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MultiVI: deep generative model for the 
integration of multimodal data

Tal Ashuach    1,2,6, Mariano I. Gabitto    2,3,4,6  , Rohan V. Koodli2, 
Giuseppe-Antonio Saldi    4, Michael I. Jordan    2,3 & Nir Yosef    1,2,5 

Jointly profiling the transcriptome, chromatin accessibility and other 
molecular properties of single cells offers a powerful way to study cellular 
diversity. Here we present MultiVI, a probabilistic model to analyze such 
multiomic data and leverage it to enhance single-modality datasets. MultiVI 
creates a joint representation that allows an analysis of all modalities 
included in the multiomic input data, even for cells for which one or more 
modalities are missing. It is available at scvi-tools.org.

The advent of technologies for profiling the transcriptional and chro-
matin accessibility landscapes at a single-cell resolution has been para-
mount for cataloging cellular types and states1,2. However, most uses 
of single-cell RNA-sequencing (scRNA-seq)3,4 and single-cell assay for 
transposase-accessible chromatin with sequencing (scATAC-seq)2,5 
have been limited such that a given cell can only be profiled by one 
technology. Recently, multimodal single-cell protocols have emerged 
for simultaneously profiling gene expression, chromatin accessibility 
and, more recently, the abundance of surface protein in the same cell6,7. 
This concomitant measurement enables a more refined categorization 
of cell states and, ultimately, a better understanding of the mechanisms 
that underlie their diversity.

The emerging area of multimodal profiling has benefited greatly 
from new statistical methods that jointly account for multiple data 
types in a range of analysis tasks8–10. Another promising application 
of multimodal assays, however, is to improve the way in which the 
more common and less costly single-modality datasets (for example, 
scRNA-seq) are analyzed and interpreted. By leveraging datasets with 
multimodal (paired) information, one can infer properties of the miss-
ing modalities and thus gain new insight that is otherwise difficult to 
achieve. To provide a comprehensive solution, such an integrative 
analysis should be carried out at two levels. First, it should generate a 
low-dimensional summary of the state of each cell that reflects all the 
input molecular types, regardless of which type of information is avail-
able for that particular cell. As commonly done in other applications of 
single-cell genomics, such a representation can facilitate the identifica-
tion of subpopulations or gradients and enable a more informative data 
visualization11. A second level of analysis should generate a normalized, 
batch-corrected view of each high-dimensional data type (for example, 

accessibility of each chromatin region), either observed or inferred. 
Such an analysis can enable broader identification of molecular fea-
tures that characterize cellular subpopulations of interest.

Here, we introduce MultiVI, a deep generative model for probabilis-
tic analysis of multimodal datasets, which also enables their integration 
with single-modality datasets. Focusing on gene expression and chro-
matin accessibility as our main case study, we demonstrate that MultiVI 
provides solutions for the two levels of analysis, with a low-dimensional 
summary of cell state and a normalized high-dimensional view of both 
modalities (measured or inferred) in each cell. MultiVI was designed to 
account for the general caveats of single-cell genomics data, namely 
batch effects, different technologies for the same modality, variability 
in sequencing depth, limited sensitivity and noise. It does so while 
explicitly modeling the statistical properties of each modality, treating 
the discreteness of the scRNA-seq signal and the binary nature of the 
scATAC-seq signal. A key part in the design of MultiVI is its modularity, 
which allows for inclusion for additional data modalities. Here, we dem-
onstrate it by adding surface protein expression with tagged antibodies 
as a third modality6,7. The extended model accounts for properties 
of the protein data (for example, nonzero background component), 
and enables integration and joint analysis with single-modality (RNA-, 
chromatin- or protein-only) datasets.

A recent method (Cobolt12) presented an approach similar to that 
of MultiVI, with promising results. As we will show, MultiVI provides a 
more comprehensive solution for integrating and interpreting infor-
mation across modalities, studies and technologies (a summary of all 
the computational experiments performed in the paper is available in 
Supplementary Fig. 1). In addition to showcasing its ability to derive 
accurate low-dimensional representations, we demonstrate several key 
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MultiVI integrates paired and single-modality data into a common 
low-dimensional representation, we artificially unpaired the dataset. 
In this procedure, a random set of cells (between 1 and 99% of all cells) 
were unpaired such that each cell in the set appears twice: once with 
only gene expression data, and once with only chromatin accessibility 
data. This resulted in a heterogeneous dataset containing three sets 
of ‘cells’: one set has both modalities available, a second set with only 
RNA sequencing (RNA-seq) information and the third set with only 
ATAC-seq information.

Using these data, we compared MultiVI to Cobolt12, a model similar 
to MultiVI that uses products of experts to create a common latent 
space. To explore the performance of additional analysis strategies, 
we also added several adaptations of Seurat8. Specifically, we used the 
Seurat V4 code base with three different approaches: (1) gene activity, 
we converted the ATAC-seq data of the accessibility-only cells to gene 
activity scores (using the signac procedure), and then integrated all the 
cells using the gene-level data (that is, gene scores when RNA-seq is not 
available or gene expression when RNA-seq is available); (2) imputed, 
we followed the steps in (1) and then used Seurat to impute the RNA 

properties of MultiVI as a way of imputing high-dimensional signals. 
First, we demonstrate that MultiVI provides calibrated estimates of the 
uncertainty in the imputed values (for example, predicted chromatin 
accessibility for scRNA-seq only cells and predicted gene expression 
for scATAC-seq only cells), such that less accurate predictions are also 
less confident. Second, we demonstrate that these estimates of uncer-
tainty give rise to accurate estimates of differential gene expression 
or chromatin accessibility in cells for which the respective modality 
was not available. Third, we show that even if a population of cells has 
information from only one modality, accurate imputation may still 
be achieved when multimodal information is available for related 
populations (thus effectively performing out-of-sample prediction). 
MultiVI is available in scvi-tools as a continuously supported, open 
source software package, along with detailed documentation and a 
usage tutorial at https://docs.scvi-tools.org/.

