10 kb deletion in DAZ2, two deletions in DAZ4

and two insertions in DAZ3 of sequences that are only in DAZI and
DAZ4in GRCh38.PGR-TK’s ability to color and visualize variation with
the principal bundle decomposition algorithm at multiple scales
enablesintuitive understanding of this type of very complex variation,
which would be very difficult to represent and understand as simple
structural variant calls in VCF format.

The efficiency of PGR-TK makes it suitable for analyzing com-
plex variants at isolated loci, as well as a set of region of interest. For
example, GIAB has identified a set of 395 challenging but medically
relevant genes. Analyzing this set in the pangenome references will
provide some insight into the related complicated variation at the
population level.

Using PGR-TK, we extracted all sequences of the 395 genes from
the HPRC year one release (94 haplotype assemblies), CHM13 v.1.1,
GRCh38 and hg19 of all 385 CMRG. We generated a MAP-graph for
each gene and output it in GFA format (as seen in the Supplementary
Fig.4).Foreachgraph, we derived two metricsto estimate (1) the degree
of polymorphism among the pangenomes, and (2) the repeat content
considering the variations of the pangenomes (as shown in Fig. 4c).
These two measurements provide independent assessments of the
MAP-graph structures of these genes. We found, as expected, that
highly repetitive genes (such as LPA and KATNAL2) are more difficult
to create areliable variant benchmark call set. Many highly repetitive
genes are excluded from the current CMRG benchmark set. We did not
observe a correlation between higher entropy and the reduction of
the gene in the benchmark set. We found that the high entropy genes
also span larger regions in the genome. While entropy can indicate
the complexity of variations in the population, we observed different
clustering structures of the top entropy genes (see the comparison of
the MAP-graph PCA plots of SNTG2and KMT2Cin Supplementary Fig. 5).

Discussion

Withthe advancein DNA sequencing technologies, more comprehen-
sive human genomes at, or close to, telomere to telomere will be col-
lected and made available in the coming years. It will enable researchers
to study and characterize those previously inaccessible complex, but
likely relevant, regions. The current HPRC assembly release has signifi-
cantly affected our understanding of the human genome architecture.
Itwillalso be essential for building applications for clinical and medical
tests and diagnostics soon. Flexible and scalable computational tools
for analyzing pangenome-level genome assemblies will be part of the
vital task of improving the practice of precision medicine with rich
genomic data such as those from HPRC.

Many of the recently developed pangenome analysis tools allow
graphanalysis at the whole-genome level**. Meanwhile, the richness
of diversity of human genomes over the repetitive regions poses unique
challenges for analysis. In our work developing PGR-TK, we focus on
providingaflexiblelibrary of useful algorithms. Furthermore, it enables
analyzing the genome assemblies such that a developer or aresearcher
canrapidly access certain complex regions by adjusting parameters for
visualization and integrating with subsequent analysis. PGR-TK may not
be suitable for analysis at the whole-genome scale yet, and obtaining
optimized results with the tool might not be straightforward. The chal-
lenges associated with the diversity of human genomes over repetitive
regions can complicate the analysis process. It is crucial to ensure that
the parameters chosen for visualization and subsequent analysis are
appropriate for the specific genomic characteristics being examined.
Itmay require careful consideration and expertise of a user to fine-tune
the parameters and algorithms for optimization. Each main building
unit (the vertex) of the MAP-graph represents a set of closely related
sequence fragments. Thisis more analogous to the stringomics method
proposed by Ferragina® than other methods building graphs on top
of MSA or variant calls. Such approaches combined with the sparse
minimizers are efficient to reduce the computational complexity (fewer
vertices) to represent larger-scale scale structures. Complementary to
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Fig. 4| Principal bundle decomposition for genes in the repetitive regions

of chromosome X and Y. a, MAP-graph principal bundle decomposition shows
the repeat number changes of the OPNILW, OPNIMW1/2/3to FLNA loci. Auxiliary
tracks are as follows: top OPN1LW, middle OPNIMW1/2/3 and bottom FLNA.

b, The upper leftimage displays a dot plot comparing the HG002 assembly

to GRCh38 over a5 Mb region containing the DAZ1/2/3/4loci, highlighting
aninversion between DAZ1/2 and DAZ3/4. Theimage on the right provides a
detailed view of the rearrangements at the gene scale level, with four tracks
indicating the local matches to DAZ1/2/3/4 from top to bottom. Comparison to

