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SIMBA: single-cell embedding along  
with features
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Most current single-cell analysis pipelines are limited to cell embeddings 
and rely heavily on clustering, while lacking the ability to explicitly model 
interactions between different feature types. Furthermore, these methods 
are tailored to specific tasks, as distinct single-cell problems are formulated 
differently. To address these shortcomings, here we present SIMBA, 
a graph embedding method that jointly embeds single cells and their 
defining features, such as genes, chromatin-accessible regions and DNA 
sequences, into a common latent space. By leveraging the co-embedding 
of cells and features, SIMBA allows for the study of cellular heterogeneity, 
clustering-free marker discovery, gene regulation inference, batch effect 
removal and omics data integration. We show that SIMBA provides a single 
framework that allows diverse single-cell problems to be formulated 
in a unified way and thus simplifies the development of new analyses 
and extension to new single-cell modalities. SIMBA is implemented as a 
comprehensive Python library (https://simba-bio.readthedocs.io).

Recent advances in single-cell omics technologies have enabled the 
individual and joint profiling of cellular measurements. The emergence 
of single-cell multi-omics technologies allows for the measurements 
of multiple cellular layers, including genomics, epi-genomics, tran-
scriptomics and proteomics. Such assays have greatly enhanced our 
ability to understand cell states and the molecular machinery behind 
development and disease. Despite the potential of these technologies, 
computational challenges remain in fully harnessing their capabilities.

Many single-cell computational methods have been developed for 
the analysis of one modality (for example, single-cell RNA sequencing 
(scRNA-seq) or single-cell sequencing assay for transposase-accessible 
chromatin (scATAC-seq))1–4. Common to these methods is a work-
flow that includes routine steps such as feature selection, dimen-
sion reduction, clustering and differential feature detection. These 
‘cluster-centric’ analysis methods rely on accurately defined clustering 
solutions to discover meaningful marker features. Unfortunately, clus-
tering solutions may range widely within the space of the user-defined 
clustering resolution (number of clusters) and the chosen clustering 

algorithm, potentially leading to inconsistent and inaccurate biological  
annotations5. Although initial efforts have been made recently to 
develop clustering-free approaches to discover informative genes, they 
are specifically designed for extracting gene signatures6,7 or identifying 
perturbations between experimental conditions8 from scRNA-seq data, 
and are therefore limited to single-modality and single-task analysis.

Computational methods have also been proposed for multi-batch 
and cross-modality analysis, such as multimodal analysis (distinct 
cellular parameters are measured in the same cell)9, batch correction 
(the same cellular parameter is measured in different batches)10–12 and 
integration of multi-omics datasets (distinct cellular parameters are 
measured in different cells)11,12. However, these tasks require develop-
ment of new approaches owing to differences in task formulation. 
Also, most current methods cannot exploit relations between multiple 
cellular features directly. Furthermore, these methods for identifying 
marker features rely on clustering and therefore are limited to cluster-
ing solutions. Additionally, instead of directly identifying marker fea-
tures in the integrated space, current state-of-the-art batch correction 
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may be added in two ways by being (1) measured experimentally or (2) 
inferred computationally. For edges that are measured experimentally, 
each cell–feature edge corresponds to a single-cell measurement. For 
example, if a gene is expressed in a cell, an edge is created between the 
gene and cell. The weight of this edge is determined by the gene expres-
sion level. Similarly, an edge is added between a cell and a chromatin 
region if the region is open in this cell. Edges are also allowed between 
different features to capture and model the underlying regulatory 
mechanisms. For example, an edge between a chromatin region and a 
TF motif (or k-mer) captures the notion that a TF may bind to a regula-
tory region containing a specific DNA sequence. Edges that cannot 
be directly measured are inferred computationally by summarizing 
features of the same or different types (Methods). Each edge between 
cells of different batches or modalities indicates the cellular functional 
or structural similarity. Figure 1 summarizes potential relations repre-
sented by edges and the semantics for the analyses presented in this 
study, namely: (cell–gene), a cell expresses a given gene; (cell–peak), 
a cell has an accessible chromatin region; (peak–TF motif), a peak 
sequence contains a putative binding site for a given TF; (peak–k-mer), a 
peak sequence contains a given k-mer sequence; and (cell–cell), cells of 
different batches or modalities are functionally or structurally similar.

Once the input graph is constructed, SIMBA computes a 
low-dimensional representation of graph nodes using an unsupervised 
graph embedding method, leveraging the PyTorch-BigGraph frame-
work14 that can scale to millions of cells. The resulting joint embedding 
of cells and features not only reconstructs the heterogeneity of cells, 
but also allows for the discovery of the defining features for each cell 
without relying on clustering, separating cell-type-specific (informa-
tive) features from the non-cell-type-specific (non-informative) fea-
tures. The proximity in the SIMBA embedding reflects edge probability, 
which is the likelihood of an edge existing in the graph and is informa-
tive of feature importance or the interplay between features (Methods). 
Cell-type-specific features, such as marker genes and cis-regulatory ele-
ments, can be discovered without clustering in two ways. With known 
cell labels, marker features can be identified as neighboring features 
of cells through biological queries (Methods). Without known labels, 
marker features can be identified through calculating the imbalance 
of edge probabilities between a feature and all cells using metrics such 
as the Gini index (Methods).

Importantly, graph construction is inherently flexible, enabling 
SIMBA to be applied to a wide variety of single-cell tasks. In the fol-
lowing sections, we demonstrate the application of SIMBA to several 
popular single-cell tasks, including scRNA-seq, scATAC-seq, multi-
modal analysis, batch correction and multi-omics integration (Fig. 1).

Single-cell RNA-seq analysis with SIMBA
scRNA-seq is the most widely used analysis for profiling single cells. 
Figure 2a provides an illustrative overview of the SIMBA graph con-
struction and the resulting low-dimensional embedding matrix of 
both cells and genes in scRNA-seq analysis. SIMBA discretizes the nor-
malized gene expression matrix into multiple levels (five levels, by 
default). The input graph is then constructed by connecting cells and 
genes through weighted edges on the basis of gene expression levels. 
SIMBA then generates embeddings of these nodes through a graph 
embedding procedure (Fig. 2a and Methods). Depending on the task, 
we have the full flexibility to visualize either the whole SIMBA embed-
dings (embeddings of cells and all genes in Supplementary Fig. 1c)  
or the partial SIMBA embeddings (embeddings of cells in Fig. 2b, or 
embeddings of cells and variable genes in Fig. 2c, or embeddings of 
any entities of interest) using UMAP.

We applied SIMBA to a popular peripheral blood mononuclear cells 
(PBMCs) dataset from 10x Genomics (Supplementary Table 2). SIMBA 
embeddings of cells showed clear separation of eight cell types, includ-
ing B cells, megakaryocytes, CD14 monocytes, FCGR3A monocytes, 
dendritic cells, NK cells, CD4 T cells and CD8 T cells (Fig. 2b). SIMBA 

and multi-omics integration methods10–12 need to first detect marker 
features in the uncorrected or unintegrated original space of each batch 
or modality independently and then combine them, thus resulting in 
potentially inconsistent interpretations between batches or modalities.

To overcome these limitations, we propose SIMBA (single-cell 
embedding along with features), a versatile single-cell embedding 
method that co-embeds cells and features such as genes, peaks and 
DNA sequences into a common latent space, allowing for the execu-
tion of various tasks in a unified manner. Unlike existing methods that 
require featurization of cells, SIMBA directly encodes the cell–feature 
or feature–feature relations into a large multi-relation (or heterog-
enous, that is, multiple node and edge types) graph. For each task, 
SIMBA constructs a graph, wherein differing entities (that is, cells 
and features) are represented as nodes, and relations between these 
entities are encoded as edges. Once the graph is constructed, SIMBA 
then applies a multi-relation graph embedding algorithm derived from 
social-networking technologies13,14, as well as a Softmax-based transfor-
mation to embed the nodes or entities into a common low-dimensional 
space wherein cells and features can be analyzed on the basis of their 
distance. Hence the SIMBA embedding space containing cells and 
all the features can be viewed as an informative database of entities. 
Depending on the task, biological queries can be defined on the ‘SIMBA 
database’ by considering neighboring entities of either a cell (or cells) 
or a feature (or features) at the individual-cell and individual-feature 
level (Methods). For example, the query for a cell’s neighboring features 
can be used to identify marker features (for example, marker genes 
or peaks) or to study the interaction between features (for example, 
peak-gene), while the query for features’ neighboring cells can be 
used to annotate cells. This is fundamentally different from recently 
proposed single-cell embedding methods (Supplementary Note 1 and 
Supplementary Table 1).