Results
The MultiVI model
MultiVI leverages our previously presented variational autoencoding 
(VAE13) models for gene expression (scVI, ref. 14), chromatin acces-
sibility (PeakVI, ref. 15) and protein abundance (totalVI, ref. 16). For 
clarity, we focus the discussion here on jointly modeling scRNA- and 
scATAC-seq data. The extension to surface protein measurements is 
provided in the Methods section.

Given multimodal data from a single cell (X), and a sample (or 
batch) S, we divide the observations into gene expression (XR) and 
chromatin accessibility (XA). Two deep neural networks, termed encod-
ers, learn modality-specific, batch-corrected multivariate normal 
distributions that represent the latent state of the cell based on the 
observed data, q(zR∣XR, S) and q(zA∣XA, S), from the expression and acces-
sibility observations, respectively. To obtain a latent space that reflects 
both modalities, we penalize the model so that the distance between 
the two latent representations is minimized and then estimate the 
integrative cell state q(z∣XR, XA, S) as the average of both representa-
tions. The states of cells for which only one modality is available (that 
is, unpaired), are drawn directly from the representation for which data 
are available (that is, zR or zA). This encoding part of the model can be 
naturally extended for handling other molecular properties (such as 
protein abundance), by including additional encoder networks.

In the second part of the model, observations are generated from 
the latent representation using modality-specific decoder neural net-
works. Similar to our previous models for gene expression (scVI) and 
accessibility (PeakVI), RNA expression data are drawn from a negative 
binomial distribution and the accessibility data from a Bernoulli dis-
tribution. The likelihood is computed from both modalities for paired 
(multimodal) cells, and only from the respective modality of unpaired 
cells. Finally, during training, we include an adversarial component 
that penalizes the model if cells from different modalities are overly 
separated in latent space (Methods).

This two-part architecture leverages the paired data to learn 
a low-dimensional representation of cell state, which reflects both 
data types, and it allows cells for which only one modality is available 
to be represented in the same ( joint) latent space. Additionally, the 
generative part of the model provides a way to derive normalized, 
batch-corrected gene expression and accessibility values for both 
the multimodal cells (that is, normalizing the observed data) and for 
unpaired cells (that is, imputing unobserved data; Fig. 1 and Methods).

MultiVI integrates paired and unpaired samples
We first trained MultiVI on a fully-paired peripheral blood mono-nuclear 
cells (PBMC) dataset from 10X genomics, and observed that our 
predicted library size factors (Methods) are highly correlated with 
the observed number of unique molecular identifiers in both the 
expression and accessibility libraries (Pearson’s correlation 0.97 and 
0.91, respectively; Supplementary Fig. 1b,c). Next, to study how well 
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expression values for the accessibility-only cells and (3) weighted near-
est neighbors (WNN), using WNN graphs, which leverage information 
from both modalities to create a joint representational space, then 
project single-modality data onto this space (Methods).

We ran all methods on the artificially unpaired datasets and 
compared their latent representations (with the exception of the 
WNN-based approach on the 99% unpaired dataset, which failed to 
produce results due to the low number of paired cells; Fig. 2a–c and 
Supplementary Fig. 2). We first quantified the mixing performance 
by calculating the local inverse Simpson’s index (LISI) score described 
by ref. 17 (Fig. 2d). We found that algorithms based on generative 
modeling (Cobolt, MultiVI) outperform the alternative approaches 
of gene scoring and WNN in most rates of unpaired cells. Conversely, the 
Seurat-based imputation approach (unlike the other two Seurat-based 
approaches) maintains high mixing performance across all levels of 
unpaired cells. This result is expected, since each accessibility-only 
cell is represented by a gene expression vector that is an average over 
cells for which RNA-seq is available and that have gene expression 
profiles that are similar to one another (that is, a local neighborhood in 
a transcriptome-based space). It does not, however, indicate whether 
these representations are accurate.

We next examined the accuracy of the inferred latent space, taking 
advantage of the ground-truth information contained in our artificially 
unpaired datasets. Ideally, the two modality-specific representations 
of unpaired cells would be situated closely in the latent representation, 
as both capture the same biological state. We therefore looked at the 
distances between the two representations of each unpaired cell in 
the latent space created by each method. To account for the varying 
scales of different latent spaces, we used the rank distance (the minimal 
K for which the two representations are within each other’s K-nearest 
neighbors (KNN), averaged across all cells; Methods and Fig. 2e). In 
this experiment, we found that MultiVI and Cobolt maintain the multi-
modal mixing accuracy substantially better than the three alternatives, 

and that all methods have a deteriorating performance as the level of 
unpaired cells increases.

One of the key modeling decisions in MultiVI, compared with 
previous approaches such TotalVI (ref. 16), is the creation of latent 
representations for each data modality, followed by the calculation of 
an average representation, while penalizing the symmetric KL distance 
between representations. To test the robustness of this approach, we 
trained models with other approaches and compared them against 
default MultiVI. We tested replacing the symmetric KL divergence term 
with a maximum mean discrepancy term (MMD)18, as well as replacing 
the simple average with weighted averages in two settings: a global 
weighting scheme (wm, such that ∑Modalitieswm = 1) and a cell-specific 
weight (wm,c, such that ∑Modalitieswm,c = 1). In both cases, weights are learn-
able parameters optimized along with the rest of the model. We used 
two annotated multimodal datasets in which PBMCs are profiled using 
either DOGMA-seq7 or transcriptome-epitope-accessibility sequencing 
(TEA-seq)6 to evaluate latent space creation (Supplementary Fig. 3a,b).  
To evaluate each condition, we used the LISI metric together with 
several single-cell genomics batch correction and conservation of 
biological variation metrics, as defined in the scib package19 (Sup-
plementary Information). In both datasets and under the different 
modeling decisions, all settings we tested yielded highly similar results 
(Supplementary Fig. 3c). We concluded that the model is robust with 
regard to these modeling decisions.

Taken together, these results show that the deep generative mod-
eling approach, as embodied by MultiVI, effectively integrates unpaired 
scRNA and scATAC data while still preserving the biological state of 
each cell.

