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Cross-modality supervised image 
restoration enables nanoscale tracking  
of synaptic plasticity in living mice

Yu Kang T. Xu1,2,5, Austin R. Graves1,2,3,4,5, Gabrielle I. Coste1, 
Richard L. Huganir    1,2, Dwight E. Bergles    1,2, Adam S. Charles    2,3,4  & 
Jeremias Sulam    2,3,4 

Learning is thought to involve changes in glutamate receptors at synapses, 
submicron structures that mediate communication between neurons 
in the central nervous system. Due to their small size and high density, 
synapses are difficult to resolve in vivo, limiting our ability to directly relate 
receptor dynamics to animal behavior. Here we developed a combination 
of computational and biological methods to overcome these challenges. 
First, we trained a deep-learning image-restoration algorithm that combines 
the advantages of ex vivo super-resolution and in vivo imaging modalities 
to overcome limitations specific to each optical system. When applied 
to in vivo images from transgenic mice expressing fluorescently labeled 
glutamate receptors, this restoration algorithm super-resolved synapses, 
enabling the tracking of behavior-associated synaptic plasticity with high 
spatial resolution. This method demonstrates the capabilities of image 
enhancement to learn from ex vivo data and imaging techniques to improve 
in vivo imaging resolution.

Synaptic plasticity is a widely studied model of behavioral learning and 
memory encoding1–3 that directly links molecular changes at synapses 
to changes in the flow of information through neural circuits. Synaptic 
potentiation is observed during learning, whereas synaptic deficiency 
is observed in many neurological diseases4–6; however, observing how 
changes in synaptic strength manifest during learning in behaving 
animals is difficult due to the lack of biological tools for visualizing 
the strength of synapses and the limited resolution of fluorescence 
microscopy in vivo. Overcoming these technical constraints is vital 
to understanding how learning is encoded in real time among billions 
of synapses in the brain.

Genetically encoded fluorescent tags enable direct visualization 
of protein expression in vivo. For instance, by fusing super-ecliptic 
pHluorin (SEP)—a pH-sensitive variant7 of green fluorescent protein 

(GFP)—to the extracellular domain of AMPA-type glutamate receptors 
(AMPARs), it is possible to directly visualize the insertion and recy-
cling of these crucial proteins at the synaptic membrane. Functional 
SEP-tagged AMPARs, inserted at the cell surface, fluoresce in the neutral 
pH of the extracellular space, whereas internalized SEP-tagged AMPARs 
have their fluorescence quenched by the low internal pH of traffick-
ing vesicles. As AMPARs mediate excitatory neurotransmission, the 
fluorescence intensity of SEP-tagged AMPARs can be used as a meas-
ure of synaptic strength. This transgenic approach has recently been 
employed to track changes in synaptic strength in living animals8–12.

While SEP-labeling theoretically enables the visualization of all 
surface AMPARs in living mice, achieving sufficient resolution to reli-
ably track SEP-tagged synapses in vivo presents a substantial challenge, 
as synapses are submicron-diameter structures that are present at high 
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mice, each GluA2 AMPAR subunit is fused with SEP. By coupling SEP to 
the extracellular N terminus of the receptor, only GluA2-containing 
AMPARs at the cell surface are highly fluorescent (Fig. 1a). Notably, 
as the overwhelming majority of AMPARs at excitatory synapses in 
the cerebral cortex contain GluA232, this transgenic line enables visu-
alization of nearly all excitatory synapses in this region. To assess the 
spatial association of SEP fluorescence with physical synaptic sites, we 
used super-resolution confocal microscopy (Airyscan) to image brain 
slices from SEP–GluA2 mice in which layer 2/3 pyramidal neurons were 
induced to express tdTomato (tdT). Dual-channel imaging revealed 
that SEP–GluA2 puncta colocalize with tdT fluorescent (tdT+) dendritic 
spines (Fig. 1b), suggesting normal synaptic targeting of fluorescently 
tagged receptors.

Optically, resolving the dense and dim endogenous SEP signal 
in the intact brain is challenging, particularly due to motion artifacts 
associated with in vivo imaging. Using cranial windows implanted over 
retrosplenial cortex, we tested several imaging modalities (confocal, 
Airyscan in vitro, Airyscan Fast in vivo33, 2p with galvanometric scanner 
and 2p with resonance scanner) (Fig. 1c–f) but were unable to reliably 
resolve adjacent synapses in vivo, particularly in the axial plane. While 
the best resolution was achieved using 2p excitation and a resonance 
scanner that reduced motion artifacts (Fig. 1f), none of these meth-
ods preserved the overall shape and clarity of fluorescent synapses 
observed using Airyscan microscopy in brain slice preparations (Fig. 1d).  
Thus, to improve synapse detection in 2p imaging datasets, we sought 
to combine the resolution of Airyscan microscopy with the speed and 
penetration of 2p excitation using computational image restoration 
(Fig. 1c).

Cross-modality pairing enables in vivo restoration model
Computational image restoration offers adaptable methods to over-
come limitations associated with specific optical systems16–23. Using 
supervised training of a CNN to enhance the image quality of a subop-
timal imaging modality to that of a higher resolution target dataset, 
researchers can, in principle, selectively balance the advantages of 
different imaging modalities. In the present application, the speed 
and penetrance of 2p microscopy, which facilitates in vivo imaging, 
needs to be combined with substantially higher resolution Airyscan 
microscopy; however, acquiring such a paired dataset is not feasible, as 
2p datasets represent the upper limit of data quality in current in vivo 
optical applications (Fig. 1). Thus, to improve the resolution of fluo-
rescently labeled synapses in vivo, we performed in vitro imaging of 
acute slices of SEP–GluA2 brains to produce a training dataset from 
which a restoration algorithm could learn a mapping strategy from 
low-resolution 1p confocal (Slice 1p) images to high-resolution Airyscan 
image quality (Slice Airy; Fig. 1g). We hypothesized that images from 
acutely prepared, living brain slice preparations, acquired immediately 
after dissection in physiological buffers to preserve tissue quality and 