SIMBA can solve various single-cell tasks in a unified framework, 
including: (1) dimensionality reduction; (2) clustering-free marker 
detection; (3) multimodal analysis; and (4) batch correction and omics 
integration. SIMBA can be adapted to these diverse tasks by simply 
modifying the input graph constructed from the single-cell data. SIMBA 
has been extensively tested on multiple scRNA-seq, scATAC-seq and 
dual-omics datasets, outperforming or performing comparably to 
current state-of-the-art methods developed specifically for each task.

Importantly, we have developed a scalable and comprehensive 
Python package that enables seamless interaction between graph con-
struction, training with PyTorch for graph embedding and post-training 
analysis. SIMBA is a self-contained framework; however, it is also 
compatible with popular single-cell analysis tools, such as Scanpy2. 
SIMBA with detailed documentation and tutorials is available at https://
simba-bio.readthedocs.io.

Results
Overview of SIMBA
SIMBA is a single-cell embedding method that supports single- or 
multi-modality analyses. It leverages recent graph embedding tech-
niques13,14 to embed cells and genomic features into a shared latent 
space. Unlike existing methods that primarily focus on learning cell 
states, SIMBA treats both cells and features as nodes in the same graph 
and thus solves various single-cell tasks through a unified procedure. 
Importantly, SIMBA introduces several crucial procedures, includ-
ing Softmax transformation, weight decay for controlling overfitting 
and entity-type constraints to generate comparable embeddings 
(co-embeddings) of cells and features and to address unique chal-
lenges in single-cell data.

SIMBA first encodes different types of entities, such as cells, genes, 
open chromatin regions (peaks or bins), transcription factor (TF) 
motifs and k-mers (short sequences of a specific length, k), into a single 
graph (Fig. 1 and Methods), in which each node represents an individual 
entity and edges indicate relations between entities. In SIMBA, edges 
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embeddings of both cells and genes correctly recovered cellular het-
erogeneity and embedded informative genes close to relevant cell types 
(Fig. 2c). Previous marker genes used to annotate cells2 were highlighted 
on the UMAP plot, showing that SIMBA not only accurately embedded 
major-cell-group-specific genes to the correct locations (for example, 
IL7R15 was embedded into CD4 T cells, and MS4A1 was embedded into B 
cells), but also was robust to rare-cell-group-specific genes (for exam-
ple, PPBP was embedded into megakaryocytes), while non-informative 
housekeeping genes, such as GAPDH and B2M, were embedded in the 
middle of all cell groups (Fig. 2c and Supplementary Fig. 1c).

These highlighted genes can be further confirmed with ‘barcode 
plots’, which visualize the estimated probability of assigning a feature 
to a cell by SIMBA on the basis of the recovered edge confidence (Fig. 2d,  
Supplementary Fig. 1d and Methods). An imbalance in probability 
indicates the association of a gene to a subpopulation of cells (often 
corresponding to known cell types), whereas a uniform probability dis-
tribution indicates a non-cell-type-specific gene. For marker genes (CST3 
for monocytes and dendritic cells, MS4A1 for B cells and NGK7 for NK and 
CD8 T cells), we observed a clear excess in the probability of assigning 
each gene to their respective cell types. Conversely, for the housekeeping 
gene GAPDH, we observed a more uniform distribution with much lower 
probability of associating that gene with the top-ranked cells.

SIMBA also provides several quantitative metrics (termed ‘SIMBA 
metrics’), including max value, Gini index, standard deviation (s.d.) 
and entropy, to assess cell-type specificity of various features without 
requiring the prior knowledge such as predefined cell types (Methods 
and Supplementary Figs. 1b and 3a). By inspecting the gene metric 

plot of max value versus Gini index (a higher value indicates higher 
cell-type specificity), we observed that the marker genes (for exam-
ple, CST3, NKG7, MS4A1) fall in the upper right corner, as opposed to 
housekeeping genes (for example, GAPDH), which falls in the lower left 
corner (Fig. 2e). Cell-type specificity of the selected marker genes was 
further confirmed by visualizing their expression pattern on UMAP 
plots, along with SIMBA barcode plots (Fig. 2f and Supplementary 
Figs. 1d and 2) and quantitative validation (Supplementary Note 2 and 
Supplementary Fig. 5a). SIMBA metrics not only rank features on the 
basis of their cell-type specificity, but also filter out non-informative 
features to simplify the visualization of embeddings of cells and inform-
ative features, preventing the SIMBA space from being crowded with 
non-informative features.

We show that SIMBA does not require variable gene selection, an 
essential step in standard scRNA-seq pipelines such as Seurat or Scanpy. 
When tested with or without variable gene selection, SIMBA produced 
qualitatively similar embeddings (Fig. 2b and Supplementary Fig. 4e). 
However, we do observe that variable gene selection improves the 
efficiency of the training procedure. We also compared SIMBA with 
both clustering-dependent2 and clustering-free6,7 methods in marker 
gene detection (Supplementary Note 3 and Supplementary Figs. 4 
and 6). The computational complexity of SIMBA software was also 
benchmarked against Scanpy and Seurat (Supplementary Note 4).

Single-cell ATAC-seq analysis with SIMBA
scATAC-seq has been widely used to profile regions of open chromatin 
and identify functional cis-regulatory elements, such as enhancers 
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Fig. 1 | SIMBA framework overview. SIMBA co-embeds cells and various 
features measured during single-cell experiments into a shared latent space 
to accomplish both common tasks involved in single-cell data analysis and 
tasks that remain as open problems in single-cell genomics. Left, examples of 
possible biological entities that may be encoded by SIMBA, including cells, gene 
expression measurements, chromatin-accessible regions, TF motifs and k-mer 
sequences found in reads. Middle, SIMBA embedding plot with multiple types 
of entities into a low-dimensional space. All entities represented as shapes (cell, 
circle; peak, triangle; gene, square; TF motif, star; k-mer, hexagon) are colored 
by relevant cell type (green, orange and blue in this example). Non-informative 
features are colored dark gray. Within the graph, each entity is a node, and an 

edge indicates a relation between entities (for example, a gene is expressed 
in a cell, a chromatin region is accessible in a cell, or a TF motif or k-mer is 
present within an open chromatin region.). Once connected in a graph, these 
entities may be embedded into a shared low-dimensional space, with cell-type-
specific entities embedded in the same neighborhood and non-informative 
features embedded elsewhere. Right, common single-cell analysis tasks that 
may be accomplished using SIMBA. Different opacity levels indicate cells of 
different experimental batches or single-cell modalities. Solid lines indicate 
experimentally measured edges. Dashed lines indicate computationally  
inferred edges.
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and active promoters. Cells are characterized by different types of 
features16, such as accessible chromatin regions (‘peaks’ or ‘bins’) and 
cis-regulatory elements (DNA sequences) including TF motifs or 
k-mers. Unlike existing methods that can use only peaks or bins or 

DNA sequences, SIMBA can leverage either single or multiple types 
of features to learn cell states because of its flexibility in graph con-
struction. Also, as SIMBA encodes cell–feature or feature–feature 
relations into the graph on the basis of the simple binary presence of 
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Fig. 2 | Single-cell RNA-seq analysis of the 10x Genomics PBMCs dataset using 
SIMBA. a, SIMBA graph construction and embedding in scRNA-seq analysis. 
Biological entities including cells and genes are represented as shapes and 
colored by relevant cell types (green and orange). Non-informative genes are 
colored dark gray. Gene expression measurements for each cell are organized 
into a cell-by-gene matrix. These normalized non-negative observed values 
undergo discretization into five gene expression levels. Cells and genes are then 
assembled into a graph with nodes representing cells and genes, and edges 
between them representing different gene expression levels. This graph may 
then be embedded into a lower-dimensional space resulting in a no. entities × no. 
dimension (by default, 50) SIMBA embedding matrix. b, UMAP visualization of 
SIMBA embeddings of cells colored by cell type. c, UMAP visualization of SIMBA 
embeddings of cells and variable genes. Cells are colored according to cell type, 

as defined in b. Genes are colored slate blue. Cell-type-specific marker genes and 
housekeeping genes recovered by Scanpy are indicated with texts and arrows. 
Genes highlighted in red are shown in d, e and f. d, SIMBA barcode plots of genes 
CST3, MS4A1, NKG7 and GAPDH. The x axis indicates the ordering of a cell as 
ranked by the probability for each cell to be associated with a given gene. The y 
axis describes the probability. The sum of probability over all cells is equal to 1. 
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dashed line indicates the probability score of 1 × 10–3. e, SIMBA ranking of genes 
on the basis of the proposed metrics. All the genes are plotted according to the 
Gini index against max score. The same set of genes as in c are annotated. f, UMAP 
visualization of SIMBA embeddings of cells, colored by gene expression of (left to 
right): CST3, NKG7, MS4A1 and GAPDH.
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a feature, it does not need additional normalization steps, such as term 
frequency-inverse document frequency (TF-IDF), which is required 
by most scATAC-seq analyses16 (Fig. 3a). Through the embedding pro-
cedure, SIMBA generates embeddings of cells along with peaks and 
DNA sequences (Methods). Finally, either the partial SIMBA embed-
dings (embeddings of cells in Fig. 3b) or the whole SIMBA embeddings 
(embeddings of cells and all the features in Fig. 3c) can be visualized.