GRCh38’s DAZ2reveals that the HGO02 assembly is missing a segment (roughly
10 kb) of the darker green. The intergenic region between DAZ3 and DAZ4 also
displays arearrangement that can be described as anincomplete inversion or
separate insertions and deletions. The bottom image shows a rearrangement
atthe wholelocus, including all DAZ1/2/3/4 over a5 Mb region. The principal
bundle decomposition reveals the different inverted structure of the HGO02 T2T
assembly and the HG1258 assembly compared to GRCh38. ¢, MAP-graph diffusion
entropy versus repetitiveness survey for the 385 GIAB challenge CMRGs.
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that, PGR-TK provides aninterface to fetch the sequences within each
vertex such thatitis possible to combine a MAP-graph with other graph
analysis approaches. For example, it can be integrated with Cactus
graph® and A-de Bruijn Graph* for base-level analysis, such as variant
calling, genotyping and point mutation analysis, with recursive hybrid
graphdatastructures.

We demonstrate how to use the PGR-TK for studying and charac-
terizing the repetitive region AMYIA and the highly polymorphic HLA
classllregion. We presentatool in PGR-TK backed by anew pangenome
graph traversal algorithm, relinearizing tangled graphs caused by
repetitive sequences to principal bundles for visualization. With the
principal bundle decomposition, we can automatically visualize the
repetitive and non-repetitive components of haplotype assembly
contig. The PGR-TK can provide intuitive qualitative information about
different genome arrangement architectures with decomposition
and associated visualizations. For example, it enables visualization
of both the very large inversion in the DAZlocus and much smaller
complexstructural variation within the genes. The visualization of the
OPNILW/OPNIMW gene array shows subtle copy number variations,
which canaffectvision, as well as nearby structural variants. We also use
PGR-TK tosurvey aset of regions of interest across the whole genome.
We derive two metrics for measuring the polymorphismand repetitive-
ness in human pangenome to more systematically survey complexity
of alarge set of medically and clinically relevant genes. In the future,
we aim to extend the PGR-TK library to provide more quantitative and
base-level analysis for both fundamental and translational research
using pangenome resources.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
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Methods

Sequence database and SHIMMER index construction

To generate the SHIMMER index, each sequence was scanned and the
symmetrical minimizers were generated with the specific minimizer
window size w and kmer size k. We called this the firstlevel of minimizer.
Given areduction factor r > 1, additional levels of minimizer sets were
generated toincrease the span between the minimizers by areduction
step to facilitate pangenomics analysis. Even with the reduction step,
in some simple sequence context, for example, long or short tandem
repeats, two minimizers can remain too close to each other. A param-
eter ‘min_span’ can be applied to eliminate a pair of minimizersthatare
too close. We used a heuristic algorithm to eliminate those minimizers
that were within the distance of min_spanto each other. This helped to
reduce the minimizer density when detailed analysis for those simple
context regions was not desired. Setting min_span to zero and rtoone
generated the standard minimizers for each sequence.

Each pair of the reduced minimizers (SHIMMERs) was used as the
key tobuild ahashmaptothe sequenceID, and coordinates and match-
ing orientation of the minimizer pairs on the sequences.

We also present examples of APl calling and command line usage
below.

Generate MAP-graph
The MAP-graphis constructed by scanning through each sequencein
the database. The vertices are simply the set of the tuples of neighbor-
ing minimizers (minimizer anchored segments). The edges are con-
structed by connecting minimizer anchored segments asabidirected
graph. One can consider this to be an extension of the string graph®
where the overlaps are the minimizers at both ends. However, in the
pangenome graph, each vertex includes a set of sequence segments
from multiple genomes rather than one sequence.

Asthe MAP-graph can be constructed by scanning the SHIMMER
pairs through the sequences. For a given set of n sequences,
S={sli=0...n -1}, the vertices of the MAP-graph are

V={(m¥, m®,,)im®, andm®,,, are the pth and(p + L)th

minimizers of asequences;,inalls;in$ }.