Integration of independent studies
Our benchmark analyses in Fig. 2 rely on artificially unpaired data, 
where our model benefits from all data fundamentally being gener-
ated in a single batch and by a single technology. This does not reflect 
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real-world situations in which it is desired to integrate datasets that 
were generated in different batches or even different studies. We 
therefore sought to demonstrate MultiVI on a set of real-world data. 
We collected three distinct datasets of PBMCs: (1) multimodal data 
from the 10X dataset we used previously; (2) ATAC-seq from a sub-
set of hematopoiesis data generated by Satpathy et al.20, containing 
multiple batches of PBMCs as well as cell-type specific (FACS-sorted) 
samples and (3) PBMC data generated by several different technologies 
for scRNA-seq, taken from a benchmarking study by Ding et al.21. The 
datasets were processed to create a set of shared features (genes or 
genomic regions, when measurements are available), and annotations 
were collected from both the Satpathy et al. and Ding et al. datasets and 
combined into a shared set of cell-type labels (Methods). The resulting 
dataset has 47,148 (53%) ATAC-only cells from Satpathy et al., 30,495 
(34%) RNA-only cells from Ding et al. and 12,012 (13%) jointly profiled 
cells from 10X.

To gauge the extent of batch effects in these data, we ran MultiVI 
without accounting for the study of origin of each sample or its specific 
technology (which varies between the RNA-seq samples from Ding 
et al.). In this setting, cells stratified based on sample in the accessibility 
data, and based on technologies in the expression data, indicating that 
batch effects were affecting the latent representation (Supplementary 
Fig. 4). We then configured MultiVI to correct for batch effects and 
technology-specific effects within each dataset and re-ran the analysis 
(Methods). The resulting joint latent space mixes the three datasets 
well (Fig. 3a), while accurately matching labeled populations from 
both datasets (Fig. 3b). MultiVI achieves this while also correcting 

batch effects within the Satpathy data and technology-specific effects 
within the Ding data (Fig. 3c,d and Supplementary Fig. 5a–c). To study 
the correctness of the integration, we examined the set of labeled 
cells from the two single-modality datasets (FACS-based labels from 
Satpathy and manually annotated cells from Ding). For each cell, we 
identified its 50 nearest neighbors that came from the other modality 
and summarized the distribution of labels from the neighboring cells. 
We find a clear agreement between the labels of each cell and the labels 
of its cross-modality neighbors, with some mixing among related 
cell types (Supplementary Fig. 5d). This therefore demonstrates that 
MultiVI is capable of deriving biologically meaningful low-dimensional 
representations that effectively integrate data not only from different 
modalities, but also from different laboratories and technologies.

Probabilistic data imputation with estimated uncertainty
The generative nature of MultiVI enables several functionalities for 
analyzing the data in the full high-dimensional space, performing impu-
tation of missing observations and modalities, estimation of uncer-
tainty and differential analysis. To evaluate MultiVI’s data imputation 
capabilities, we resorted to the PBMC dataset from 10X (Methods) 
where 75% of the cells were artificially unpaired (as in Fig. 2). We used 
MultiVI to infer the values of the missing modality for the unpaired 
cells and found that for both modalities, the imputation had high cor-
respondence to the observed values (Fig. 4a–c). Considering all the 
gene expression entries together, MultiVI achieves a Spearman correla-
tion of 0.57 between the imputed values and the originally observed 
ones (scaled by library size). Since raw chromatin accessibility data 
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are binary, we computed the area under the precision-recall curve to 
assess imputation accuracy, in which MultiVI reaches 0.41. Since the 
raw data can be markedly affected by low sensitivity, we also calculated 
the correlation between the imputed values and a smoothed version 
of the data (obtained with a method different from MultiVI; Methods), 
where the signal is averaged over similar cells (separately for ATAC-seq 
and RNA-seq), thus mitigating this issue. We obtained high level of cor-
respondence between the imputed values and this corrected version 
of the raw data (Spearman correlations 0.8 and 0.86 for accessibility 
and expression, respectively; Supplementary Fig. 7a,b).

Next, we focused on uncertainty estimation for the imputed acces-
sibility values. We measured the uncertainty of the model for each 
imputed accessibility value by sampling from MultiVI’s generative 
model (Methods) and found a strong relationship between the esti-
mated uncertainty and the error at each data point, indicating that the 
model is indeed less certain of predictions that are farther from the 
hidden ground-truth values (Fig. 4c). Equivalent analysis for expression 
imputations is less informative due to the strong correlation between 
the average observed expression of a gene and the uncertainty of the 
imputed results.

We identified a small subset of chromatin accessibility values 
(roughly 0.5% of observations) for which we have high-confidence 
imputations that also have high error (Fig. 4c, green square). These 

high-confidence–high-error imputations correspond to cases where 
the model confidently predicts the opposite of the actually observed 
value (Fig. 4d). To investigate the source of these errors, we instead 
compared the imputed values to the smoothed version of the observed 
accessibility estimates (Methods). The smoothed data agree with the 
MultiVI predictions—namely, observations that were predicted as 
accessible tend to be open in highly similar cells, and observations that  
were predicted as inaccessible tend to be closed in similar cells  
(Fig. 4e). This indicates that these high-confidence high-error values 
may correspond to false negatives and false positives in the raw data.

As a specific example of imputation, we highlight the T cell marker 
gene CD3G. While the observed expression and the observed accessibil-
ity of the region containing the transcription start site (TSS) of the gene 
show high noise and sparsity, the imputed values are highly consistent 
and clearly mark the T cell compartment of the latent space (Fig. 4f).