We applied SIMBA to a scATAC-seq dataset of 2,034 human 
hematopoietic cells with fluorescence-activated cell sorting 
(FACS)-characterized cell types17(Supplementary Table 2). For embed-
dings of cells alone, as shown in Fig. 3b, SIMBA accurately separated 
cells such that cells belonging to distinct cell types (defined on the 
basis of FACS labels) are visually distinguished. For embeddings of cells 
together with various types of features, as shown in Fig. 3c, SIMBA suc-
cessfully embedded distinct features from both positional (peaks/bins) 
and sequence-content (TF motifs and k-mers) information together on 
the basis of their biological relations. Notably, on the basis of SIMBA 
metrics, these highlighted features embedded within each cell type all 
have high cell-type specificity scores (shown in the upper right part of 
SIMBA metric plots in Fig. 3d and Supplementary Fig. 3b).

Our analysis using SIMBA led to several key findings in human 
hematopoietic differentiation.

First, SIMBA identified key master regulators of hematopoie-
sis. As highlighted in Fig. 3c, we observed that motifs of previously 
reported TFs were embedded near their respective cell types in the 
UMAP plot. For example, the GATA1 and GATA3 motifs are proximal 
to megakaryocyte-erythroid progenitor (MEP) cells18, the PAX5 and 
EBF1 motifs are near to common lymphoid progenitor (CLP) cells19, 
and the CEBPB and CEBPD motifs are proximal to monocyte (mono) 
population20.

Second, SIMBA revealed an unbiased set of DNA sequences, that 
is, k-mers, that represent important TF-binding motifs involved in 
hematopoiesis. We observed that these k-mers were embedded near 
their matching TF-binding motifs and relevant cell subpopulations  
(Fig. 3c,e, Supplementary Fig. 7b and Supplementary Note 5), indi-
cating that SIMBA is capable of de novo motif discovery. For exam-
ple, the DNA sequence GATAAG is embedded in MEPs; this sequence 
matches the binding motif of GATA1, the master regulator in erythro-
poiesis. We also calculated TF/k-mer activity scores21 (high-variance 
TF motifs/k-mers) and visualized them on SIMBA embeddings of cells  
(Fig. 3f and Supplementary Fig. 7a,b). For example, the GATA1 TF motif 
and k-mer GATAAG, both of which were embedded in MEP cells by 
SIMBA, also showed high-level activity in MEP cells.

Third, SIMBA identified differentially accessible chromatin 
regions that may mediate cell-type-specific gene regulation (Supple-
mentary Fig. 7c). For example, the two peaks near the genomic locus 
of the KLF1 gene, with coordinates chr19:12997999-12998154 (P1) and 
chr19:12998329-12998592 (P2), were embedded within MEP cells and 
were observed almost exclusively in MEP cells (Fig. 3e). Interestingly, 
P1, upstream of KLF1, contains the k-mer GATAAG, which matches the 
GATA1 binding motif, while the TF GATA1 is known to regulate the gene 
KLF1 and plays a pivotal role in erythroid cell and megakaryocyte devel-
opment22. Therefore, by embedding these MEP-cell-related regulatory 
elements into the neighborhood of MEP cells, SIMBA demonstrates a 
novel means of studying the epigenetic landscape of cell differentiation.

Although SIMBA diverges from current scATAC-seq analysis 
methods by enabling the co-embedding of cells and features, we still 
qualitatively and quantitatively compared SIMBA embeddings of cells 
to state-of-the-art scATAC-seq analysis methods by their ability to dis-
tinguish cell types. Our analyses show that SIMBA, overall, outperforms 
current methods for scATAC-seq analysis, further demonstrating the 
wide utility of SIMBA (Supplementary Fig. 10 and Supplementary Note 
5). We also show that there is negligible impact on the embeddings of 
cells generated by SIMBA upon the inclusion of sequences as additional 
features (Supplementary Figs. 9 and 27 and Supplementary Note 5).

Single-cell multimodal analysis with SIMBA
Recently developed single-cell dual-omics technologies23–26 can jointly 
profile transcriptome and chromatin accessibility within the same 
cells, providing a means to explore gene regulation principles. SIMBA 
is capable of learning cell heterogeneity and gene regulatory circuits 
from single-cell multi-omics data. Figure 4a depicts the graph construc-
tion and SIMBA embedding procedure. A gene expression matrix and 
chromatin accessibility (peaks), TF motif and k-mer match matrices are 
discretized and binarized, respectively, to construct a graph by creating 
edges between five entity (node) types, including cells, genes, peaks, TF 
motifs and k-mers. The graph embedding procedure generates SIMBA 
embeddings of cells and features. To avoid non-informative peaks domi-
nating the space (Supplementary Fig. 11a,c), we leverage the flexibility 
of SIMBA embedding to visualize only the partial SIMBA embeddings 
to improve the visibility of cells and cell-type-specific features.

To demonstrate the versatility of SIMBA embeddings, we ana-
lyzed the cell populations undergoing hair follicle differentiation from 
mouse skin profiled with SHARE-seq24. First, we calculated SIMBA met-
rics (max values and Gini index scores) to assess the cell-type specificity 
of different types of features, including genes, TF motifs and peaks 
(Fig. 4b and Methods). As shown in Fig. 4b, we successfully recovered 
genes associated with hair follicles, such as Lef1 and Hoxc13. Similarly, 
TF motifs and peaks proximal to the genomic loci of these genes also 
score in the upper-right quadrant of the metric plots.

Next, we visualized and interrogated SIMBA embeddings of (1) 
cells; (2) cells and top-ranked genes on the basis of SIMBA metrics; 
and (3) cells, top-ranked genes and TF motifs on the basis of SIMBA 
metrics, and their neighboring peaks (Fig. 4c). SIMBA embeddings 
of cells revealed the three fate decisions from transit-amplifying cells 
(TACs), including inner root sheath (IRS), medulla and cuticle and 
cortex. SIMBA embeddings of cells and informative features uncov-
ered important genes and regulatory factors along the hair-follicle 
differentiation trajectories. For example, marker genes Krt71, Krt31 and 
Foxq1 were embedded into their corresponding cell types: IRS, cuticle/
cortex and medulla, respectively. Regulatory factors, such as Lef1 and 
Hoxc13, were embedded into the beginning and late stages of cuticle/
cortex differentiation, respectively. Peaks near the Lef1 and Hoxc13 
loci were also embedded into the nearby regions of these genes and 
motifs. The TF-motif distance could indicate a lag between TF expres-
sion and its binding activity. For example, pioneer factors can bind 
to inaccessible regions, assisting in opening them for other factors. 
In Fig. 4c, the Hoxc13 gene appears earlier than its motif, consistent 
with a previous study showing that Hoxc13 has the ability to bind inac-
cessible motifs27. The reported marker genes and TF motifs were also 
supported by UMAP and SIMBA barcode plots, with high probability 
towards the correct cell type labels (Supplementary Fig. 12a–d). We also 
performed scRNA-seq and scATAC-seq single-modality analyses within 
the SHARE-seq dataset and achieved consistent embedding results 
with multimodal analysis, demonstrating that the SIMBA embedding 
procedure is robust to the type and the number of features encoded 
in the input graph (Supplementary Fig. 11b,c).