density13. Moreover, as synapses vary in AMPAR content, endogenous 
SEP fluorescence is dim at some synapses. Thus, to image SEP signals 
in vivo, a balance must be achieved between imaging resolution, depth, 
speed and laser power. While two-photon (2p) microscopy is state of the 
art for in vivo imaging14,15, the maximum resolution of 2p imaging falls 
behind that of single-photon (1p) microscopy in vitro14. Axial resolu-
tion is especially impaired in 2p microscopy, as there is no pinhole for 
optical sectioning and the long working distance required for in vivo 
imaging means that high numerical aperture (NA) objectives cannot 
be used. Moreover, adapting in vitro super-resolution microscopy 
elements, such as Airyscan detectors, to in vivo imaging is also dif-
ficult, as depth-dependent light scattering, movement artifacts and 
tissue swelling, force compromises between acquisition resolution, 
size, depth and photobleaching. As such, current methodologies only 
allow for live imaging of molecular synaptic changes in ex vivo brain 
slice preparations.

To overcome these limitations, we developed a machine-learning 
system to combine the advantages of both in vitro and in vivo imag-
ing modalities. Convolutional neural networks (CNNs) serve as one 
promising avenue to selectively balance the benefits of different 
imaging modalities16–23. Unlike traditional restoration algorithms24,25, 
deep-learning models, such as content-aware image restoration 
(CARE17), learn application-specific information from training data, 
thereby adapting to the high complexity of signals from living animals; 
however, the necessity to learn data statistics from paired training data 
(high- and low-resolution images of the same tissue) is difficult in sce-
narios where optimal-resolution data are lacking, such as identifying 
synapses in vivo and tracking their plasticity during behavior26,27. We 
circumvented this limitation by developing an approach that leverages 
paired data across different imaging modalities to train a restoration 
algorithm, which we termed cross-trained CARE (XTC).

In this Article, we apply XTC to restore low-resolution in vivo 2p 
data acquired from a transgenic mouse line that we generated, SEP–
GluA2, allowing us to visualize the strength of individual excitatory 
synapses over weeks. XTC outperformed existing state-of-the-art 
image-denoising algorithms28–31, facilitating reliable, longitudinal 
synapse tracking in regions of high synapse density. By combining 
the advantages of multiple imaging modalities, deep-learning and 
transgenic labeling, this platform provides a general means to study 
objects that are near the diffraction limit in vivo, while also specifically 
enabling researchers to explore the role of synaptic plasticity in learn-
ing and memory with high resolution.

Results
Transgenic SEP label visualizes individual synapses in vivo
To visualize synapse dynamics in the intact brain of living animals, we 
used CRISPR-Cas9 DNA editing to create a transgenic mouse line with 
fluorescently labeled endogenous AMPARs. In homozygous SEP–GluA2 

Fig. 1 | Resolving AMPAR clusters at individual excitatory synapses in vivo. 
a, CRISPR-based transgenic labeling of the GluA2 AMPA receptor subunit with a 
pH-dependent fluorescent tag (SEP) enables in vivo visualization of endogenous 
GluA2-containing synapses. b, Single high-resolution imaging plane from fixed-
slice tissue with endogenous fluorescence, acquired using Airyscan detectors. 
Magenta, tdT; green, SEP–GluA2. Arrows mark examples of SEP–GluA2/spine 
overlap. Colored arrows show the same synapse across image channels. Data 
are representative of three SEP–GluA2 mice examined over one independent 
experiment. c, Tradeoffs of different imaging modalities. d–f, Example xy slice 
(top) and xz slice (bottom) of different imaging modalities. Scale bar, 5 µm in 
xy and z. Data are representative of three SEP–GluA2 mice, each imaged with 
all three microscopy modalities in three independent trials. g–i, Diagrams of 
training, validation and application workflow. Representative images of single 
xy plane of each color-coded imaging modality (left). Workflow of training, 
validation or application (right). Insets are representative images of tissue from 
six SEP–GluA2 mice, examined over three independent experiments.  

CNN was trained using 1p confocal images from acute slices of SEP–GluA2 tissue (xi).  
CNN output (yo) was compared to ground truth (high-resolution Airyscan 
imaging of the same tissue, yi) to improve network performance (g). Network 
output was validated by comparing to ground truth and annotations by expert 
humans, enabling quantification of error rates (h). Trained restoration CNN  
was applied to in vivo 2p images, restoring optimal ‘Airyscan-like’ resolution to  
in vivo imaging volumes (i). xv, slice 2p data; yv, XTC Restored slice 2p data;  
xa, raw in vivo 2p data; ya, XTC Restored in vivo 2p data. j, Pipeline for longitudinal 
tracking of fluorescently labeled SEP–GluA2 synapses in vivo. Daily imaging 
volumes were aligned using pairwise affine registration, followed by slice-by-
slice pairwise affine registration to compensate for depth-dependent local tissue 
shift. Registered volumes were restored with XTC. Individual synapses were 
segmented with an ilastik-trained random forest model, followed by watershed 
to separate adjacent objects. Finally, a tracker trained through structured 
learning was used to longitudinally track synapses. t indicates current timepoint; 
n indicates number of subsequent timepoints.
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pH gradients that are critical for SEP fluorescence, would be sufficiently 
similar to in vivo datasets, such that a restoration CNN trained using 
paired live-slice training data would enhance the resolution of in vivo 
images. Thus, we defined ground truth high-resolution data (Slice 
Airy) as images acquired with Airyscan super-resolution microscopy, 
whereas low-resolution paired data (Slice 1p) was generated using 1p 
excitation with an open pinhole, decreased laser power and high gain, to 
resemble the axial blur and high noise of in vivo 2p imaging (Fig. 1g–i). 
A CNN with a modified U-Net architecture34 was then trained using 
this paired high–low training data to generate a restoration model, 
termed XTC (Extended Data Fig. 1). After training the image-restoration 

algorithm, we assembled an analysis pipeline to enable synapse track-
ing across longitudinal imaging experiments (Fig. 1j).