To further test the usability of MultiVI’s imputation, we next 
explored a scenario in which the multi- and single-modal data come 
from different biological conditions. In this case, we resorted to the 
PBMCs dataset collected under the DOGMA-seq protocol7. In this 
dataset, PBMCs are profiled at a resting condition as well as after stimu-
lation. We artificially created a dataset in which stimulated cells lack 
chromatin accessibility information and trained MultiVI in this dataset 
and the original (complete) one (Supplementary Fig. 6a,b). We first 
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considered the resulting latent representations to evaluate the extent 
of batch-effect correction and preservation of biological information. 
To this end, we applied the scib19 metrics package on both the perturbed 
and complete dataset. We found that the scores of the perturbed data-
set are similar (within 5%) to the scores of the unperturbed dataset 
(Supplementary Fig. 6c). Next, we assessed the accuracy of imputation 
of chromatin accessibility values in the stimulated cells by comparing 
the imputed values to the hidden accessibility values after smooth-
ing the latter values, as above. In this test, we found accurate level of 
reconstruction (Spearman correlation 0.93; Supplementary Fig. 6d), 
highlighting MultiVI’s ability to infer missing modalities even under 
new perturbations.

Overall, these results show that MultiVI is capable of imputing 
missing observations effectively. The ability to quantify the uncertainty 
further allows the user to determine which imputed values are reliable 
for downstream analyses and which are not.

Cross-modal differential analyses
Our results thus far demonstrate that MultiVI can be used to impute 
missing observations in situations where the multimodal and the 
single-modality data both contain similar cell types. The task becomes 
more challenging when considering a population of cells that is distinct 
from all other populations in the data and for which one of the modali-
ties was not observed.

To explore this, we used the same 10X PBMC dataset, with 75% of 
cells artificially unpaired, and clustered the latent space to identify 
distinct cellular populations (Supplementary Fig. 8a). We chose the B 
cell cluster, which we annotated as such using established markers (for 
example, CD19, CD79A). Next, we removed all expression information 
(paired or unpaired) from the B cell population, thus creating a distinct 
population for which only accessibility data are available to the model. 
In a second experiment, we removed all accessibility data from the 
B cell population to create a dataset for which only expression was 
observed in those cells (Supplementary Fig. 8b,c). We trained MultiVI 

separately on each of the two corrupted datasets, and used the model to 
perform differential analyses, comparing the B cell population and the 
remainder of the cells. Specifically, we conducted differential expres-
sion analysis with the model trained without B cell expression and 
differential accessibility with the model trained without B cell acces-
sibility. Statistical significance was estimated with Bayes factor, as in 
previous work14,15,22 (Methods). To evaluate the accuracy of this analysis, 
we used standard differential analyses (not using generative models) 
on the held-out data to create ground-truth differential results and 
compared them to our inferred results (Methods). Considering the first 
corrupted dataset, although no expression data were observed in the B 
cell population, we found high concordance between the observed and 
predicted log fold-change (logFC) values (Fig. 5a, Pearson’s correlation 
0.57). When examining genes that are preferentially expressed in B cells 
(observed logFC > 1) this became more evident (Pearson’s correlation 
0.74). Similarly, with the second corrupted dataset, we found high 
concordance between observed and predicted differences of acces-
sibility (Fig. 5b, Pearson correlation 0.67).

Among the top most differentially expressed genes detected 
with the imputed expression values, we found known B cell mark-
ers, including IGLC3, IGHM, CD79A and IGHD (Supplementary Table 1  
and Fig. 5c). Another example for a differentially expressed gene is 
CR2, a membrane protein that is normally expressed by both B and 
T cells, was predicted specifically in the corresponding compartments  
(Fig. 5d). Overall, we identified 1621 significantly differential genes 
(false discovery rate (FDR) of less than 0.05), of which 75% were also 
identified with the held-out data at a 5% FDR, a modest but significant 
enrichment (odds-ratio 1.22, hypergeometric test P < 1.9 × 10−35; Sup-
plementary Table 1). Increasing the threshold of significance (on the 
FDR for the standard analysis and the Bayes factor for the MultiVI 
results) increased the overlap between the sets of results indicating 
that the results are more consistent for more highly significant genes  
(Fig. 5e). Similarly, we identified 922 differentially accessible 
regions (FDR of22 0.05, Supplementary Table 2), of which 86% were 
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of the overlap between statistically significant results for various significance 
thresholds for expression (e) and accessibility (f). Observed diff., observed 
differential. BF threshold, Bayes factor threshold.

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | August 2023 | 1222–1231 1228

Article https://doi.org/10.1038/s41592-023-01909-9

also identified with the held-out data at 5% FDR (odds-ratio 1.57, 
P < 1.7 × 10−95). As in the gene expression analysis, the overlap between 
the inferred and observed differential accessibility analyses increased 
with the significance thresholds (Fig. 5f).

Taken together, these results demonstrate that MultiVI can be 
used to impute missing modalities even for populations that were only 
identified in a single-modality dataset. This unlocks the ability to lever-
age multimodal data to reanalyze existing single-modality datasets and 
impute the missing modality: chromatin landscape for existing scRNA 
experiments, and gene expression for existing scATAC experiments, 
as well as performing differential analyses using these imputed values.

MultiVI models three modalities and enables data imputation
To test the ability of MultiVI to integrate more than two modalities, 
we added measurements of protein abundance on the cell surface 
(with CITE-seq) and accounted for these in the MultiVI model using 
distributional assumptions similar to TotalVI16 (Methods). To assess 
the ability of MultiVI to create meaningful tri-modal latent representa-
tions, we used the two PBMC datasets profiled with DOGMA-seq7 and 
TEA-seq6 protocols. For each dataset separately we then integrated the 
different samples (Fig. 6a–c and Supplementary Fig. 9a–c), and evalu-
ated the results using batch correction and biological-conservation 
metrics. As benchmark, we compared MultiVI to MOFA+ (ref. 9) and 
Seurat WNN8 (notably, the latter was designed for the case when all 
samples have all modalities). In both datasets, the latent space inferred 
by MultiVI performed on par with the two benchmark methods  
(Fig. 6d and Supplementary Fig. 9d). Next, we explored MultiVI’s abil-
ity to integrate tri-modal paired and unpaired samples. To benchmark 
this regime, we used the DOGMA-seq dataset to artificially create cells 
that are only profiled in two of the three modalities (RNA + chromatin, 
chromatin + protein or RNA + protein) (Fig. 6e). Overall we observed 
that MultiVI’s latent representation effectively removes batch effects 
and preserves cell-type identity. We quantified this performance by 
computing integration metrics and comparing against a principal com-
ponents analysis (PCA) latent space. PCA reseaches a better adjusted 
Rand index (ARI) score, while MultiVI outperforms in terms of batch 
connectivity (iLISI), graph connectivity and all silhouette-based metrics 
(Methods and Supplementary Fig. 9e).