Further, we demonstrated that the SIMBA co-embedding space of 
cells and features provides the potential to identify master regulators 
and infer their target regulatory genes. SIMBA successfully identified 
previously described master regulators, such as Lef1, Gata6, Nfatc1 
and Hoxc13, as the top master regulators related to lineage commit-
ment in mouse skin (Fig. 4d, Supplementary Table 3 and Methods). 
Moreover, SIMBA identified a previously unreported master regula-
tor Relb, and a novel Relb+ cell subpopulation, within TAC-2 cells  
(Supplementary Fig. 28 and Supplementary Note 6). To infer the 
target genes of a given master regulator, we postulate that, in the 
shared SIMBA embedding space, (1) the target gene is close to both the  
TF motif and the TF gene; and (2) the accessible regions (peaks) near 
the target gene loci must be close to both the TF motif and the target 
TF gene. Resting on these assumptions of cis-regulatory dynamics 
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(Fig. 4e and Methods), SIMBA inferred target genes of master regu-
lators, such as Lef1 and Hoxc13 (Fig. 4f, Supplementary Fig. 12e and 
Supplementary Table 4). Notably, SIMBA recovered target genes 

reported in the original study24, including genes Lef1, Jag1, Hoxc13 
and Gtf2ird1, regulated by the TF Lef1, and genes Cybrd1, Hoxc13 and 
St14, regulated by the TF Hoxc13.
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Fig. 3 | Single-cell ATAC-seq analysis of the human hematopoiesis dataset 
using SIMBA. a, SIMBA graph construction and embedding in scATAC-seq 
analysis. Biological entities including cells, peaks or bins, TF motifs and k-mers 
are represented as shapes and colored by relevant cell types (green and orange). 
Non-informative features are colored dark gray. Cells and chromatin-accessible 
features (peaks/bins) are organized into a cell × peak/bin matrix. When sequence 
information (TF motif or k-mer sequence) within these regions is available, they 
can be organized into two sub-matrices to associate a TF motif or k-mer sequence 
with each peak or bin. These constructed feature matrices are then binarized and 
assembled into a graph. When a single feature (chromatin accessibility) is used, 
the graph encodes cells and peaks/bins as nodes. When multiple features (both 
chromatin accessibility and DNA sequences) are used, this graph may then be 
extended with the addition of TF motifs and k-mer sequences as nodes. Finally, 
SIMBA embeddings of these entities are generated through a graph embedding 
procedure. b, UMAP visualization of SIMBA embeddings of cells colored by cell 

type. c, UMAP visualization of SIMBA embeddings of cells and features including 
TF motifs, k-mers and peaks. Cells are colored by cell type, while motifs, k-mers 
and peaks are colored green, blue and pink, respectively. Cell-type-specific 
features that are embedded near their corresponding cell types are indicated as 
the text labels (colored according to feature type) with arrows. d, SIMBA metric 
plots of TF motifs, k-mers and peaks. Cell-type-specific features annotated in c 
are highlighted. e, Genomic tracks of aligned scATAC-seq fragments, separated 
and colored by cell type. Two marker peaks P1 and P2 in red are shown beneath 
the alignment. Within the peak P1, k-mer GATAAG and its resembling GATA1 motif 
logo are highlighted. f, UMAP visualization of SIMBA embeddings of cells colored 
by TF activity scores of the GATA1 motif and k-mer GATAAG enrichment. g, SIMBA 
barcode plots of the GATA1 motif, the k-mer GATAAG and the two peaks P1 and P2. 
Cells are colored according to cell type labels described above. The dashed red 
line indicates the same cutoff used in all four plots.
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In addition to SHARE-seq, we also applied SIMBA to another two 
dual-omics datasets (Supplementary Table 2), the mouse cerebral 
cortex dataset profiled by SNARE-seq23 (Supplementary Figs. 13 and 14) 
and the multiome PBMCs dataset from 10x Genomics (Supplementary 
Figs. 15 and 16). By validating the embeddings of cells and features 
with given cell type labels, marker genes from the original study and 
differentially accessible chromatin regions, we further demonstrate 
the suitability of SIMBA for multimodal analysis.

Single-cell batch correction with SIMBA
As single-cell data collection expands across multiple institutions, 
there is an increased demand for analysis methods that can account 
for technical covariates. Batch correction is essential to remove tech-
nical variation while preserving biological signals. However, existing 

methods are dependent on clustering, and the detection of markers 
is prone to inconsistencies when combining genes identified from 
the uncorrected space of each batch. By contrast, SIMBA generates 
embeddings of both cells and genes, enabling batch-effect removal 
and marker gene detection in an integrated space without clustering.

SIMBA accomplishes batch correction by encoding multiple 
scRNA-seq datasets into a single graph (Fig. 5a). Cell nodes across 
batches are connected to the shared gene nodes through experimen-
tally measured edges, as in scRNA-seq graph construction. Batch cor-
rection is further enhanced through computationally inferred edges 
drawn between similar cell nodes across datasets using a truncated ran-
domized singular value decomposition (SVD)-based procedure. From 
the resulting graph, SIMBA generates batch-corrected embeddings 
of cells and genes, allowing for individual-cell-level marker detection 
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Fig. 4 | Multimodal analysis of the SHARE-seq hair follicle dataset using 
SIMBA. a, SIMBA graph construction and embedding in multimodal analysis. 
Overview of SIMBA’s approach to multimodal (scRNA-seq + scATAC-seq) data 
analysis. b, SIMBA metric plots of genes, TF motifs and peaks. All these features are 
plotted according to the Gini index against max score. Cell-type-specific genes, 
TF motifs and peaks are highlighted. c, UMAP visualization of SIMBA embeddings 
of cells (top left), cells and genes (top right) and cells along with genes, TF motifs 
and peaks (bottom). d, Ranked master regulators identified by SIMBA. The rank 
score indicates the rank of a given TF gene among all genes (including non-TFs) 

on the basis of the distance from the genes to the selected TF motif in the SIMBA 
embedding space. e, Schematic of SIMBA’s strategy for identifying target genes 
given a master regulator in the high-dimensional SIMBA embedding space (by 
default, 50 dimensions). The master regulator is represented by a TF motif (a star 
filled in green) and a TF gene (a square without borders filled in green). A colored 
shade indicates a SIMBA embedding area of a gene, containing a gene (a square 
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genes. f, Top 30 target genes of TFs Lef1 and Hoxc13, as inferred by SIMBA.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-023-01899-8

through biological queries of cells in the shared latent space (Methods). 
We visualized both SIMBA embeddings of cells (Fig. 5b) and the whole 
embeddings of cells and genes (Fig. 5c) in UMAP.

We applied SIMBA to two multi-batch scRNA-seq datasets: a mouse 
atlas dataset composed of two batches, and a human pancreas dataset 
spanning five batches used in a recent benchmark study28 (Supplemen-
tary Table 2). The mouse atlas dataset contains two scRNA-seq datasets 
with shared cell types from different sequencing platforms. The human 
pancreas dataset contains five samples pooled from five sources using 
four sequencing techniques, in which not all cell types are shared across 
each sample. For both datasets, SIMBA successfully corrected batch 
effects, evenly mixing batches within annotated cell-type clusters, 
while maintaining the segregation of these clusters in the resulting 
embedding, indicating preservation of biological signal and elimina-
tion of confounding technical covariates (Fig. 5b and Supplementary 
Fig. 19b). It is important to note that the mouse atlas dataset was col-
lected from nine organ systems, so there is some expected heterogene-
ity within cell-type labels. Conversely, the human pancreas datasets are 
curated from a single organ, and SIMBA sufficiently separated cell types 
into transcriptionally distinct, homogeneous cell clusters (Fig. 5b).

SIMBA not only removes batch effects during graph embedding, 
but also simultaneously identifies cell-type-specific marker genes 

(Fig. 5c). Marker genes can be identifiable by performing biological 
queries for neighboring genes within cell types in the batch-corrected 
SIMBA space (Methods). In the case of unknown cell labels, marker 
genes can be identified by calculating SIMBA metrics. SIMBA correctly 
embeds known cell-type-specific marker genes proximal to the correct 
cell-type labels, while non-marker genes were non-proximal to specifi-
cally labeled cells (Supplementary Figs. 17 and 18). The resulting marker 
genes recapitulated the clustering-based differential expression (DE) 
analysis results for each dataset29–34 (for example, Cdh5, Tie1 and Myct1 
for endothelial cell, C1qc and Fcgr1 for macrophage and S100a8 and 
Trem3 for neutrophil in the mouse atlas dataset; KIF12 for alpha cell and 
KRT19 for ductal cell in the human pancreas dataset) and are expressed 
specifically in the queried cell types (Supplementary Figs. 17 and 18).

Although SIMBA is a versatile graph embedding method, we evalu-
ated SIMBA embeddings of cells for this task with methods that were 
specifically designed for batch correction. We considered three widely 
adopted batch correction methods that demonstrated top-tier perfor-
mance based on a recent benchmark study28: Seurat3 (ref.12), LIGER11 and 
Harmony10. Our results indicate that SIMBA achieved comparable batch 
correction performance, both qualitatively and quantitatively, while 
enabling simultaneous marker-gene detection by providing additional 
embeddings of genes (Supplementary Note 7 and Supplementary Fig. 19).
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Fig. 5 | Batch correction analysis of scRNA-seq data using SIMBA. a, SIMBA 
graph construction and embedding in batch correction analysis. Overview 
of SIMBA’s approach to batch correction across scRNA-seq datasets. Distinct 
shapes indicate the type of entity (cell or gene). Colors distinguish batches or cell 
types. b, UMAP visualization of the scRNA-seq human pancreas dataset, with five 

batches of different studies before and after batch correction. Cells are colored 
by scRNA-seq data source and cell type, respectively. Top, UMAP visualization 
before batch correction. Bottom, UMAP visualization after batch correction 
with SIMBA. c, UMAP visualization of SIMBA embeddings of cells and genes, with 
batch effect removed and known marker genes highlighted.
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Single-cell multi-omics integration with SIMBA
Single-cell assays can now measure a broad range of cellular 
modalities, requiring methods that leverage these features and 
integrate multi-omics data to study cell state comprehensively. 
Current multi-omics integration methods follow a workflow similar 
to batch correction. Unlike existing methods, SIMBA can explore 
multi-type features directly in the integrated SIMBA space and detect 
distinct marker features without clustering, enabling simultane-
ous multi-omics integration and clustering-free marker feature 
detection, specifically when applied to scRNA-seq and scATAC- 
seq datasets.