XTC restores high-resolution synaptic signals in vivo
In vivo 2p images restored using the XTC model exhibited improved 
lateral and axial resolution (Fig. 2a and Supplementary Videos 1 and 2).  
Closer inspection of distinct regions with sparse synapses, dense 
synapses and near-blood-vessel occlusions or in volumes with 
depth-dependent signal loss demonstrated that the CNN adapted 
to regional changes in image statistics to faithfully preserve visible  
synapses (Fig. 2b). Moreover, when two human experts were tasked with 
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annotating the same volume, before and after XTC restoration, XTC 
processing significantly improved segmentation similarity between 
researchers (mean ± s.e.m. Jaccard index 0.29 ± 0.02 Raw 2p and 
0.46 ± 0.02 XTC; P = 7.7 × 10–8; unpaired two-tailed Student’s t-test; 
Extended Data Fig. 2b), indicating that XTC restoration facilitates reli-
able, reproducible analysis by reducing inter-researcher variability in 
synapse detection.

To compare the performance of XTC to existing denoising meth-
ods, we employed four algorithms of varying complexity: (1) non-local 
means (NLM) represents a simple standard image-denoising baseline28; 
(2) Deconvolution29 and (3) block-matching and three-dimensional 
filtering (BM3D)35 represent traditional denoising algorithms; and  
(4) Noise2Void (N2V) represents a modern unsupervised deep-learning 
approach31,36. When these methods were applied to restore the same 
in vivo 2p data, we observed that XTC achieved superior resolution 
(Fig. 3 and Supplementary Video 3), improving background denoising 
while enhancing signal quality in both lateral and axial dimensions. 
Alternative methods struggled to balance background subtraction with 
signal retention. For instance, Deconvolution was able to amplify syn-
aptic signals, but suffered from signal loss due to excessive denoising  
(Fig. 3a). The superior performance of XTC demonstrates the neces-
sity of supervised deep-learning approaches to achieve robust image 
denoising in vivo.

As the functions parametrized by CNNs are complex, it is also  
important to empirically test for artifactual errors, such as ‘hallucinated’  

false-positive synapses (Extended Data Fig. 3). Testing for false  
positives also demonstrates how well XTC generalizes beyond the data 
distribution used for training. First, we applied XTC, with no additional 
training, to a structural neuronal signal: viral expression of tdT. We 
observed that restored images faithfully retained the linear properties 
of dendrites and did not create hallucinated spherical ‘synapse-like’ 
objects (Fig. 3b). Moreover, after enhancing both tdT and SEP signals 
independently using XTC, SEP-labeled synapses remained colocalized 
with dendritic spines, showing that the spatial distribution of SEP 
synapses was not altered through image restoration (Fig. 3b). Finally, 
we also tested XTC on wild-type animals (not expressing SEP) with 
tdT-filled neurons and found no false positives (Fig. 3c). Together, 
these results indicate that XTC faithfully enhances synaptic fluorescent 
signals in vivo without distorting their underlying shape and visualized 
distribution.

Assessment of XTC performance in vitro
Preserving the intensity and size of SEP-labeled synapses is critical 
to accurately assess changes in AMPAR expression, as SEP fluores-
cence is directly correlated with synaptic strength8. To assess how 
image restoration impacts synapse shape, intensity and spatial dis-
tribution, we generated validation data by pairing high-resolution 
volumes, imaged with Airyscan microscopy (Slice Airy), with 
low-resolution volumes, imaged with 2p excitation (Slice 2p; Fig. 1g, h) in  
slice tissue.

Raw in vivo 2p XTC Restoreda Overlay

b Superficial L1 (10-µm deep)

Deeper L1 (70-µm deep)
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z
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Raw SEP–GluA2, in vivo 2p Subregion with vasculature

2p XTC

Raw
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Fig. 2 | XTC super-resolves SEP synapses in vivo. a, Comparison of same in vivo 
2p image before (left) and after XTC (middle). All images show a single axial slice. 
b, Representative slice from a single volume acquired in vivo (100 × 100 × 70 µm). 
Zoomed insets show XTC performance near-blood-vessel obstructions, in sparse 

and dense regions and deeper in the cortex. All figures show single xy section of 
volume, not maximum projections. Full volumetric comparisons are shown in 
Supplementary Videos 1 and 2. Data are representative of four SEP–GluA2 mice, 
examined over two independent experiments.
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To compare individual synapses before and after XTC restora-
tion to synapses from Slice Airy validation data, we trained random 
forest classifiers using ilastik37 to volumetrically segment individual 
synapses. Three ilastik models were trained, each using 30 sparse, 
human annotations, to detect synapses in Slice 2p, XTC Restored and 
Slice Airy (ground truth) volumes, respectively (Fig. 4a,b). When com-
paring ilastik classifiers, we concluded that XTC restoration facilitated 
synapse segmentation, as each pair of segmented synapses, between 
XTC Restored and Slice Airy images, was more similar in size, shape and 
intensity than each pair of segmented synapses between Slice 2p and 
Slice Airy images (Fig. 4). Overall, XTC image restoration preserved the 
correlation of mean intensity values for individual synapses relative to 
ground truth (Fig. 4c; r = 0.59, Slice 2p and r = 0.68, XTC Restored) and 
improved the distribution of total sum intensity for individual synapses 
to better match the total sum intensity distribution of individual syn-
apses in Slice Airy data (Fig. 4d). Moreover, the overall shapes of XTC 
Restored synapses were better matched to ground truth detections, 
as indicated by the Jaccard overlap index38 (Extended Data Fig. 4). 
Notably, XTC performed optimally when provided with input data that 
were within the resolution scale of the training dataset, as expected 
(Extended Data Fig. 5).