Next, we examined how MultiVI handles a complex experimental 
design in which cells are profiled in all possible combinations of modali-
ties. We split cells in the DOGMA-seq dataset, selectively removed 
information from different modalities and created datasets that have 
only one (out of three) modality or two (out of three) modalities. We 
found that the resulting integrated space (Fig. 6f) ameliorates batch 
and technologies effects while maintaining cell-type biological infor-
mation, as in previous scenarios. Again, we assessed MultiVI’s per-
formance by comparison to PCA embedding computed on the raw 
data and showed superior integration performance (Supplementary  
Fig. 9e). Overall, these results demonstrate that MultiVI is able to ame-
liorate batch effects while preserving biological heterogeneity, even 
in the complex scenario in which three data modalities are present at 
different combinations.

Last, we assessed the performance of MultiVI to impute missing 
data in this tri-modal setting. We artificially unpaired 75% of the data, 
such that each cell is represented by three copies with only RNA, chro-
matin accessibility or protein expression data (resulting in a dataset 

in which 8% of cells have all tree modalities and the rest have only one 
of the three modalities). We find that the imputation of the missing 
modalities, generated by MultiVI (Supplementary Fig. 10) correspond 
to the observed values. These include Spearman correlations of 0.78 in 
the gene expression values, independent of the single modality used 
as input data (using smoothed observations, as above). We observed 
a similar outcome in the case of chromatin accessibility, with a Spear-
man correlation of 0.73 and 0.76 between the smoothed observed 
values and the imputed ones when only RNA or protein information is 
available, respectively. Our model for the protein data was designed 
to control for the nonnegligible background component in the signal 
(which may result of nonspecific binding of antibodies). We therefore 
first calculated the foreground (‘denoised’) component of all observed 
protein expression values using TotalVI (ref. 16). Since the protein 
imputed values in MultiVI are also generated with a similar two compo-
nent model, we were able to compare the imputed foreground signals 
to foreground signals that were inferred from the respective hidden 
observations. We find that the imputed values are also correlated 
with the observed data (with Spearman correlations of 0.53 when only 
chromatin accessibility data or gene expression data are available).

In summary, the inclusion of protein data into our analysis high-
lights the ability of MultiVI to handle additional data types and leverage 
them for a joint analysis with measurements of chromatin accessibility 
and gene expression.

Discussion
MultiVI is a deep generative model for integrated analysis of multimodal 
and single-modality single-cell datasets. MultiVI uses jointly profiled 
data to learn a multimodal model of data sources and to relate individ-
ual modalities on the same population of cells. The model accounts for 
technical sources of measurment noise and can correct for additional 
sources of unwanted variation (for example, batch effects). MultiVI 
learns a rich embedding of the data coalescing information present in 
each individual data type, which can be used for downstream analyses.

Multiomic integration algorithms have been recently classified 
based on their ability to infer latent representations from shared cells 
across measurements (vertical integration scenario), shared features 
across datasets (horizontal integration scenario)23,24 or subsets of 
any of the previous (mosaic integration scenario). MultiVI could be 
considered a vertical integration scheme, when purely multiomic data 
are analyzed and different modalities are measured in the same cells. 
At the same time, MultiVI’s ability to integrate transcriptional and 
protein data, when only a subset of genes are shared across technolo-
gies, placed it within the horizontal integration scenario. Last, MultiVI’s 
capacity for integrating multiple modalities when only a subset of 
cells is shared across modalities also qualifies it as a mosaic algorithm. 
These characteristics highlight MultiVI’s ability to work under many 
scenarios, in contrast to previous algorithms that are optimized to 
work just in one condition25,26.

Recent algorithms for the analysis of multimodal data were devel-
oped to process paired datasets, in which both modalities have been 
profiled at the same cell9,10. Most algorithms, however, handle multi-
modal data, but lack the ability to integrate single-modality datasets. 
While this task is possible to achieve with the Seurat code base8, the 
respective methods we used here were not specifically designed to 
this end, and their performance was not tested for this task. Here, 

Fig. 6 | MultiVI integrates transcriptional, chromatin accessibility and 
protein expression information into a meaningful latent space. a–c, UMAP 
representations computed for a dataset of PBMCs collected using the DOGMA-
seq protocol by MOFA (a), Seurat WNN (b) and MultiVI (c). In each panel, cells  
are color coded by replicate (left), condition (middle) and cell type (right).  
d, Summary metrics describing batch correction and biological preservation 
color coded by method. e, PBMC DOGMA-seq dataset in which no cells has 

three modality information. UMAP representation of the latent representation 
computed by MultiVI in which cells are color labeled by their modality, batch 
and cell type. f, PBMC DOGMA-seq dataset in which cells are measured in every 
possible combination. UMAP representation of the latent representation 
computed by MultiVI in which cells are color labeled by their modality, batch and 
cell type. Stim, stimulation; Ctrl, control; ASW, average silhouette width; NMI, 
normalized mutual information; Graph conn., graph connectivity.
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we have shown that use of deep generative modeling can effectively 
combine unpaired scRNA and scATAC data with multimodal single-cell 
data, generating a meaningful low-dimensional representation of the 
cells’ state that captures information about both their transcriptome 
and epigenome. This joint representation is achievable even when the 
amount of paired data is minimal, thus opening exciting opportunities 
for future studies in which only a small amount of paired data can be suf-
ficient for deriving a more nuanced interpretation of single-modality 
data. In contrast to Cobolt, or other two-modality algorithms27,28, we 
demonstrate that MultiVI is able to integrate information from addi-
tional molecular properties of cells, such as surface protein expression. 
However, MultiVI might be limited in its ability to analyze datasets 
with a small number of cells, both due to the scale of data required to 
train neural networks, as well as the necessary amount of information 
needed to correctly learn multiple modelity-specific embeddings.