SIMBA builds independent graphs for scRNA-seq and scATAC-seq 
data, connects them through computationally inferred edges on the 
basis of shared gene expression modules and embeds the graph of 
cells, genes and peaks into a low-dimensional space to represent the 
integrated space of multiple modalities (Fig. 6a and Methods). This 
enables individual-cell-level marker detection of multi-type features by 
performing biological queries of cells in SIMBA space. The embeddings 

of these multi-omics entities can be visualized either partially or in 
their entirety using UMAP.

To facilitate the evaluation of data integration performance, 
we created datasets with ground-truth labels by manually splitting 
the dual-omics datasets into two single-modality datasets (that is, 
scRNA-seq and scATAC-seq), in which we know the true matching 
between cells across the two modalities. We then applied SIMBA to 
the integration analysis of two case studies where scRNA-seq and 
scATAC-seq datasets are generated from the SHARE-seq mouse skin 
dataset and the 10x Genomics multiome human PBMCs dataset, respec-
tively (Supplementary Table 2).

We first visualized SIMBA embeddings of cells and observed that 
SIMBA was able to preserve cellular heterogeneity while evenly mix-
ing the two modalities (Fig. 6b and Supplementary Fig. 21b). We then 
visualized SIMBA embeddings of cells, genes and top-ranked peaks 
on the basis of SIMBA metrics and observed that, in addition to learn-
ing cellular heterogeneity, SIMBA simultaneously identified marker 
genes and peaks at single-cell resolution (Fig. 6c and Supplementary  
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Fig. 21). In the co-embedding space, we observed that the neigh-
bor genes of cells (highlighted in UMAP plots) are each exclusively 
expressed in their corresponding cell types (Supplementary Figs. 21a–e 
and 22a–c,e). For example, in the SHARE-seq mouse skin dataset, Foxq1 
and Shh are located within medulla and TAC-2, respectively; in the 10x 
PBMCs dataset, PAPSS2 and KCNMA1, which are the marker genes of 
blood monocytes, are embedded close to each other. Similarly, we 
observed that the neighbor peaks of cells show a clear cell-type-specific 
accessibility pattern that is robust to the cluster size of a given cell type 
(Supplementary Figs. 21f and 22d).

The joint embedding of cells and features produced by SIMBA 
is fundamentally distinguished from other multi-omics integration 
methods. However, we still sought to compare SIMBA embeddings 
of cells with two widely adopted single-cell multi-omics integration 
methods, Seurat3 and LIGER, on the basis of their ability to integrate 
single-cell modalities while persevering cellular heterogeneity (Sup-
plementary Note 8). We observed that SIMBA achieved the overall best 
performance on the mouse skin SHARE-seq dataset and 10x PBMCs 
multiome dataset.

Discussion
The rapid development of multi-omics assays has outpaced the cor-
responding computational frameworks required to gain integrative 
insights from such rich data. This disparity highlights a need for 
methods that break through previous limitations and that can easily 
be extended to future cell measurements. SIMBA satisfies the need as 
a comprehensive and extensible method for exploring cellular hetero-
geneity and regulatory mechanisms. SIMBA models cells and measured 
features as nodes encoded in a graph and employs a scalable graph 
embedding procedure to embed nodes of cells and features into a 
shared latent space. We demonstrate that direct graph representations 
of single-cell data capture not only the relations between cells and the 
quantified features of the experiment (for example, gene expression 
or chromatin accessibility), but also hierarchical relations between 
features. The SIMBA co-embedding space enables simultaneous learn-
ing of cellular heterogeneity and cell-type-specific multimodal features 
and complements the current gene regulatory network analyses. SIMBA 
also circumvents the ordinary reliance on cell clustering for feature 
discovery that may lead to artifactual discovery or false negative results.

SIMBA has been extensively benchmarked across single-cell 
modalities and tasks, obtaining performance metrics that are better 
than or comparable to those of current state-of-the-art methods devel-
oped for the respective task. These results suggest a wide applicability 
of SIMBA’s graph-based framework, obviating the need to combine 
multiple analysis tools.

Neural network embeddings hold substantial promise for the 
analysis of biological data. Previous applications of embedding models 
include functional annotation of genes35, modeling TF-binding prefer-
ences13,36 and more recent single-cell RNA-seq analyses37,38.

Despite its promising capabilities, SIMBA faces potential limita-
tions and has areas for improvement. Integrating sample-level data, 
such as time points and perturbations, could prove challenging, 
because it requires additional layers of complexity to accurately rep-
resent these dimensions. Spatial data could enhance SIMBA’s ability to 
analyze complex datasets, such as spatial transcriptomics39, by incor-
porating spatial proximity into the graph. Additionally, the framework 
could be extended to analyze three-dimensional chromatin conforma-
tion by encoding DNA segment interactions to represent gene–regula-
tory region links40. Although adapting SIMBA to various experimental 
designs will be achievable, interpreting the output embedding may 
vary depending on the input graph and training process, necessitating 
domain-specific expertise.

Overall, SIMBA is versatile and can accommodate features of vari-
ous domains, provided they can be encoded into a connected graph. 
We believe that SIMBA will simplify the burden of developing methods 

for new single-cell tasks and measurements, while laying a groundwork 
for the development of new non-cluster-centric analysis methods.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01899-8.
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Methods
Single-cell data preprocessing
Single-cell RNA-seq. Genes expressed in fewer than three cells were 
filtered. Raw counts were library-size-normalized and subsequently 
log-transformed. Optionally, variable gene selection12 (a Python ver-
sion is implemented in SIMBA that is inspired by Scanpy2) may be per-
formed to remove non-informative genes and accelerate the training 
procedure. Notable differences in the resulting cell embeddings were 
not observed upon limiting feature input to those identified by variable 
gene selection, but SIMBA embeddings of non-variable genes will not 
be generated as they are not encoded in the graph.

Single-cell ATAC-seq. Peaks present in fewer than three cells were 
filtered. Optionally, we implemented a scalable truncated-SVD-based 
procedure to select variable peaks as a preliminary step to additionally 
filter non-informative peaks and accelerate the training procedure. 
First, the top k principal components (PCs) were selected, with k chosen 
on the basis of the elbow plot of variance ratio. Then, for each of the 
top k PCs, peaks were automatically selected on the basis of the load-
ings using a knee point detection algorithm implemented by ‘kneed’41. 
Finally, peaks selected for each PC were combined and denoted as 
‘variable peaks.’ Similar to the observation made with scRNA-seq data, 
the optional step of variable peak selection has a negligible effect 
on the resulting cell embedding. Despite this minimal impact on the 
resulting embedding, this feature selection step has a notable practical 
advantage in reducing training procedure time.

k-mer and motif scanning was performed using the packages 
‘Biostrings’ and ‘motifmatchr’ with JASPAR2020 (ref. 42). Included in 
the implementation of SIMBA is a convenient R command line script 
‘scan_for_kmers_motifs.R,’ which will convert a list of peaks (formatted 
in a bed file) to a sparse peaks-by-k-mers/motifs matrix, which is stored 
as an hdf5-formated file.

Graph construction (five scenarios)
Single-cell RNA-seq analysis. When constructing a graph of cells and 
genes, an edge is added between a cell and a gene if a gene is expressed 
in a given cell. To distinguish the strength of each edge, a binning pro-
cedure is proposed to categorize gene expression values into different 
levels while preserving the original distribution. Different levels of gene 
expression are encoded by different types of relations. In detail, the dis-
tribution of non-zero values in the normalized gene expression matrix 
was first approximated using a k-means clustering-based procedure. 
First, the continuous non-zero values were binned into n intervals (by 
default, n = 5). Bin widths were defined using one-dimensional k-means 
clustering, wherein the values in each bin are assigned to the same 
cluster center. The continuous matrix is then converted into a discrete 
matrix wherein 1, …, n are used to denote n levels of gene expression. 
Zero values are retained in this matrix. Then, the graph was constructed 
by encoding two types of entities, cells and genes, as nodes and rela-
tions with n different weights between them, that is, n levels of gene 
expression, as edges. These n relation weights range from 1.0 to 5.0, 
with a step size of 5 / n denoting gene expression levels (lowest: 1.0, 
highest: 5.0), such that edges corresponding to high expression levels 
affect embeddings more strongly than do those with intermediate or 
low expression levels. As expected, we observe that the discretized 
distribution approaches the original distribution as we increase the 
number of bins. However, increased resolution of expression imparts 
little effect on the resulting embeddings, and the implemented proce-
dure performs well consistently, even with a coarse-grained binning 
(five bins) (Supplementary Fig. 24). This discretization is implemented 
in the SIMBA package using the function, ‘si.tl.discretize().’