When we examined the distribution of true-positive, false-negative 
and false-positive detections between XTC Restored and ground-truth 
volumes, we observed that the false-positive rate was exceptionally 
low. Conversely, while the false-negative rate was relatively high, 
most of these missed detections were either extremely small or dim  
(Fig. 4e,f ). This suggests that image restoration cannot surpass 
the physical limits of optical elements and thus synapses that are 
very small or dim (<0.3 µm in diameter) cannot be reliably detected 
in vivo, even after restoration. Thus, XTC restoration provides 
high-confidence detection of brighter synapses, with relatively 
higher AMPAR content. Finally, to further assess the performance 
of XTC restoration relative to existing alternative methods, we 
again compared XTC to NLM28, Deconvolution29, BM3D35 and  
Noise2Void31,36. Given the same Slice 2p input, XTC achieved the best 
image denoising and showed statistically significant improvements 
in both peak signal-to-noise-ratio (PSNR) and normalized root-mean- 
squared error (NRMSE) (all comparisons with XTC, PSNR: Slice 2p 
(P = 2.0 × 10−34), NLM (P = 2.1 × 10−7), Deconvolution (P = 1.4 × 10−13), 
BM3D (P  = 10−22) and N2V (P  = 5.7 × 10−9); NRMSE: Slice 2p 
(P = 2.0 × 10−50), NLM (P = 10−6), Deconvolution (P = 3.9 × 10−14), BM3D 
(P = 2.8 × 10−28) and N2V (P = 2.6 × 10−8); one-way analysis of variance  
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experiment. c, Correlation of mean fluorescence intensity of matched 
segmented synapses from Slice 2p or XTC Restored volumes to segmented 
synapses from the ground-truth volume. a.u., arbitrary units. d, The distribution 
of total intensity (sum of total voxel intensity within a segmented synapse) for 
individual synapses in XTC Restored, Slice 2p and ground-truth volumes.  

e,f, The distribution of synapse diameter (e) and total intensity (f) for paired 
true-positive, false-negative and false-positive detections in XTC Restored 
volume relative to Slice Airy validation data. g,h, PSNR and NRMSE comparisons 
across techniques. All comparisons with XTC, PSNR: Slice 2p (P = 2.0 × 10−34), 
NLM (P = 2.1 × 10−7), Deconvolution (Deconv.) (P = 1.4 × 10−13), BM3D (P = 10−22) 
and N2V (P = 5.7 × 10−9); NRMSE: Slice 2p (P = 2.0 × 10−50), NLM (P = 10−6), Deconv. 
(P = 3.9 × 10−14), BM3D (P = 2.8 × 10−28) and N2V (P = 2.6 × 10−8); n = 80 images per 
condition, one-way analysis of variance with Bonferroni correction for multiple 
comparisons. ∗∗∗P < 0.001. Box-plot elements are defined as follows: center line 
(median); box limits (upper and lower quartiles); whiskers (1.5× interquartile 
range); points represent individual cropped images (points outside of whiskers 
are outliers). Sample outputs shown in Extended Data Fig. 6.
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with Bonferroni correction for multiple comparisons; Fig. 4g,h and 
Extended Data Fig. 6).

Cross-modal image enhancement facilitates synapse tracking
Accurately tracking synapses over weeks in behaving animals is critical 
to understand how synaptic changes enable learning and memory. We 
hypothesized that XTC restoration would facilitate synapse tracking by 
improving signal-to-noise ratio and reducing ambiguities. To compare 
synapse tracking before and after XTC, cranial windows were surgically 

implanted over retrosplenial cortex and animals were imaged over  
2 weeks. All time points were then registered volumetrically, followed 
by a masking step to remove areas obscured by blood vessels. XTC was 
then applied to each volume, followed by synapse segmentation using 
a trained ilastik classifier and subsequent synapse tracking using a 
structured learning algorithm39,40 (Figs. 1j and 5a,b).

Synapse tracking was improved when XTC was applied to enhance 
in vivo 2p volumes. The number of synapses tracked over 10 d was more 
than threefold higher in XTC Restored volumes (Fig. 5c; 907 versus 3,241 
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Fig. 5 | XTC enables tracking of thousands of registered synapses across days 
during behavior. a, Overview of preprocessing pipeline for tracking. Volumes 
were acquired using in vivo 2p microscopy over 10 d and registered to each other. 
Blood vessels were masked to facilitate tracking. Imaging volumes were super-
resolved with XTC; synapses were detected using ilastik and separated with 
watershed segmentation. Data are representative of larger volumes from three 
SEP–GluA2 mice, examined over two independent experiments. b, Examples 
of single-synapse-resolution registration and tracking in vivo. Representative 
raw signal across ten imaging days (top). Same fields of view with synapse 
detections overlaid (middle). Identical colors across different days indicate 
the same tracked synapse. Registered and aligned signals (magenta), relative 
to day 1 (green) (bottom). Data are representative of larger volumes from three 