An additional key capability that is unique to MultiVI is the infer-
ence of the missing modality. We have demonstrated that we can 
identify differential gene expression in subpopulations for which 
only chromatin accessibility data are available and distinguishing 
chromatin features for subpopulations for which only gene expres-
sion data are available. These results open the way for exciting future 
applications: first, MultiVI and similar methods have the potential to 
enable a reanalysis of the large compendia of available single-modality 
datasets with a relatively small amount of additional paired data, thus 
potentially leading to more comprehensive characterizations of cell 
state. Second, it can facilitate cost-effective designs for future studies, 
in which only a subset of samples need to be profiled with the (more 
costly) multimodal protocol. Last, MultiVI expedites the transfer of 
information and analysis results across modalities, such as the case in 
which RNA velocity could be ported to cells in which only chromatin 
information has been profiled.

In summary, MultiVI is able to seamlessly integrate single- and 
multimodal data, process information from different laboratories 
or technologies and create a rich joint representation (low and high 
dimensional) that harnesses all available information. It is implemented 
in the scvi-tools framework29, making it easy to configure, train and use.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
The MultiVI model
MultiVI inherits generative models describing chromatin accessibility 
and transcriptional observations from scVI (ref. 14), peakVI (ref. 15) and 
TotalVI (ref. 16). Briefly, let XR ∈ ℕC×G0  be a scRNA-seq genes-by-cell 
matrix with C cells and G genes, where xcgR ∈ ℕ0 is the number of reads 
from cell c that map to gene g. Let XA ∈ ℕC×J0  be a scATAC-seq 
region-by-cell matrix with C cells and J regions, where xcjA ∈ ℕ0 is the 
number of fragments from cell c that map to region j. Let XP ∈ ℕC×P0  be 
a protein-by-cell matrix with C cells and P proteins, where xcpP ∈ ℕ0 is 
the number of fragments from cell c that map to protein g.

MultiVI models the probability of observing xcj counts in a gene 
by using a negative binomial distribution,

x∗R ≈ NegBin (ℓcρcg,θg) (1)

where ℓc is a scaling factor that captures cell-specific biases (for exam-
ple, library size), ρcg is a normalized gene frequency and θg models the 
per gene dispersion. The probability of observing a region as accessible 
is modeled with a Bernoulli distribution,

x∗A ≈ Ber (ℓcpcjrj) (2)

where pcj captures the true biological heterogeneity and rj captures 
region-specific biases (for example, width, sequence). Last, MultiVI 
models protein expression with a mixture of negative binomial distribu-
tions that encompass background and foreground protein expression:

x∗P ≈ π1NegBin (ℓcβbcg,θbg) + (1 − π1)NegBin (ℓcα fcgβbcg,θ
f
g) (3)

In this model, π1 accounts for the mixture proportion, β for the back-
ground expression level and α ≥ 0 is a value that corrects for foreground 
expression. In the observational models, the normalized gene frequency 
per cell, the normalized peak accessibility and the background expres-
sion level are inferred from data using deep neural networks. The scaling 
factor, the region-specific and the per gene dispersion parameters are 
optimized directly (this is in contrast to the original implementation of 
scVI in which library size was modeled using a lognormal distribution).

Next, for each cell, normalized gene frequencies ρcg, accessibility 
biological heterogeneity pcj and background and foreground protein 
expression αfcg  and βbcg, are estimated using a latent representation as 
in VAE13. Briefly, each modality is assign their own latent representation, 
a isotropic multivariate normal distribution ZA

c ≈ MVN(0, 1) , 
ZR
c ≈ MVN(0, 1) and ZP

c ≈ MVN(0, 1). Then, with the purpose of bringing 
all representations together, they are combined by taking their average 
(for example, in the case of two modalities profiled such as ATAC and 
RNA, we have Zc =

ZA
c +ZR

c

2
). This merged representation is then used to 

decode all model parameters.
We explore alternative modality weighting schemes. Our default 

mode involves an average across modality latent representations, termed 
‘equal’ in our software release and in the Supplementary Information 
(example for two modalities Zc =

ZA
c +ZR

c

2
). Alternatively, a global weighted 

average scheme equal across all cells, wm, such that ∑modalitieswm = 1 (exam-
ple for two modalities Zc = wAZA

c +wRZR
c ) . Last, a cell-specific weight 

across modalities, wm,c, such that ∑modalitieswm,c = 1 (example for two 
modalities Zc = wA,cZA

c +w + R, cZR
c ). In both cases, the weights are learn-

able parameters optimized along with the rest of the model.

MultiVI inference model
We use variational inference30 to compute posterior estimates of model 
parameters using the following variational approximation:

q(zR, zA, zP, r, ℓ,θ|xA, xR, xP) = q(zR|XR) ⋅ q(zA|XA)

⋅q(zP|XP)δℓδθδθgδθf δr,δπ1

(4)

where the delta distribution, δ, highlights the fact that parameters ℓ, 
r, θ and π1 are inferred from the data as point estimates and optimize 
directly. The cell-specific factor ℓc ∈ ℓ is computed from the input 
data for cell c via a deep neural network fℓ ∶ ℕC0 → [0, 1] . The 
region-specific factor rj ∈ r, since it is optimized across samples, is 
stored as a J-dimensional tensor, used and optimized directly. In the 
case of each latent representation, encoders are computed as  
hTranscz ∶ ℕC0 → (ℝD, ℝD) , hChromz ∶ ℕC0 → (ℝD, ℝD) , hProteinz ∶ ℕC0 → (ℝD, ℝD)  
where each of them computes the distributional parameters  
of a D-dimensional multivariate normal random variable: 
zModality
c ≈ MVN (μ = [hModality

z (xc)]1,σ
2 = [hModality

z (xc)]2). The subscripts 1 
and 2 in the last equation reflect the fact that each encoder computes 
both the mean and the variance of the distribution.