In addition to relation type weights, SIMBA also supports encoding 
gene expression values directly as edge weights when constructing a 
graph. Supplementary Fig. 25 shows that, using either original (mid-
dle) or discretized (right) gene expression levels as edge weights, 

this procedure generates similar embeddings to those generated 
by the binning procedure (left). This further suggests that our cur-
rent discretization is effective in capturing biological information, 
and SIMBA is robust to the binning procedure. This support of edge 
weight is implemented in the SIMBA package using the function,  
‘si.tl.gen_graph(add_edge_weights=True).’

Single-cell ATAC-seq analysis. Peak-by-cell matrices were binarized: 
‘1’ indicates that there is at least one read within a peak, and ‘0’ was 
assigned otherwise. The graph was constructed by encoding two types 
of entities, cells and peaks, as nodes and the relation between them, 
denoting the presence of a given peak in a cell, as edges. The single 
relation type was assigned with a weight of 1.0. When the DNA sequence 
features were available, they were encoded into the graph using k-mer 
and motif sequence entities as nodes. This was performed by first 
binarizing the peak-by-k-mer–motif matrix and then constructing 
an extension to the original peak–cell graph using the peaks, k-mers 
and motifs as nodes and the presence of these entities within peaks as 
edges between these additional nodes and the peak nodes. The relation 
between k-mers and peaks was assigned a weight of 0.02, whereas the 
relation between TF motifs was assigned a weight of 0.2. Of note, k-mers 
and motifs may be used independently of each other as node inputs to 
the graph, depending on the specific analysis task.

Multimodal analysis. The above outlined strategies for graph con-
struction using scRNA-seq and scATAC-seq data were combined to 
construct a multi-omics graph.

Batch correction. A graph for each batch was constructed as described 
in ‘Single-cell RNA-seq analysis.’ Edges between cells of different 
batches were inferred through a procedure based on truncated rand-
omized SVD to link disjoint graphs of different batches. More specifi-
cally, in the case of scRNA-seq data, consider two gene expression 
matrices X1n1×m and X2n2×m, where n1 and n2 denote the number of cells 
and m denotes the number of the shared features, that is, variable 
genes, between datasets. The matrix Xn1×n2  was then computed by 
multiplying X1 and transposed X2 (denoted by X2T):

X = X1 × X2T

Truncated randomized SVD was subsequently performed on X:

X ≈ U × Σ×VT

where U is an n1 × d matrix, Σ is a d × d matrix and V is an n2 × d matrix (by 
default, the number of components d = 20).

Both U and V were further L2 normalized. For each cell in U, we 
searched for k nearest neighbors in V, and vice versa (by default,  
k = 20). Eventually, only the mutual nearest neighbors between U and V 
were retained as inferred edges between cells (represented as dashed 
lines in Fig. 5a). The procedure of inferring edges between cells of dif-
ferent batches is implemented in the function ‘si.tl.infer_edges()’ in 
the SIMBA package.

For multiple batches, SIMBA can flexibly infer edges between any 
pair of datasets. In practice, however, edges are inferred between the 
largest dataset(s) or the dataset(s) containing the most complete set 
of expected cell types and other datasets.

Multi-omics integration. scRNA-seq and scATAC-seq graphs were 
constructed following steps in ‘Single-cell RNA-seq analysis’ and 
‘Single-cell ATAC-seq analysis,’ respectively. To infer the edges between 
cells of scRNA-seq and scATAC-seq, gene activity scores were first 
calculated for scATAC-seq data3. More specifically, for each gene, peaks 
within 100 kb upstream and downstream of the TSS were considered. 
Peaks overlapping the gene body region or within 5 kb upstream of 
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gene bodies were given the weight of 1.0. Otherwise, peaks were 
weighted on the basis of their distances to TSS using the exponential 
decay function: e

−distance
5000 . Subsequently, the gene score of each gene was 

computed as a weighted sum of the considered peaks. These gene 
scores were then scaled to respective gene size. These steps were imple-
mented by the function ‘si.tl.gene_scores()’ in SIMBA. For user conveni-
ence, the SIMBA package curates the gene annotations of several 
commonly used reference genomes, including hg19, hg38, mm9 and 
mm10. Once gene scores were obtained, the same procedure described 
in ‘Batch correction’ was performed to infer edges between cells pro-
filed by scRNA-seq and scATAC-seq using the function ‘si.tl.infer_
edges()’ in SIMBA.

The procedure of generating constructed graphs was imple-
mented in the function ‘si.tl.gen_graph()’ in the SIMBA package.

Graph embeddings with type constraints
Following the construction of a multi-relational graph between bio-
logical entities, we adapted graph embedding techniques from the 
knowledge graph and recommendation systems literature to construct 
unsupervised representations for these entities.

We provided as input a directed graph G = (V, E), where V is a set of 
entities (vertices) and E is a set of edges, with a generic edge e = (u, v) 
between a source entity u and destination entity v. We further assumed 
that each entity has a distinct known type (for example, cell or peak).

Graph embedding methods learn a D-dimensional embedding 
vector for each v ∈ V by optimizing a link prediction objective via sto-
chastic gradient descent, with D = 50 used for our experiments. We 
denote the full embedding matrix as Θ ∈ R|V|×D and the embedding for 
an entity v as θv.

For an edge e = (u, v), we denote se = θu ⋅ θv as the score for e, and 
optimize a multi-class log loss:

ℒe = − log exp (se)
∑e′∈𝒩𝒩 exp (se′ )

we

where 𝒩𝒩  is a set of ‘negative sampled’ candidate edges43 generated by 
corrupting e, and we is the edge weight, which is the relation weight by 
default but can vary by edge within each relation type. For example, edges 
between cells and genes can be encoded as a single relation with varying 
edge weights that encode normalized gene-expression level (see 
‘Single-cell RNA-seq analysis’ in Methods). This log loss objective attempts 
to maximize the score for all (u, v) ∈ E and minimize it for (u, v) ∉ E.

Negative samples were constructed by replacing either the source 
or target entity in the target edge e = (u, v) with a randomly sampled 
entity. However, in graphs like ours, where only edges between certain 
entity types are possible, previous work has shown that it is beneficial 
to optimize the loss only over candidate edges that satisfy the type 
constraints44. Thus, for example, for a cell–peak edge, we sampled only 
negative candidates between cell and peak entities. This modification 
is crucial in our setting, because most randomly selected edges will be 
of an invalid type (for example, peak–peak), forcing the embeddings 
to primarily be optimized for irrelevant tasks (for example, having a 
low dot product between every pair of peaks).

Furthermore, it has been frequently observed that, in graphs with 
a wide distribution of node degrees, it is advantageous to sample nega-
tives proportional to some function of the node degree to produce 
more informative embeddings that don’t merely capture the degree 
distribution14,45. For each graph edge in the dataset encountered in 
a training batch, we produced 100 negatives by corrupting the edge 
with a source or destination sampled uniformly from the nodes with 
the correct types for this relation and 100 by corrupting the edge with 
a source or destination node sampled with probability proportional 
to its degree14.

As with many ML methods, graph embeddings are prone to over-
fitting in a low-data regime (that is, low ratio of edges to parameters). 

We observed overfitting, measured as a gap between training and 
validation loss on the link prediction task, which we addressed with 
L2 regularization on the embeddings (θ):

ℒreg=ℒ+λ∑
u∈N

D
∑
d=1

θ2ud.

with λ = wd × wdinterval. The weight decay parameter (wd) by default was 
calculated automatically as C

Ne
, where Ne is the training sample size (that 

is, the total number of edges) and C is a constant. The weight decay 
interval (wdinterval), we set it to 50 for all experiments.

We used the PyTorch-BigGraph framework, which provides effi-
cient computation of multi-relation graph embeddings over multiple 
entity types and can scale to graphs with millions or billions of enti-
ties14. For 1.3 million cells, the PyTorch-BigGraph training itself takes 
only about 1.5 hours using 12 CPU cores without the requirement of 
GPU (https://simba-bio.readthedocs.io/en/latest/rna_10x_mouse_
brain_1p3M.html).