SEP–GluA2 mice, examined over two independent experiments. c, Fold change 
of SEP–GluA2 intensity for individual tracked synapses before and after XTC 
processing across 11 d of imaging, relative to day 1 baseline. Norm., normalized; 
Dec., decrease; Inc., increase. d, The overall density of synapse detections at 
each time point and across all time points, was increased after XTC restoration 
(P = 4.0 × 10−8, n = 4 time points, unpaired two-tailed Student’s t-test). Error bars 
show mean ± s.e.m. e, Error rate of tracking for 100 randomly selected synapses, 
as curated by expert humans, in in vivo 2p and XTC processed volumes. f, Median 
fold change of all synapses at each time point. g–i, Distribution of diameter in xy 
(P = 1.6 × 10−103), major axis length in xy (P = 8.5 × 10−134) and major axis length in xz 
(P < 0.001) for individual synapses in both Raw 2p and XTC Restored volumes (for 
all comparisons unpaired two-tailed Student’s t-test). ∗∗∗ represents P < 0.001.
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detections) and the overall density of synapses detected at each time 
point was also increased by 50% (Fig. 5d; 0.106 ± 0.003 mean ± s.e.m. 
synapses per µm3 for in vivo 2p and 0.154 ± 0.004 synapses per µm3 for 
XTC Restored; P = 4.0 × 10−8; unpaired two-tailed Student’s t-test). XTC 
also increased the density of synapses that could be tracked across all 
time points to 60% of all synapses in XTC Restored data, compared to 
24% in Raw 2p data (Fig. 5d). Moreover, when we manually assessed the 
rate of tracking errors for 100 randomly selected synapses before and 
after image enhancement, we also observed a reduced error rate at each 

individual time point, resulting in a threefold reduction in cumulative 
errors (Fig. 5e; cumulative error of 18% for XTC and 61% for in vivo 2p on 
day 10). Additionally, we found that while baseline synapse dynamics 
were stable across 10 d of imaging in XTC Restored volumes (Fig. 5f),  
the median fold change for non-restored volumes showed a marked 
decline on day 9 (Fig. 5c,f), likely due to tracking errors from accumulated 
tissue shifts that were more difficult to resolve without XTC restoration. 
We also compared the distribution of sizes of all tracked synapses before 
and after image restoration and found that the diameter of segmented 
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synapses was closer to their expected physiological size (<1 µm in 
diameter) in XTC Restored volumes (Fig. 5g–i; 1.0 ± 0.008 µm Raw 2p 
and 0.77 ± 0.005 µm XTC synapse equivalent diameter; P = 1.6 × 10−103; 
1.2 ± 0.009 µm Raw 2p and 0.77 ± 0.005 µm XTC max xy width; 
P = 8.5 × 10−134; 1.0 ± 0.008 µm Raw 2p and 0.77 ± 0.005 µm XTC max xz 
height; P < 0.001 all comparisons mean ± s.e.m.; unpaired two-tailed 
Student’s t-test). Overall, XTC facilitates synapse tracking by substan-
tially denoising images, thereby simplifying the tracking task such that 
simple, sparsely annotated tracking models can be effectively employed.

XTC enables tracking of behaviorally induced synapse 
dynamics
To assess whether XTC Restored volumes can be used to track and 
detect differences in AMPAR content in an established behavioral para-
digm for synaptic plasticity, we exposed mice to a novel environment 
after 3 d of baseline imaging (days 1–3) (Fig. 6a). This behavior (day 4, 
occurring 2 h before imaging session) consisted of a single, 5-min period 
of exploration in a chamber containing novel visual, auditory, olfactory 
and tactile stimuli, after which the mice were transferred back to their 
home cage. Animals were then imaged on days 5, 7, 9 and 11. To correct 
for shifts in global signal intensity, SEP intensity was normalized to the 
red signal of a sparse subset of neurons expressing tdT, as both signals 
were excited by the same beam and detected with high- and low-pass 
filters, respectively (910 nm 2p excitation; Fig. 6b).

Animals exposed to a novel environment showed a marked shift 
in the proportion of synapses with both stronger and weaker synaptic 
connections (corresponding to increased and decreased synaptic 
SEP–GluA2 content, respectively) and an overall net increase in AMPAR 
content, consistent with the net induction of long-term potentiation, 
which is known to encode spatial learning (Fig. 6c). Representative 
examples of successfully tracked synapses are shown in relation to 
the first imaging time point (Fig. 6d). The proportion of synapses that 
increased in strength, defined as having a sustained fold change > 1.5 on 
days 9 and 11, was 16.9% in the home cage control compared to 24.3% in 
novel conditions. Moreover, the proportion of synapses that decreased 
in strength, defined as having a sustained fold change < 0.5 on days 9 
and 11, was also lower after novel exposure (24.0% in home cage and 
21.0% in novel conditions; Fig. 6e).

While this XTC-based tracking pipeline was able to detect these 
biological differences in AMPAR content, we still noted several errors 
that could be categorized into error types that future algorithms should 
focus on preventing: ‘shift’ errors, where one association error will 
continue to propagate on additional time points in regions with poor 
registration; ‘merge’ errors, which occur at the detection stage and 
result in blobs of synapses being tracked as a single entity; and ‘swap’ 
errors, where a tracked synapse incorrectly jumps to a nearby synapse 
at a later time point (Fig. 6f). These errors could be minimized with 
more complex detection and tracking models using deep-learning or 
other machine-learning approaches.

Discussion
To better understand how behavioral learning is encoded through 
changes in the strengths of individual synapses, we designed a trans-
genic mouse line, SEP–GluA2 and developed a computational pipeline 
to register, super-resolve, identify and longitudinally track individual 
synapses in vivo. Crucially, our transgenic labeling strategy tags the 
functional component of excitatory synapses, the AMPARs, which 
allows researchers to generate detailed maps of synaptic plasticity. 
Moreover, we showed that by enhancing low-resolution 2p SEP fluores-
cence to optimal Airyscan-level image quality, it is possible to visual-
ize the AMPAR content of excitatory synapses within a broad cortical 
region in vivo, providing insight into the spatiotemporal relationship 
between plasticity and behavioral experience.