We canassign aweight w;of avertex v, = (m,, m;) as the total num-
ber of observed (m,, m,) pairsin$.
The edges of the MAP-graph are

E={W,v)lv; =(m®,,mD,,)andv; = (m?,,;,m?,,,)forall

(m®,,m®,;,m?,,»)inalls;in$ }

Identify the principal bundles ina MAP-graph

To decompose a MAP-graph into principal bundles for downstream
analysis, we apply a variation of depth first search®® (DFS) to build
the traversal trees from the graph. Our DFS prioritized vertices
with high ‘weight’ (defined as the number of sequence segments
contained in a vertex) and accounting for the bidirected nature of
the MAP-graph.

The DFS traversal through the graph is then converted to a tree
structure internally. The leaf nodes in the tree are typically when the
DFSs are terminated by no out edge from a node or abubble or aloop
is found. As we prioritize the weights of the vertices during DFS, long
pathsusually correspond to the ‘common’ paths that most sequences
in the data would go through. Rarer haplotypes typically correspond
toshortbubble pathsinthe MAP-graph. Thus, they canbe identified as
shortbranchesinthe DFS traversal tree. We use the tree toremove those
verticesinthe MAP-graphifthose are shorter than prespecified length
inthe DFStree.Ingeneral, the verticesin the principal bundle represent
more sequences in the set of input sequences (Supplementary Fig. 6)
and are likely more conservative in the pangenome.

After removing the vertices corresponding to the short branches,
we further remove vertices in the MAP-graph that have more than three
outedges after convertingthe MAP-graph asan undirected graph. After
such removal, the graph will only consist of simple paths, and we output
those paths as the principal bundles.

Insummary, hereis the sketch of the algorithm:

(1) Build a DFS traversal tree with a deep first search for a given
MAP-graph. To capture paths that are more conserved among
the pangenome sequences of interest as the principal bundles,
our DFS search prioritizes high-weight vertices when construct-
ing the DFS traversal tree

(2) InMAP-graph, remove vertices that correspond to nodes in
short branches of the DFS traversal tree

(3) Remove branching vertices in MAP-graph (by considering it as
an undirected graph)

(4) Output the simple paths from the resulting graph as the princi-
pal bundles.

Principal component plot for the HLA class Il locus

To generate the principal component of the pangenome HLA class Il
sequences, we convert each of the haplotype sequences to a binary
vector. The binary vector has the same length of the total number
of vertices of all principal bundles. Let us call these vertices V= {v,|v;
in principle bundles, i = 0,,,}, where n is the total number of vertices
in the principal bundles. For each sequence s, we construct a binary
vector w,={b,, b,,..., b,;} where b,=1if the sequence s contains the
vertex v, and b; = 0 if not. Then, we perform the standard principal
component transformation with the binary vectors of all sequences
from the HLA class Il region.

General workflow for analyzing a region of interest
Here we outline the general workflow on how to use PGR-TK to generate
MAP-graph and the principal bundle decomposition.

(1) Foraregion orsequences of interest, put the sequences as a fasta
file for querying the PGR-TK pangenome sequence database.
(PGR-TK provides acommand line tool ‘pgr-fetch’ and python
APIs to fetch such sequence from the PGR-TK sequence database.)

(2) Query the whole pangenome database to get initial hits
that match the query sequence with the command line tool
‘pgr-query’ or using the Python APIs.

(3) Filter the hits to remove unwanted matches that do match a us-
er’s analysis objectives. With the command line tool ‘pgr-query’,
it generates a summary table of the hits for filtering.

(4) With thefiltered sequences, using ‘pgr-pbundle-decomp’
command line tool to generate the MAP-graph in GFA format
and principal bundle decomposition in the BED format. Beside
analyzing the generated data, the generated bed file of the
decomposition can be rendered by the pgr-pbundle-bed2svg to
generate visualization. Python APIs are also provided for more
scripting to resolve complicated analysis cases.

(5) Optionally, we can take the fetched sequences from ‘pgr-query’
to use with other third party tools, for example, calling variant
with dipcall, create an MSA, or building other local pangenome
graphs with minigraph or pggb.

(6) Re-adjust the parameters (w, k, r, min_span) and repeat (3) and
(4) with additional analysis of the results if necessary.