The resulting graph embeddings have two desirable properties:

	1.	 First-order similarity: for two entity types T1 and T2 with a 
relation between them, edges with high likelihood should have 
higher dot product; specifically, for any u ∈ T1, the predicted 
probability distribution over edges to T2 originating from u is 
approximated as exu ⋅xv

∑v’∈T2
exu ⋅xv’

.

	2.	 Second-order similarity: within a single entity type, entities 
that have ‘similar contexts,’ that is, a similar distribution of 
edge probabilities, should have similar embeddings. Thus, the 
embeddings of each entity type provide a low-rank latent space 
that encodes the similarity of those entities’ edge distributions.

Evaluation of the model during training
During the PyTorch-BigGraph training procedure, a small percentage 
of edges was held out (by default, the evaluation fraction is set to 5%) 
to monitor overfitting and evaluate the final model. Five metrics were 
computed on the reserved set of edges, including mean reciprocal rank 
(MRR, the average of the reciprocal of the ranks of all positives), R1 
(the fraction of positives that rank better than all their negatives, that 
is, have a rank of 1), R10 (the fraction of positives that rank in the top 
10 among their negatives), R50 (the fraction of positives that rank in 
the top 50 among their negatives) and AUC (area under the curve). By 
default, we show MRR, along with training loss and validation loss, while 
other metrics are also available in the SIMBA package (Supplementary 
Fig. 1a). The learning curves for validation loss and these metrics can 
be used to determine when training has been completed. The relative 
values of training and validation loss, along with these evaluation met-
rics, can be used to identify issues with training (underfitting versus 
overfitting) and tune the hyperparameters weight decay, embedding 
dimension and number of training epochs appropriately. For example, 
in Supplementary Fig. 1a, training can be stopped once the validation 
loss plateaus. However, for most datasets, the default parameters do 
not need tuning (Supplementary Note 9).

Softmax transformation
PyTorch-BigGraph training provides initial embeddings of all entities 
(nodes). However, entities of different types (for example, cells versus 
peaks, cells of different batches or modalities) have different edge dis-
tributions and thus may lie on different manifolds of the latent space. 
To make the embeddings of entities of different types comparable, we 
transformed the embeddings of features with the Softmax function by 
using the first-order similarity between cells (reference) and features 
(query). For batch correction or multi-omics integration, the Softmax 
transformation was also performed on the basis of the first-order simi-
larity between cells of different batches or modalities.

http://www.nature.com/naturemethods
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Given the initial embeddings of cells (reference) (vc1 ,… ,vcn ) and 
features (vf1 ,… ,vdm

) , the model-estimated probability P of an edge  
(ci, fj) obeys:

P (eci , fj ) ∝ exp (vci ⋅ vfj )

Therefore, if a random edge was sampled from feature fj to a cell, 
the model would estimate the probability distribution p over such 
edges as:

pci , fj =
exp(vci ⋅ vfj )

∑n
k=1 exp(vck ⋅ vfj )

That is, the Softmax weights between all cells {ci} and the feature 
fj. We can then compute new embeddings v̂ for features as a linear 
combination of the cell embeddings weighted by the edge probabilities 
raised to some power:

v̂fj =
∑n
i=1 p

T−1

ci , fj
vci

∑n
i=1 p

T−1

ci , fj

T is a temperature hyperparameter that controls the sharpness of 
the weighting over cells. At T = 1, the cell embeddings are weighted by 
their estimated edge probabilities; at T → 0, each feature embedding is 
assigned the cell embedding of its nearest neighbor; at T → ∞, it becomes 
a discrete uniform distribution, and each query becomes the average 
of reference embeddings. We set T = 0.5 for all the analyses.

These steps are implemented in the function ‘si.tl.embed()’ in the 
SIMBA package.

Metrics to assess cell-type specificity
SIMBA calculates a probability score (represented as a dot product) 
of assigning a feature to a cell, and therefore generates a probability 
distribution of all cells for each feature. On the basis of this or its derived 
probability distribution (as shown in SIMBA barcode plots), four met-
rics can assess the cell type specificity of each feature from different 
aspects. The max score46 averaging the normalized probabilities of 
the top 50 cells serves as a metric of confidence towards cell-type 
assignment and aids in filtering noisy features (a higher value indi-
cates higher cell-type specificity). The Gini index46 is calculated from a 
Softmax-transformed probability distribution to evaluate the deviation 
from a perfectly uniform distribution and thus features that show an 
imbalanced distribution (that is, cell-type-specific) are assigned with 
higher Gini index values (a higher value indicates higher cell-type 
specificity). s.d. measures the amount of variation in the probability dis-
tribution, and a high value indicates a higher deviation within the cells 
(that is, cell-type-specific) (a higher value indicates higher cell-type 
specificity). Entropy measures the information content and captures 
to what extent the cells are spread out over a Softmax-transformed 
probability distribution; a lower entropy indicates the distribution is 
nearly concentrated on one subset of cells (that is, cell-type-specific) 
(a lower value indicates higher cell-type specificity). We observed that 
these four metrics generally give consistent results. For each SIMBA 
metric plot, by default, the Gini index is plotted against the max value. 
For feature fj:

The max value is defined as the average normalized similarity of 
top k cells (by default, k = 50). The similarity normalization function 
is defined as:

norm(xi) = xi − log
∑n
j=1 exp(xj)

n

where i = 1,…, n, n is the number of cells and xi represents the dot prod-
uct of ̂vfj and the embedding of cell i.

The max value is computed as:

max ( fj) =
∑k
i=1 norm (xi)

k

The Gini index is computed as:

gini ( fj) =
∑n
i=1 (2i − n − 1) × pci , fj

n∑n
i=1 pci , fj

The s.d. is computed as:

s.d. ( fj) = √
1

n − 1 ∑
n

i=1 (xci , fj − μ)
2

where μ = 1
n
∑n
i=1 xci , fj.

Entropy is computed as:

entropy( fj) = −
n
∑
i=1
pci , fj log(pci , fj )

The statistical significance of these metrics can be optionally calcu-
lated on the basis of the comparison with the metrics derived from ‘null’ 
feature nodes that have shuffled edges with the same node degree (that 
is, the number of edges linked to a node) distribution as the input graph. 
For example, to obtain the significance of genes’ cell-type-specificity 
metrics in scRNA-seq analysis, we constructed a graph with the origi-
nal gene and cell nodes together with the ‘null’ gene nodes that have 
shuffled edges to the original cell nodes. For indirectly linked DNA 
sequence features, such as TF motifs and k-mers, the shuffle was per-
formed for the edges between the DNA sequence features and peaks. The 
degree-preserving edge shuffle is achieved by randomly permuting the 
node index among the nodes with the same degree, separately for source 
and destination nodes. The degree-preserving shuffle ensures the null 
metric distribution reflects the bias in edge scores from null nodes to cells 
solely owing to the property of each node while destroying the graph 
connectivity (that is, biological information in SIMBA’s input graph).

For the significance calculation, SIMBA learns the embeddings of 
null nodes together with the cells and features from the original graph. 
During the training with the null nodes, the loss from the edges involv-
ing the null nodes will not affect the real nodes’ embeddings, and this is 
enabled by using the ‘fix’ operator in simba_pbg. For example, the loss 
from the edge between a real cell and a null gene will not be propagated 
to the embedding of the real cell. The default number of null nodes is 
set to 20 times the number of genes for scRNA-seq data and 5 times 
the number of peaks for scATAC-seq and SHARE-seq data. P values are 
calculated on the basis of the null distribution of the metric values from 
random graph shuffling. The false discovery rate is further calculated 
using the Benjamini–Hochberg method.

Queries of entities in SIMBA space
The informative SIMBA embedding space serves as a database of enti-
ties including cells and features. To query the ‘SIMBA database’ for the 
neighboring entities of a given cell or feature, we first built a k-d tree 
of all entities based on their SIMBA embeddings. We then searched for 
the nearest neighbors in the tree using Euclidean distance. To do so, 
SIMBA query can perform either k nearest neighbors (KNN) or nearest 
neighbor search within a specified radius. SIMBA also provides the 
option to limit the search to entities of certain types, which is useful 
when a certain type of entity substantially outnumbers others. For 
example, the k nearest features of a given cell may be all peaks, while 
genes are the features of interest. In this case, SIMBA allows users to 
add ‘filters’ to ensure that nearest neighbor search is performed within 
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the specified types of entities. This procedure is implemented in the 
function ‘st.tl.query()’ and its visualization is implemented in the func-
tion ‘st.pl.query()’ in the SIMBA package.