At the core of this synapse tracking paradigm is XTC, a cross- 
modality supervised image-restoration model that substantially 

improved the axial and lateral resolutions of in vivo 2p images, while 
retaining the benefits of increased penetrance and imaging speed. XTC 
restoration also generalized well to unseen data, such as fluorescently 
labeled neurons and sufficiently reduced the variability between human 
researchers to enable reliable synapse tracking. Moreover, when com-
pared to a suite of existing denoising algorithms (NLM, Deconvolution, 
BM3D and Noise2Void), XTC outperformed all other models. This perfor-
mance highlights the benefits of supervised deep-learning approaches, 
which in these settings are only possible with a cross-modality training 
paradigm, for accurate image restoration in vivo.

Beyond synapse tracking, XTC serves as a proof of concept for 
generating similar supervised restoration algorithms to enhance other 
in vivo fluorescent signals. Using our slice training paradigm, research-
ers can rapidly generate trained CNNs to enhance a multitude of in vivo 
datasets, such as transient signals generated by genetically encoded 
calcium sensors, fluorescent molecules that are easily photo-bleached 
or other nanoscale structures that are near the detection limit of in vivo 
objectives; however, a caveat of this supervised restoration paradigm 
is that it is still fundamentally limited, as expected, by the resolution of 
optical elements, as most undetected synapses after XTC were below 
the noise threshold. Thus, moving beyond the noise threshold requires 
either higher resolution objectives or other optical/computational com-
ponents that improve photon capture41–45. Additional improvements 
to synapse tracking can also be realized by developing more complex 
detection and tracking algorithms. For instance, 3D mask-RCNNs46 
perform exceptionally well at segmenting individual objects in regions 
of high density, which can reduce ‘merge’ errors at the detection stage. 
Moreover, the application of sophisticated registration algorithms, such 
as LDDMM47, could further alleviate the challenge of synapse tracking 
by aligning all detected synapses automatically.

Overall, the biological and computational tools presented here 
provide a framework to study synapse plasticity longitudinally at high 
resolution. Using XTC, future experiments can now readily advance 
the development of detection and tracking algorithms to interrogate 
the spatiotemporal relationship between changes in synaptic strength 
and animal behavior. For instance, detailed spatial analysis can identify 
the location of subpopulations of synapses that change their synaptic 
strength in concert across cortical regions. Moreover, combined with 
Cre-dependent neuronal labeling, researchers can study synaptic 
plasticity within specific subsets of neurons in the brain. Thus, our 
computational cross-modality image-restoration paradigm sets the 
stage for detailed molecular studies of synaptic plasticity underlying 
behavior, bringing us a step closer to understanding the structural and 
functional foundations of cognition.
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Methods
Animal ethics
All surgical and animal procedures were approved by the Johns Hopkins  
Animal Care and Use Committee. All animal work complied with rel-
evant ethical guidelines. Mice were housed in a climate-controlled 
room on a 12-h light–dark cycle.

Mouse genetics
SEP–GluA2 mice were made in collaboration with the Johns Hopkins 
University School of Medicine Transgenics core, on a C57/BL6 back-
ground. Briefly, we used a CRISPR-Cas9-based approach to insert a 
SEP tag into exon 1 of Gria2, localized to the area encoding the GluA2 
subunit N terminus. Homozygous transgenic mice are viable, breed 
well and seem to be physiologically and behaviorally normal. In this 
transgenic line, all GluA2-containing AMPARs are labeled at endo-
genous levels, enabling robust visualization of excitatory synapses 
throughout the entire brain.

Surgical procedures
Mice were anesthetized (1.5–2% isoflurane) and implanted with a 3 × 3-mm 
cranial window (Potomac Photonics) over the retrosplenial cortex at 
10–16 weeks of age. Windows were sealed and custom-made metal head 
bars were attached using dental cement (Metabond). In a subset of experi-
ments, an AAV-CaMKII-cre virus (Addgene/Penn Vector) was injected 
into cortex (viral titer, 5 × 108–1 × 109, 100–150 nl, 0.3 mm deep) of dou-
ble homozygous SEP–GluA2 × Ai9 reporter mice to sparsely label L2/3 
pyramidal neurons with a tdT cell fill. Then, 10 mg kg−1 of extended-release 
Buprenorphine (ZooPharm) was administered before surgery and mice 
were observed for 3 d following surgery. Mice were allowed to recover 
for at least 2 weeks before commencing in vivo imaging.

Mouse behavior
Mice were handled daily for 1 week before behavioral testing. 
Novel-exposure behavior consisted of a single 5-min exploration ses-
sion in a novel spatial environment. Mice were individually placed in a 
20-cm square chamber with distinct spatial markings and textures on 
the walls (60-grit sandpaper), a novel smell (70% ethanol), novel cage 
floor (1-cm-spaced circular bars) and white noise (70 dB). Home-cage 
control mice were handled daily for 1 week before the start of the experi-
ment but were not exposed to a novel spatial environment. Equal num-
bers of male and female mice were used for all experiments. Mice used 
throughout this study were aged 12–20 weeks.