Building index

For alarge sequence set, for example 47 whole-genome HPRC assem-
blies, PGR-TK uses the AGC format*® to store the sequence efficiently.
A command line tool ‘pgr-mdb’is developed with the PGR-TK package
to create the index file on top of the AGC file. For example, for a
prebuild HPRC year one assembly AGC file (1.33 Gb), we create a file
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(/data/pgr-tk-HGRP-yl-evaluation-set-v0_input)
include afile system path to the AGC file, /data/gr-tk-HGRP-y1-
evaluation-set-v0.agc and call ‘pgr-mdb’ to create the index
fileswithaprespecified prefix (/data/pgr-tk-HGRP-yl-evaluation-
set-v0):

echo /data/pgr-tk-HGRP-yl-evaluation-set-v0.agc \
> /data/pgr-tk-HGRP-yl-evaluation-set-v0_input
/code/pgr-mdb /data/pgr-tk-HGRP-
yl-evaluation-set-v0_input \
/data/pgr-tk-HGRP-yl-evaluation-set-v0

Two files will be generated in this example

/data/pgr-tk-HGRP-yl-evaluation-set-v0.mdb # 15 Gb
for (w, k, r, min_span) = (80,56,4,64)
/data/pgr-tk-HGRP-yl-evaluation-set-v0.midx # 3.1 Mb

The index and sequence data can be loaded into a python
workspace by

import pgrtk

sdb = pgrtk.SeqgIndexDB ()

sdb.load from agc_index (‘pgr-tk-HGRP-yl-evaluation-
set-v0')

As the indexes are loaded into memory, we suggest using a
computing instance that has a random access memory larger than
about four times that of the index file to avoid swapping thrashing.

For smaller sequence files, the sequence database object
(for example, the ‘sdb’ in the example above) created by pgrtk.
SeqlndexDB()can create and load sequences using load_from_fastx()
method. See the library documentation at https://genedx.github.io/
pgr-tk/for more detailed descriptions of all python objects, methods
and functionsin the PGR-TK package.

Query sequence inthe PGR-TK sequence database

Command line example. A command line tool named pgr-query is
provided to query a PGR-TK database with a set of sequences, each
of which represents a region of interest. It is recommended to select
regionslarger than 20 kb, as they contain enough SHIMMER anchors.
Ifsmaller regions are of interest, padding with flanking sequences can
improve theresults.

The follow command shows an example querying the database:
pgr-query/data/pgr-tk-HGRP-y1-evaluation-set-vO ROI_seq.fa pg_seqs
--merge-range-tol 100,000.

In this example, the ROI_seq.fa file contains sequences from the
regions of interest. The pgr-query tool generates a set of fastafiles with
the prefix ‘pg_seqs’ for each query sequence in the ‘ROI_seq.fa’ file.
Additionally, a ‘pg_seqs.hit’ file is produced, which contains informa-
tion about the alignment range between the query and the results, as
well as the number of anchors identified between each pair of query
results. Thisinformation can be used tofilter out unwanted alignments.

Python APl example. For finding homologous sequences in a PGR-TK
database, we need tostart withaquery sequence. We canfetchasequence
in the database giving a known ‘data source’, ‘contig name’ tuple and
the beginning and ending coordinates. As the SHIMMERs are sparsely
distributed inasequence, the query sequence should belong enoughto
cover enough minimizer anchors. The python statement shows atypical
code fragment to generate query results of aregion of interest:

ref_file name, roi_chr, roi_b, roi_e = ‘hglo_
tagged.fa’, ‘chré6_hgl9’, 32130918, 32959917
padding = 10000

#iget a segment of a reference

roi_seq = ref db.get sub_seqg(ref file name, roi_

chr, roi_b-padding, roi_e+padding)
# using the roi_seq to find hits in ‘sdb’
aln range = pgrtk.query sdb(sdb,

merge_ range tol=200000)

roi_seq,

The output aln_range from the query_sdb() call contains data of
the hits in the PGR-TK database. Internally, the query_sdb() method
performs:

(1) create SHIMMER pairs of the query sequence (2) use the SHIMMER
pairs and the hashmap index to find all hits in the database

(2) perform sparse dynamic programming to find sparse align-
ments between the query sequence and all hits in the database

(3) merge the alignment segments if any of them are within the
merge_range_tol parameter.

The parameter merge_range_tol is introduced to avoid align-
ment fragmentation when the query sequence contains a region of
high polymorphism butwesstillwant to fetch those diverse sequences
for constructing the pangenomics graph.

Typically, auserneeds to process the datain aln_range for different
analysis. Our example Jupyter Notebooks provides various examples
for processing the output to generate dot plotor MAP-graphsandsoon.