Identification of master regulators
To define a master regulator a priori, we postulated that both its TF 
motif and TF gene should be cell-type specific, given that active gene 
regulation involves both the expression of a TF and accessibility of its 
binding sites. Thus, the TF motif and TF gene should be embedded 
closely in the shared latent space. To identify master regulators, we 
took into consideration both the cell type specificity of each pair of a TF 
motif and a TF gene, and the distance between them. More specifically, 
for each TF motif, first its distances (Euclidean distance by default) to 
all the genes are calculated in the SIMBA embedding space. Then, the 
rank of this TF gene among all these genes is computed. In addition, 
we also assess the cell type specificity of the pair using SIMBA metrics 
(by default, max value and Gini index are used). The same procedure is 
performed for all TFs. Finally, we identify master regulators by filtering 
out TFs with low cell-type specificity and scoring them by TF gene rank. 
This procedure is implemented in the function ‘st.tl.find_master_regu-
lators()’ in the SIMBA package.

Identification of TF target genes
To infer the target genes of a given master regulator, we postulated 
that, in the shared SIMBA embedding space, (1) the target gene is close 
to both the TF motif and the TF gene, indicating that the expression of 
the target gene is highly correlated with the expression of the TF and 
the accessibility of the TF motif in a cell-type-specific way; and (2) the 
accessible regions (peaks) near the target gene loci must be close to 
both the TF motif and the target TF gene, indicating that the accessibil-
ity of the cis-regulatory elements near the target gene locus is highly 
correlated with the expression of the TF and the accessibility of the TF 
motif in a cell-type-specific way.

Given a master regulator, its target genes are identified by com-
paring the locations of the TF gene, TF motif and the peaks near the 
genomic loci of candidate target genes in the SIMBA co-embedding 
space (Fig. 4e). More specifically, we first searched for k nearest neigh-
bor genes around the motif (TF motif) and the gene (TF gene) of this 
master regulator, respectively (k = 200, by default). The union of these 
neighbor genes is the initial set of candidate target genes. These genes 
are then filtered on the basis of the criterion that open regions (peaks) 
within 100 kb upstream and downstream of the TSS of a putative target 
gene must contain the TF motif.

Next, for each candidate target gene, we computed four types of 
distances in SIMBA embedding space: distances between the embed-
dings of (1) the candidate target gene and TF gene; (2) the candidate 
target gene and TF motif; (3) peaks near the genomic locus of the can-
didate target gene and TF motif; and (4) peaks near the genomic locus 
of the candidate target gene and the candidate gene. All the distances 
(Euclidean distances by default) are converted to ranks out of all genes 
or all peaks to make the distances comparable across different master 
regulators.

The final list of target genes is decided using the calculated ranks, 
using two criteria: (1) at least one of the nearest peaks to TF gene or TF 
motif is within a predetermined range (top 1,000, by default); and (2) 
the average rank of the candidate target gene is within a predetermined 
range (top 5,000, by default). This procedure is implemented in the 
function ‘st.tl. find_target_genes ()’ in SIMBA.

Benchmarking scATAC-seq computational methods
To compare SIMBA with other scATAC-seq computational methods, 
including SnapATAC4, Cusanovich47 and cisTopic48, we employed the 
previously developed benchmarking framework from Chen et al.16 
(Supplementary Table 2). This framework evaluates different methods 
on the basis of their ability to distinguish cell types. We applied three 

clustering algorithms: k-means clustering, hierarchical clustering and 
Louvain on the feature matrix derived from each method.

For datasets with ground truth (FACS-sorted labels or known tis-
sue labels), including simulated bone marrow data, Buenrostro et al.17 
and sci-ATAC-seq subset, three metrics including adjusted Rand index 
(ARI), adjusted mutual information (AMI) and homogeneity are applied 
to evaluate the performance. ARI measures the similarity between 
two clusters, comparing all pairs of samples assigned to matching 
or different clusters in the predicted clustering solution versus the 
true cluster/cell type label. AMI describes an observed frequency of 
co-occurrence compared with an expected frequency of co-occurrence 
between two variables, informing the mutual dependence or strength 
of association of these two variables. Homogeneity measures whether 
a clustering algorithm preserves cluster assignments towards samples 
that belong to a single class. A higher metric value indicates a better 
clustering solution.

For the 10x PBMCs dataset with no ground truth, the residual aver-
age Gini Index (RAGI) proposed in the benchmarking study16 is used as 
the clustering evaluation metric. RAGI measures the relative exclusiv-
ity of marker genes to their corresponding clusters in comparison to 
housekeeping genes, which should demonstrate low specificity to 
any given cluster. In brief, the mean Gini Index is computed for both 
marker genes and housekeeping genes. The difference between the 
means is computed to obtain the average residual specificity (that is, 
RAGI) of a clustering solution with respect to marker genes. A higher 
RAGI indicates a better separation of biologically distinct clusters.

Benchmarking single-cell batch correction methods
The batch correction performance of SIMBA was compared to Seurat3 
(ref. 12), LIGER11 and Harmony10 in two benchmark datasets: the mouse 
atlas dataset and the human pancreas dataset (Supplementary Table 2). 
For Seurat3, LIGER and Harmony, the batch correction was done with 
the same parameters used in a previous benchmark study28.

To evaluate the batch integration performance, average Silhouette 
width (ASW), adjusted Rand index (ARI) and local inverse Simpson’s 
index (LISI)10 were calculated for the batches and cell types using the 
Euclidean distance, as described in a previous benchmark28. To make 
a fair evaluation, only the cell types that are present in all batches were 
considered. We used the same number of dimensions (50) for these 
methods, and all other parameters were set as in the benchmark (Sup-
plementary Note 7).

Benchmarking single cell multi-omics integration methods
Two pairs of scRNA-seq and scATAC-seq datasets manually split from 
the dual-omics SHARE-seq mouse skin dataset and 10x PBMCs data-
set, respectively, were used for the modality integration task. For 
Seurat3 and LIGER, the parameters and preprocessing were done as 
described in their documentations. However, for the LIGER analysis of 
the SHARE-seq mouse skin dataset, the parameter ‘lambda’ was set to 
30, and the ‘ref_dataset’ was set to scATAC-seq to get a better alignment. 
For the Raw results, the activity matrix of scATAC-seq was constructed 
using Seurat3, and the first 20 PCs of the scRNA-seq count matrix and 
the activity matrix were used for the comparison. The integration 
results generated by each method were evaluated with four metrics—
anchoring distance, anchoring distance rank, silhouette index and 
cluster agreement (Supplementary Note 8).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the datasets used in this study, including eight scRNA-seq datasets, 
four scATAC-seq datasets and three dual-omics datasets, are summa-
rized in Supplementary Table 2 and are curated in the SIMBA package 
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(https://simba-bio.readthedocs.io/en/latest/API.html#datasets). They 
can be easily downloaded and imported directly to reproduce the analy-
ses presented in this paper. We have also deposited all the datasets to 
Zenodo at https://doi.org/10.5281/zenodo.7697355.
In addition, we also provide the source of these published 
datasets. For scRNA-seq datasets, the 10x PBMCs data-
se t  i s  ava i l a b l e  a t  h t t p s : //s u p p o r t . 10 xge n o m i c s . c o m /
single-cell-gene-expression/datasets/1.1.0/pbmc3k; the two mouse 
atlas datasets are available from https://github.com/JinmiaoChenLab/
Batch-effect-removal-benchmarking/tree/master/Data/dataset2; 
the five human pancreas datasets are available from https://github.
com/JinmiaoChenLab/Batch-effect-removal-benchmarking/tree/
master/Data/dataset4. The scATAC-seq datasets are available from 
https://github.com/pinellolab/scATAC-benchmarking. For dual-omics 
datasets, the SHARE-seq mouse skin dataset is available from 
GSE140203; the mouse cerebral cortex SNARE-seq dataset is available 
from GSE126074; the 10x PBMCs multiome dataset is available from 
https://support.10xgenomics.com/single-cell-multiome-atac-gex/
datasets/1.0.0/pbmc_granulocyte_sorted_10k. Source data are pro-
vided with this paper.

Code availability
We provide a comprehensive Python package ‘simba’ available at 
https://anaconda.org/bioconda/simba and https://github.com/
pinellolab/simba. All the proposed procedures are implemented 
in the ‘simba’ package. ‘simba’ can be easily installed with conda 
‘conda install simba’. We also built a website (https://simba-bio.
readthedocs.io), providing a detailed introduction of the ‘simba’ 
software and several SIMBA tutorials for different types of single-cell 
analyses presented in this paper. Scripts used for performance 
comparison are available at https://github.com/pinellolab/simba_ 
comparison. The version of ‘simba’ used for the analyses presented 
in this paper has been deposited to Zenodo (https://doi.org/10.5281/
zenodo.7697337).
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