Using the variational approximation, the evidence lower bound is 
computed and optimized with respect to the variational and model 
parameters using stochastic gradients. To enforce the similarity between 
chromatin and transcription latent representations, we add to the evi-
dence lower bound a term that penalizes the distance between repre-
sentations using a symmetric Jeffrey’s divergence between distributions 
d (ZA

c ,ZR
c ) = symmKL(q(zAc ),q(zRc )) = KL(q(zAc ),q(zRc )) + KL(q(zRc ),q(zAc )) .  I n  

the case of three or more distributions, we extend the penalty  
to match every possible set of distributions (when we include protein 
d a t a ,  d(ZA

c ,ZR
c ,ZP

c ) = symmKL (q(zRc ) ,q(zAc ) + symmKL (q(zRc ) ,q(zPc )+
symmKL(q(zAc ),q(zPc )) . Last, we explored an alternative penalization 
scheme in which we replace the symmetric KL divergence by an MMD 
penalty (MMD18). Additional information about the model definition 
and inference procedure can be found at https://docs.scvi-tools.org/en/
stable/user_guide/models/multivi.html.

Training procedure
By default, MultiVI is optimized using AdamW31 with a learning rate of 
0.0001, weight decay of 0.001 and minibatch size of 128. As in previous 
models, we trained on 90% the data and used 10% as a validation set. 
We selected an initial training plan consisting of 500 epochs but the 
model is stopped early if there is no improvement in the reconstruction 
loss on the validation dataset for 50 epochs (early stopping). We 
down-weighted the KL divergence between the latent representation 
and its prior during the first 50 epochs (for i ∈ [1, 50], KL ⋅ i

50
). In addi-

tion, a domain adaptation penalty is included in the training schemes 
to increase mixing in the latent space32,33. Briefly, a classifier is created 
using a two-layer feed forward neural network with 32 hidden units. Its 
output is the probability for each cell to belong to one of the batch keys. 
We use the output of this classifier to create a cross-entropy loss that 
is adversarially trained.

Modeling differences between MultiVI and Cobolt
While conceptually similar, MultiVI and Cobolt have several key dif-
ferences in design and implementation choices. MultiVI offers addi-
tional functionalities due to its generative model, that is denoising, 
imputation, uncertainty estimation and differential analyses, which 
are discussed in detail in this paper. In addition to those, we detail 
several other differences between the methods: (1) MultiVI uses a 
distributional average and penalization to mix the latent represen-
tations, compared with the classical product of experts calculation 
used by Cobolt. (2) The distributional assumptions made by the 
models are different: MultiVI uses tailored noise models for each 
modality (negative binomial for expression, Bernoulli for accessi-
bility) and uses a deep neural network for the generative compo-
nent of the model as well as the inference component. In contrast, 
Cobolt uses a multinomial likelihood for both modalities and uses 
a linear transformation as a generative model. (3) MultiVI explicitly 
avoids overfitting the data, in both the architecture (for example, 
dropout layers) and training procedure (holding out data to use for 
early-stop if the model overfits), whereas Cobolt does not contain such  
guardrails.
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Benchmarking and evaluation
Dataset preprocessing. The 10X multiomic unsorted PBMC dataset 
was downloaded from the company website. For artificial unpairing 
analyses, the processed peak-by-cell matrix was downloaded and fil-
tered to remove features that are detected in fewer than 1% of the cells. 
For the mixed-source PBMC dataset, the fragment file was downloaded 
and reprocessed using CellRanger-ARC (v.2.0.0) with the Satpathy hg38 
peaks. The Satpathy dataset was downloaded from the Gene Expression 
Omnibus (GEO) (accession no. GSE129785); specifically the processed 
peak-by-cell matrix and metadata files: scATAC-Hematopoiesis-All.
cell-barcodes.txt.gz, scATAC-Hematopoiesis-All.mtx.gz and 
scATAC-Hematopoiesis-All.peaks.txt.gz. We then filtered the data to 
only include peaks that were detected in at least 0.1% of the data, and 
lifted those peaks over from the hg19 to the hg38 genome reference 
using the UCSC liftover utility34. The Ding dataset was downloaded 
from GEO (accession no. GSE132044); specifically the pbmc data: 
pbmc_hg38_count_matrix.mtx.gz, pbmc_hg38_cell.tsv.gz and pbmc_
hg38_gene.tsv.gz.

Matching cell-type annotation was downloaded from SCP (acces-
sion no. SCP424). After preprocessing, the reanalyzed 10X dataset was 
combined with both single-modality datasets and the features were 
filtered to remove features (either genes or peaks) that were detected 
in fewer than 1% of the cells.

The DOGMA-seq dataset7, containing paired scRNA, scATAC and 
surface protein abundance observations were downloaded from GEO 
(accession no. GSE156478); specifically the four samples containing all 
three modalities: CD28_CD3_*. The ATAC observations were merged 
using ArchR35 using default arguments to produce a unified set of peaks 
called from all four samples. For model training, we only used features 
that were detected in at least 1% of cells. For the analyses included in 
this paper, only cells originating from the DIG_CTRL sample were used.

RNA-based Seurat integration. This integration modality disre-
gards multiomic information and only RNA information is considered 
from multiome cells. Briefly, RNA information is first integrated and 
then chromatin accessibility is integrated using gene activity scores 
(RNA-based method) or RNA imputed values (RNA-based imputed 
method).

In more detail, cells were separated into three different data-
sets, multiomic cells (using only expression data), RNA-only cells 
and ATAC-only cells. Seurat objects were created for multiome and 
RNA-only data, and were then normalized, scaled and the first 50 prin-
cipal components are calculated. For ATAC-only cells, a Seurat object 
was created, gene activity scores were calculated, scaled and principal 
components were computed. To integrate the three datasets, integra-
tion anchors (using FindIntegrationAnchors) were calculated and 
the data were then integrated (using IntegrateData). The RNA-based 
method uses gene activity scores as representative values from the 
ARAC-only cells. The RNA-based imputed method includes an addi-
tional step in which RNA imputed values are calculated from gene 
activity scores by running FindTransferAnchors and TransferData. In 
this integration method, RNA imputed values are used as representa-
tive values from ATAC-only cells. Finally, integrated data were then 
scaled and principal components were calculated to generate the final 
latent space. Across these integration methods, we followed the stand-
ard recommended procedure for analyzing data with Seurat given in  
their tutorials36.