Build minimizer anchor pangenome graph and principal
bundle decomposition

Command line example. Given a set of sequence in a fasta file, for
example, the query results from pgr-query command, we can build the
pangenome graph and the principal bundle decomposition (outputted
asabedfile) by

pgr-pbundle-decomp -w 48 -k 56 -r 8 \

--min-span 12 --bundle-length-cutoff 100 \
--bundle-merge-distance 1000 --min-branch-size 8 \
--min-cov 0 --include file contain contig names \
pgr-query pgr_out

In the pangenome graph construction process, the following
options can be used to control the graph construction: -w, -k, -r and
--min-span. The --min-cov option sets the minimum coverage require-
ment for a vertex to be included in the principal bundle graph. The
--min-branch-size option allows the user tofilter out short branches that
containless than aspecified number of verticesin the MAP-graph. The
--bundle-length-cutoff option allows the user to exclude bundles shorter
than the specified length. When two bundles have the same identifier
and arewithinthe distance specified by --bundle-merge-distance, they
will be merged. If the --include option is specified, only those contigs
specifiedin the file_contain_contig_names file will be analyzed.

The command generates a set of files with the prefix pgr_out:

pgr_out.bed # the bed file contains the principal
bundle decomposition

pgr_out.ctg.summary.tsv # summary for bundle
statistics for each contig

pgr_out.mapg.gfa # MAP-graph in GFA format
pgr_out.mapg.idx # index for the sequence in the
GFA file

pgr_out.pmapg.gfa #principal bundle graph in the
GFA format

The pgr_out.bed has the following format. Each line is a bundle
contain in a contig: contig_name begin_coordinate end_coordinate
bundle_specification where the bundle_specification is six fields
delimited by “". The fields are bundle identifier, bundle vertex count,
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orientation, begin vertex number, end vertex number, ‘R’ or ‘U’ for
repetitive or unique in the contig. Note such a region in a contig may
notonly project tothe fullbundle. Insuch cases, end_vertex-bgn_vertex
isless than bundle_vertex_count.

The*.mapg.idx file contains the information about each vertexin
the .gfafiles. It contains three kinds of tagged line starting with ‘K’, ‘C’
and ‘F. TheKline specifies the parameters used to generate the graph.
The C lines specify the contigs contained in the graph. The F lines
specify the fragment of sequences contained in each vertex. Here are
the fields for echo of them: K line: w, k, r, min_span

Sline: contig_identifer, contg_name, contig_source, contig_length

F line: frag_unique_identifier, frag_numeric_identifer, contig_
identifer, start_coordinate, end_coordinate, orientation

Python API:

To build the MAP-graph and principal bundle decomposition
within a python program, one can use the instance methods gener-
ate_mapg_gfa() and get_principal_bundle_decomposition() of an pgrtk.
SeqIndexDB() object. Please read the documentationat https://genedx.
github.io/pgr-tk/for the APl details.

Clustering principal bundle decomposition structure
The follow command performs clustering of the principal bundles
stored inabed file: pgr-pbundle-bed2dist pgr_out.bed pgr_out.

It will generate these output files: pgr_out.dist # all pairwise
distance

pgr_out.nwk # a hierarchical tree in Newick format
pgr_out.ddg # a file contain the dendrogram for the
pgr-pbundle-bed2svg to draw the dendrogram panel

Generate principal bundle decomposition plotinscalable
vector graph format

The following is an example to generate a SVG file pgr_out.svg from
pgr_out.bed that layout 500,000 bp with annotation specified in a
file called pgr_annotation with a dendrogram panel on the left from
the pgr_out.ddg dendrogram data

/code/pgr-pbundle-bed2svg pgr out.bed pgr out \
--track-range 500000 --track-tick-interval 100000 \
--track-panel-width 1200 --stroke-width 0.5 \
--annotations pgr_ annotation \

--ddg-file pgr out.ddg \

--highlight-repeats 3

Survey on the genome in bottle challenging clinical and
medically relevant genes with the MAP-graphs
The GIAB Consortium provides variant call benchmarks on seven bench-
mark genomes®®"*2, These benchmarks wereinitially formed by integrat-
ing multiple short-read technologies, but the latest version integrated
linked-read and long-read technologies to form benchmarks inregions
difficult to map with short reads. However, a set of 395 challenging but
medically relevant genes were identified as substantially (more than10%)
excluded from the mapping-based benchmark due tolongrepeats, large
structural variations, segmental duplications and/or high polymorphism
betweenthe benchmark genome HGO02 and the reference genome hg19
or GRCh38.Along-read genome assembly approach provided areliable
benchmark call set of 273 out of the 395 genes™. The remaining 122 were
still excluded mainly because they were not accurately assembled, or
no benchmarking tools exist to compare different representations of
complexvariantsinthe genes. Overall, 395 genes have recently shownto
include highlevels of polymorphism across different ethnicities making
ithighly challenging to represent their variations®.