In vivo and in vitro 2p imaging
in vivo 2p images were acquired from lightly anesthetized mice (1.5% 
isoflurane) using a custom-built, 2p laser-scanning microscope con-
trolled by ScanImage (Vidrio) and a ×20/1.0 NA water-immersion objec-
tive lens (Zeiss). SEP–GluA2 (green) and tdTomato cell fill (red) were 
both excited at 910 nm with a Ti:sapphire laser (SpectraPhysics, 20 mW 
power at objective back aperture). Green and red fluorescence signals 
were acquired simultaneously and separated by a set of dichroic mir-
rors and filters (ET525/50 m for green channel, ET605/70 m for red 
channel, Chroma). Image stacks were acquired by resonance scanning 
at 30-Hz, such that 60 images were captured over 2 s for each xy plane. 
These images were then rigidly aligned (using Stack GPS, https://github.
com/ingiehong/StackGPS) to compensate for small movements due 
to breathing and averaged for each plane. The field of view contained 
1,024 × 1,024 × 70 voxels with a lateral xy resolution of 0.096 µm per 
px and an axial resolution of 1 µm per px. Live, 300-µm thick acute 
slices of SEP–GluA2 brains were imaged using the same optical setup, 
except that the tissue was held in place with a platinum/nylon harp, as 
described for 1p imaging. Slices were maintained in HEPES-buffered 
artificial cerebrospinal fluid (ACSF), consisting of 140 mM NaCl, 5 mM 
KCl, 10 mM glucose, 10 mM HEPES, 2 mM CaCl2 and 1 mM MgCl2, with 
pH adjusted to 7.40.

1p confocal and Airyscan imaging
Paired high-resolution Airyscan and low-resolution confocal training 
volumes were generated using a Zeiss 880 microscope and a ×63/1.0 
NA water objective lens (Zeiss) in live-slice preparations. Homozygous 
SEP–GluA2 mice were transcardially perfused with ice-cold, oxygenated 
ACSF, the brain was removed and 300-µm thick acute coronal slices of 
dorsal cortex were made. Slices were incubated in 32 °C oxygenated 
ACSF for 45 min and then maintained in oxygenated ACSF at room 
temperature. During imaging, slices were held in place with either a 
platinum/nylon harp or rapid annealing UV-activated optical glue. 
Data collection used Zen Black software (Zeiss).

SEP–GluA2 and tdT cell fill were excited at 488 nm and 546 nm, 
respectively. Optimal high-resolution images were acquired using 
calibrated Airyscan detectors that achieved a lateral resolution of 
0.063 µm per px and an axial resolution of 0.33 µm per px. Immediately 
after high-resolution volumes were imaged, paired suboptimal images 
were acquired to reduce registration errors. The image quality of sub-
optimal images was curated to replicate the image quality of in vivo 2p 
datasets by opening the confocal pinhole four-times higher than the 
ideal AU, increasing the laser gain to near maximal levels and reducing 
laser power. Overall, we collected 24 paired high–low-resolution train-
ing volumes with a 550 × 550 × 20 voxel field of view from eight tissue 
slices containing multiple cortical regions. Validation and all in vivo 
data were generated from different animals (n = 5 mice). In addition to 
live-slice imaging, we also applied the Zeiss 880 microscope in Airyscan 
Fast mode33, with a ×20/1.0 NA water-immersion objective lens (Zeiss), 
to attempt to detect synapses in vivo.

Neural network architecture and optimization
Having collected pairs of aligned high- and low-resolution images, 
{xil , x

i
h}

N
i=1, we employed a supervised learning approach to find a map 

from input images xl ∈ Rnl to outputs xh ∈ Rnh, where nl < nh. In particu-
lar, we parametrize this function fθ ∶ Rnl → Rnh with a CNN with param-
eters θ. We employ a CNN architecture similar to those proposed by 
Weigert et al. with a modified U-Net architecture1,4. Following previous 
work48, the input is first bicubic-interpolated to match the target dimen-
sion before applying a function parameterized by the CNN. At deploy-
ment, in vivo volumes follow an analogous pipeline whereby they are 
first interpolated to match the axial and lateral resolutions of the train-
ing data before restoration. Following an empirical risk minimization 
approach, we minimize a suitable loss function over the training sam-
ples according to:

fθ̂ = argmin
θ

1
N

N
∑
i=1

l (fθ (xil) , x
i
h)

The loss penalizes deviations by the reconstructed images, fθ (xIl), 
from the high-quality samples, xih. For simplicity, we chose to optimize 
the average of mean absolute error, namely l (fθ (xil) , x

i
h) = λfθ (xil) − xih1. 

Combining this with other losses, such as the multiscale structural 
similarity index (MS-SSIM)49, is certainly possible and might provide 
further improvements. Overall, we trained a CNN with paired 
high-resolution Slice Airy and low-resolution Slice 1p data for 1,000 
epochs with batch size of eight on an NVIDIA Tesla P100-PCIE GPU using 
an Adam optimizer50 and a learning rate of 4 × 10−4.

Validation comparisons
The ideal validation experiment would require imaging the same field 
of view first in vivo, using our 2p setup and then again ex vivo in slice, 
with Airyscan detectors. This setup would allow us to directly com-
pare synapses detected in XTC Restored in vivo images to synapses 
in ground-truth Slice Airy volumes. Unfortunately, we found that it 
was extremely difficult to find the exact same field of view ex vivo 
post-perfusion, even with the addition of structural anchors to help 
with registration, such as sparse neuronal labels. Moreover, we found 
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that it was entirely impossible to preserve the tissue throughout dissec-
tion such that the position of synapses remained stable enough for reg-
istration. Thus, we chose to perform our validation in live-slice tissue 
directly, where we could try to faithfully replicate the quality of images 
acquired in vivo by using the same 2p microscope, resonance scanner, 
objective and laser power to acquire our low-resolution Slice 2p images 
(Fig. 1h,i). Moreover, tissue slices were imaged immediately after dis-
section to preserve endogenous tissue quality. The high-resolution 
images (Slice Airy) paired to these low-resolution Slice 2p volumes were 
acquired on a separate Zeiss 880 microscope equipped with Airyscan 
detectors (Fig. 1g). The high- and low-resolution validation pairs were 
then registered together using a combination of FIJI’s correct 3D drift 
package51 and SimpleElastix affine transformations52 to remove tissue 
movements that occurred when transferring between microscopes.