WNN-based Seurat integration. This approach aims to leverage infor-
mation from both modalities (chromatin accessibility and expression 
values), using the newly described WNN approach from Seurat V4  
(ref. 8). We first created a WNN graph using multiomic information 
and then project chromatin and transcriptional information onto this.

We begin by separating cells in unpaired datasets into three dif-
ferent datasets, multiomic cells (with both expression and chromatin 

data), RNA-only and ATAC only. First, multiome latent representation is 
found by using the sctransform function and principal components on 
the expression data and latent semantic analysis (LSA) (TF-IDF decom-
position followed by singular value decomposition) on the chromatin 
data. Next, multimodal neighbors and the first 50 supervised PCA are 
calculated. To merge RNA- and ATAC-only data to multiome repre-
sentation, transfer anchors (FindTransferAnchors) are computed on 
RNA-only data and gene activity scores on ATAC only and each dataset 
is integrated using IntegrateEmbeddings function. Finally, datasets 
and dimensionality reductions are merged and uniform manifold 
approximation and projection (UMAP) is visualized using the merged 
information.

Neighbor rank distance calculation. For artificially unpaired cells, 
each cell has two unpaired representations in the latent space. Given 
cell c with representations ca and cb, let S (ca,K) be the set of KNN to ca. 
We then define δ (ca, cb) as the minimal K for which cell cb is among the 
KNN of cell ca, min {k ∶ cb ∈ S (ca, k)}.

LISI score calculation. Enrichment scores were computed as they 
were in our previous work15, and similarly to the LISI scores described 
in the Harmony paper17. Briefly, given a latent representation R, an 
integer k and the modality labels (expression, or accessibility) L,  
we compute GR,k the KNN graph from R with k neighbors. Using GR,k, we 
compute for each cell the proportion of neighbors that share the same 
modality: si =

1
k
∑j∈GR,k(i) (Li = Lj). The enrichment score is the average 

score across all cells, ̄s, normalized by the expected score for a random 
sample from the distribution of labels: E [s] = ∑ℓ∈{L}p

2
ℓ, with pℓ being the 

proportion of each modality.

Extended integration metrics. We computed extended integra-
tion metrics using the scib19 package. Briefly, to quantify integration 
throughout the paper, we computed the ARI, normalized mutual infor-
mation, graph connectivity, batch LISI (iLISI), cell-type LISI (cLISI), 
kBET, silhouette width (label silhouette) and the average silhouette 
width as proposed previously. To quantify metrics depending on clus-
tering of the data, we first ran the provided functions to optimized 
clustering resolution. We provided cell-type labels as labelkey and 
corresponding label under evaluation as batchkey.

Estimating imputation uncertainty. We estimated the uncertainty of 
the model for each imputed value by sampling from the latent space 
(n = 15). Next, for each imputed feature (gene or loci), we computed 
the mean and standard deviation. More consistent predictions cor-
responded to less uncertainty.

KNN-based estimate of accessibility. To estimate accessibility with-
out using MultiVI, we computed a lower dimensional representation 
of the data using LSA (top 30 components), then for each cell we com-
puted the average accessibility profile of the 50 nearest neighbors in 
the LSA space. This created a smooth estimate of accessibility using 
highly similar cells, mitigating the effect of false observations.

Expression smoothing. Expression smoothing was achieved by 
taking the top 30 principal components of the expression data 
(computed with PCA), computing the KNN graph (for K = 50) and aver-
aging the expression values of the neighbors for each cell (scaled by  
library size).

Differential analyses with held-out data. To identify a distinct popula-
tion of cells, we used the Leiden community detection algorithm37, then 
examined the expression levels of known marker genes (CD79A, CD19) 
to identify the cluster of B cells. We then unpaired the data within the 
cluster, once by removing all expression data from the B cells and once 
by removing all accessibility data from the clusters. Since the data were 

http://www.nature.com/naturemethods
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156478


Nature Methods

Article https://doi.org/10.1038/s41592-023-01909-9

already unpaired, this resulted in several cells with no observations at 
all and those were removed from the dataset.

Differential expression using held-out data. Differential expres-
sion was computed in two ways: (1) using the held-out data, values 
were normalized per cell by dividing the expression levels by the total 
number of reads in the cell. The logFC values were then computed by 
dividing the mean expression values in the two groups. Statistical sig-
nificance was determined using Wilcoxon rank-sum test. (2) Without 
the held-out data, using MultiVI, in a procedure described by Lopez 
et al.14, in which samples from the latent space and uses the generative 
model to estimate expression profiles. Statistical significance was then 
determined using Bayes factors, as well as an FDR approach described 
by Lopez et al.22.

Differential accessibility using held-out data. Differential accessi-
bility was computed equivalently to differential expression. (1) Using 
held-out data, values were normalized using the TF-IDF transformation, 
differential accessibility was computed by subtracting the mean acces-
sibility in the reference group from the same value in the target group. 
Statistical significance was determined using Wilcoxon rank-sum test. 
(2) Without the held-out data, using MultiVI, using the procedures 
described in our previous work14,15,22.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this paper are publicly available via the original publica-
tions and releases. TEA-seq datasets were download from GEO, acces-
sion number GSE158013. DOGMA-seq datasets were downloaded from 
GEO accession no. GSE156478. The Satpathy scATAC-seq dataset was 
downloaded from GEO, accession no. GSE129785. The Ding scRNA-seq 
dataset was downloaded from GEO accession no. GSE132044. The 10X 
PBMC sample dataset is available from the company website: https://
www.10xgenomics.com/resources/datasets

Code availability
The code for MultiVI is publicly available via the scvi-tools suite at 
scvi-tools.org. Intermediate data, trained models used in this paper 
and the custom notebooks needed to generate the figures in this paper 
are all posted and available on Zenodo38.
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