The current GIAB variant benchmarks focus on a small set of
seven well-characterized genomes with extensive short-, linked- and
long-read data to ensure robust benchmarks and more tractable

method development and benchmark evaluations. Meanwhile, alim-
ited representation of genomes in a population may miss significant
structural variants, additional copies of genes and context for impor-
tantvariants for diseases not observed in asmaller dataset. Given that
increasingly accurate long-read and assembly level data are being
produced at pangenome scales now, we are surveying how we can use
suchresources to benchmark variant accuracy atabroader population
level for the challenging CMRG. Such pangenome analysis will help
to generate guidelines for future practice.

With PGR-TK, we extract all sequences from the HPRC year one
release (94 haplotype assemblies),and CHM13 v.1.1, GRCh38 and hg19
of all 385 CMRG. We generate a MAP-graph of each gene and output
thisin GFA format. For each graph, we derived two metricsto estimate
(1) the degree of polymorphism among the pangenomes, and (2) the
repeat content taking account of the variations of the pangenomes.

Toestimate the degree of polymorphism, we consider adiffusion
processinthe graph (below) and derive an entropy-like quantity from
anormalized equilibrium distribution. The higher entropy valuesindi-
cate more complicated graphs likely from the polymorphism from dif-
ferentgenomes. The diffusion weight on each vertexis also associated
with multiplicity and repetitiveness of the corresponding segmentsin
the pangenomes. We pick the average of the top 32 diffusion weights
from the MAP-graph of each gene as a simple metric to measure the
most challenging repeat content within agene.

Togaininsight about the challenge for calling variants of the CMRG
setatapangenome scale, we plot the diffusion entropy versus the maxi-
mum local repeat weights for each gene (Fig. 4c). Asthere are no obvious
correlations, these two quantities provide independent measurements
oftwo aspects of the MAP-graph structures of these genes. We find high
repetitive genes are harder to createareliable variant benchmark call set
for.Many highly repetitive genes are excluded fromthe current CMRG
benchmark set. We do not observe that higher entropy is correlated
with the reduction of the gene in the benchmark set.

We highlight several genes with high entropy or high repetitive-
ness. The MAP-graphs and the Integrative Genomics Viewer view of the
pangenome assemblies of aselected set genes (LMF1,ANKRD11,SRGAP2,
KMT2C,LPA,MUC4,MUC3A,KATNAL2, FLG) aligned to GRCh38 are shown
in Supplementary Fig. 4. In the Integrative Genomics Viewer view of
LMFI (Supplementary Fig. 4a), several variation hotspots are visible
and may correspond to localized structural variants. This serves as a
simple example to examine the concordance of structural variationin
the population and the principal bundle decomposition. We use PAV®*
tocall structural variants for comparison. In Supplementary Fig. 4b, the
structural variant calls resulting from PAV are provided as an auxiliary
track (black) below the principal bundle decomposition tracks for a
selected set of HPRC year one genomes, where both haplotypes are
resolvedintheregion.Itis evident that the structural variation calls cor-
respond to theregions where principal bundles have complex structure
and aredistinct from the reference genome GRCh38 (the top track). As
shownin LPA (associated with coronary disease®, Supplementary Fig.7),
KATNAL?2 (loss of function variant discovered in autistic proband®**)
alsohaslongtandemrepeat variationsinthe HPRC pangenome cohort.
Wefind the number of the 5.8 kbp repeatsinside KATNAL2 ranges from
3 to 25 (Supplementary Fig. 8). Applying MAP-graph decomposition
on genes such as KATNAL2 with a big pangenome reference panel will
provide additionalinsights to the natural of the variability of the repet-
itiveness and its effects on the underlying biology like other, more
well-studied genes, for example, LPA, in the coming years.

Compute graph diffusion entropy and max repetitive weight

It would be desirable to derive quantitative measurements so we can
characterize a set of large numbers of MAP-graphs fast. One thing we
areinterested in quantifying is how complex a graphis. The intuition
is that if a region of the genome is more polymorphic in the popula-
tion, the graph will have more alternative paths, or bubbles. We like
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to generate a quantity as a proxy for that. For this, we borrow the idea
from network science study and spectral graph theory to consider a
diffusion/random walk process onagraph®. Foragraph, we consider
a set of random walkers starting at each vertex. The random walkers
candrift on the graph through the edge-connection. We can consider
the distribution of the random walkersin the final equilibrium state. If
agraphisrelatively simple, then the final distribution will be uniform
(subject tominor boundary condition corrections). Onthe other hand,
ifthe weights of the vertices or topology of the graph are more complex,
we would expect the final distribution of the walkers would be less
uniform and reflect the complicated nature of the graph.

Thefinal distribution of the such diffusion process can be obtained
by simple matrix multiplication iteration from the adjacent matrix of
aMAP-graph. Given an adjacency matrix A, where the matrix element
Ajis the number of sequences supports edge from v; to v;. The final
distribution P can be written as P= (1/N) lim,,,.. M"1, where M= AD™,
Dis the degree matrix defined as D; being the degree of vertex v;and
D;=0ifi#j,Nisthetotalnumber of verticesand1isacolumnvectorin
which every element is one. (When we compute P, we only repeat the
number of multiplications Ntimes to approximate the final distribution.)

P is a normalized column vector [p,, py,....p,1]" such that
Y i-0..naP: = 1(see Supplementary Fig. 4a for an example). The diffusion
entropy used inthisworkis definedasS=-) ._,_,p;l0og,(p)).

To find the highly repetitive elements inside a region of interest,
welookinto largest elements in the unnormalized vector NP as a proxy
of average number of repeats considering the graph structure. We
pick the top 32 elements in NP and use the average of those as a proxy
number to estimate the repetitiveness of potential repeat unitsinside
aregion of interest.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The HPRC year one release sequence and prebuilt index: https://
giab-data.s3.amazonaws.com/PGR-TK-Files/pgr-tk-HGRP-y1-
evaluation-set-vO.tar and https://figshare.com/articles/journal_
contribution/HPRC-Y1-sequence-data_zip/22584403 (https://doi.org/
10.6084/m9.figshare.22584403). Scripts and source data URLs for
constructing the HPRC AGC file: https://github.com/GeneDX/pgr-tk-
notebooks/tree/main/pgr-tk-sequence-source. All GFA files, fetched
sequencesfromHPRCyearonerelease ofthe385CMRG:https://giab-data.
s3.amazonaws.com/PGR-TK-Files/CMRG_output_dir v0.3.3.tar.

Code availability

The code of the PGR-TK is hosted in a GitHub repository, https://
github.com/GeneDX/pgr-tk, and the code can be obtained using the
standard ‘git clone’ command. Follow the README.md document
for building the PGR-TK. A document for Python APl is provided at
https://genedx.github.io/pgr-tk/. The source code for the v.0.4.1
version is also hosted at https://figshare.com/articles/journal_con-
tribution/pgr-tk-0_4_1_zip/22584793 (https://doi.org/10.6084/
m9.figshare.22584793). Prebuilt binaries for Linux Ubuntu distribution
22.04 can be downloaded from https://github.com/GeneDX/pgr-tk/
releases/tag/v0.4.1and https://figshare.com/articles/journal_contribu-
tion/pgr-bin-pacakge-v0_4_1_tgz/22584787 (https://doi.org/10.6084/
mo.figshare.22584787). Example Notebooks using PGR-TK including
code making most of (the source of) the plots in this paper can be found
at https://github.com/GeneDX/pgr-tk-notebooks and https://figshare.
com/articles/journal_contribution/scripts_and_artifects_zip/22584118
(https://doi.org/10.6084/m9.figshare.22584118) Additional informa-
tion about a docker image with prebuilt PGR-TK library and Jupyter
Laboratory Server and usageis at https://github.com/GeneDX/pgr-tk/
blob/main/pgr-tk-workstation/Readme.md.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

|:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The scripts to processes the origin data are in https://github.com/GeneDX/pgr-tk-notebooks/tree/main/pgr-tk-sequence-source (link included
in the manuscript).

software version:
AGC (Assembled Genomes Compressor) v. 2.0 [build 20220405.1]
PGR-TK: revision: 75fa20b41592941c9e6eef3f914d97788ee06b86 and after

Data analysis The following third party software are used in analysis

minimap2:
source: https://github.com/Ih3/minimap2
revision: 01b98e8e52a8acfed5a9d57853f028267eaf045f

seqwish:
source: https://github.com/ekg/seqwish.gi
revison:f362f6f5ea89dbb6a0072a8b8ba215e663301d33

020¢ 1dy

minigraph

source: https://github.com/Ih3/minigraph

revision: 3398263be225ba923140a1081b505b71f2cdf8fb
rustc: 1.68.2 (9eb3afe9e 2023-03-27)

agc: https://github.com/cschin/agc.git revision: 453cOafdc54b4aa00fa8e97a63f196931fdb81c4 (git repo forked from https://github.com/




refresh-bio/agc)

PGR-TK: revision: 75fa20b41592941c9e6eef3f914d97788ee06b86 and after

Code repositora:

source: https://github.com/GeneDx/pgr-tk

APl document: https://genedx.github.io/pgr-tk/

pre-built binaries for amd64 Ubuntu 20.04 linux distribution
https://github.com/GeneDx/pgr-tk/releases/tag/v0.4.0

The licenses of the code / usage limitation: https://github.com/GeneDx/pgr-tk/blob/main/LICENSE
Additional examples can be found at https://github.com/GeneDX/pgr-tk and https://github.com/Sema4-Research/pgr-tk-notebooks

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The initial assembly contigs are downloaded from AWS S3, the full GenBank Accessions are in https://github.com/GeneDx/pgr-tk-notebooks/blob/main/pgr-tk-
sequence-source/genbank_accessions.txt. The URLs that we download are in https://github.com/GeneDx/pgr-tk-notebooks/blob/main/pgr-tk-sequence-source/
Yearl_assemblies_v2_genbank.index, we list them as well:
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s3://human-pangenomics/working/HPRC_PLUS/NA20129/assemblies/yearl f1_assembly v2_genbank/NA20129.paternal.f1_assembly v2_genbank.fa.gz
s3://human-pangenomics/working/HPRC_PLUS/NA20129/assemblies/yearl_f1_assembly v2_genbank/NA20129.maternal.f1_assembly v2_genbank.fa.gz
s3://human-pangenomics/working/HPRC_PLUS/NA21309/assemblies/yearl f1_assembly v2_genbank/NA21309.paternal.f1_assembly v2_genbank.fa.gz
s3://human-pangenomics/working/HPRC_PLUS/NA21309/assemblies/yearl _f1l_assembly v2_genbank/NA21309.maternal.f1_assembly v2_genbank.fa.gz
s3://human-pangenomics/working/HPRC_PLUS/CHM13/assemblies/chm13.draft_v1.1.fasta.gz
s3://human-pangenomics/working/HPRC_PLUS/GRCh38/assemblies/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz

The HPRC year one release sequence and pre-built index: https://giab-data.s3.amazonaws.com/PGR-TK-Files/pgr-tk-HGRP-y1-evaluation-set-vO.tar

All GFA files, fetched sequences from HPRC year one release of the 385 CMRG: https://giab-data.s3.amazonaws.com/PGR-TK-Files/CMRG_output_dir_v0.3.3.tar
Example Notebooks using PGR-TK including code making most of (the source of) the plots in this manuscript: https://github.com/Sema4-Research/pgr-tk-notebooks

Information about a docker image with prebuilt PGR-TK library and Jupyter Lab Server and Usage: https://github.com/Sema4-Research/pgr-tk/blob/main/pgr-tk-
workstation/Readme.md
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Not applicable, our work is on bioinformatics methods not control-case study. The amount data we used are just limited by the amount of
genome generated by HPRC or other agencies and computational resource available to us.

Data exclusions  not applicable, see above.

Replication Not applicable, see above. (The code is totally deterministic, although some code / algorithm improvement may changes the results. Once the
code revision is fix, with the same input data, we will get the same output results.)

Randomization  Not applicable, Our results does not dependent objective statistic analysis.

=
=i
(=
=
(D
=
D
W
(D
Q
=
(@)
o
=
(D
o
©)
—
«©
%)
C
3
3
Q
=
<

Blinding Not applicable, Our results does not dependent objective statistic analysis.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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