Finally, we compared pairwise detected synapses, segmented 
using ilastik voxel classifiers, between high-resolution Slice Airy vol-
umes and both Slice 2p and XTC Restored volumes. For these compari-
sons, we defined ‘true-positive’ detections as synapses sharing at least 
one voxel across the pairwise compared volumes. As this threshold was 
very lenient, we also included several validation metrics to assess pair-
wise structural and intensity similarities to validate the extent to which 
XTC processing improved the size and shape of synaptic detections.

Optimization of alternative denoising algorithms  
for comparison
Four additional image-denoising algorithms were used to evaluate 
the performance of XTC. These four algorithms were applied to the 
exact same in vivo 2p and Slice 2p data provided to XTC, as indicated 
in Fig. 3a and Extended Data Fig. 6 and each algorithm was optimized 
for analysis in the following ways:

 1. NLM28: we implemented the version of NLM packaged in  
Python’s scikit-image library using the ‘slow mode’ of operation. 
The performance of the algorithm was adjusted by optimizing 
the sigma value (noise standard deviation) between a range 
of 10 to 30. We then applied the algorithm slice by slice, as the 
algorithm was not optimized for large volumetric data.

 2. Deconvolution: we used the DeconvolutionLab229 package 
(available in FIJI) to perform Lucy–Richardson Deconvolu-
tion53,54. To estimate the point-spread function, we used Decon-
volutionLab2’s point-spread function generator package and 
selected the Richards and Wolf 3D Optical Model. We provided 
the refractive index, wavelength, NA and voxel size from our 
optical setup. To optimize the performance of Deconvolution, 
we altered the number of iterations performed by the Lucy–
Richardson algorithm between the range of 2 to 20. We selected 
ten iterations as the optimal performance.

 3. BM3D35: we used the MATLAB implementation of BM3D and 
started the algorithm in ‘all levels’ mode to enable multilevel  
denoising. For optimization, we adjusted the sigma value  
between value 5 and 50.

 4. Noise2Void31,36: a state-of-the-art unsupervised 
image-denoising algorithm, which is conveniently offered by 
ZeroCostDL4Mic36. Using this platform, we provided one train-
ing volume of size (35 × 35 × 70 µm) and trained for 24 h (100 
iterations) on a GPU 2080 RTX Ti with all other default settings. 
The performance was then established by applying the ‘best’ 
model, as detected by default in Noise2Void.

Registration and data processing for synapse detection and 
longitudinal tracking
Several preprocessing steps were applied to facilitate longitudinal 
synapse tracking (Fig. 1j). First, each image at a given time point t was 
volumetrically registered to the subsequent time point t + 1 using 
affine transformations in SimpleElastix. While volumetric registration 

accounted for global tissue shifts, we found that local misalignments 
persisted after volumetric registration. Thus, we included an additional 
registration step that registered each xy slice on time point t with each 
corresponding slice on time point t + 1. The final preprocessing step was 
to detect blood vessels and exclude them from our analysis, as synapses 
located adjacent to blood vessels could easily become obscured and 
appear as an eliminated synapse. To perform blood vessel masking, 
volumes were binarized, followed by inversion, image opening and dila-
tion to extract a smooth binary mask that excluded dim dark regions. 
No other preprocessing steps were applied to the raw data and the 
registered volumes were then processed with XTC.

Synapse detection and tracking algorithms were trained in ilastik, 
a platform that enables researchers to rapidly build machine-learning 
models using sparse annotations. For synapse detection, random forest 
classifiers were trained, each using 30 human segmented synapses, for 
all imaging modalities (Slice 2p, Slice Airy, in vivo 2p and XTC Restored), 
respectively. For synapse tracking, we trained two models using struc-
tured sparse learning in ilastik, each with 100 human annotated tracks, 
for in vivo 2p data both before and after XTC restoration. To ensure that 
the intensity of the SEP signal compared across tracking experiments is 
not altered by XTC processing, we also overlaid the XTC segmentations 
onto the raw in vivo 2p data to extract intensity values directly from the 
raw data in longitudinal imaging experiments.

Statistical analysis
All statistical analysis was performed using Python statsmodels and 
scipy libraries. n represents the number of animals used in each experi-
ment, unless otherwise noted. Data are reported as mean ± s.e.m. or 
median ± s.e.m. as indicated and P < 0.05 was considered statistically 
significant. Level of significance is marked on figures as ∗P < 0.05; 
∗∗P < 0.01; ∗∗∗P < 0.001.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated or analyzed during the current study are avail-
able from the following OSF repository: https://osf.io/qdpty/?view_ 
only=c250e8676a434899964cb4e5de676e0d.

Code availability
Packaged software code is available at github.com/yxu233/Xu_and_
Graves_XTC_syn_tracking under the MIT license, along with instruc-
tions for use and demo data across a small volume. The algorithm is 
prepared to work with minimum Python v.3.6. The code is also archived 
in a Code Ocean capsule at https://doi.org/10.24433/CO.8379773.v155.
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Extended Data Fig. 1 | XTC network architecture for image restoration. 
Architecture based on 3D U-Net34. Single channel input volume is convolved 
and downsampled along the descending branch of the network. The ascending 

branch then upsamples the data, such that the restored output is identical  
in size to the input volume. Convolutional kernels 5 × 5 × 5 unless otherwise 
indicated.
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Extended Data Fig. 2 | Inter-researcher variability in synapse detection is 
reduced with XTC restoration. (a) Representative slices from human annotated 
volume of SEP-GluA2 labeled synapses, both with and without XTC processing. 
Tracing was performed in ITK-SNAP56 using a brush tool by human expert 1 and 2 
and overlaid on the far right. Data representative of synapses from one SEP-GluA2 
mouse. (b) Distribution of segmentation similarity, as indicated by Jaccard index, 

between matched synapses traced by both experts. 0.29 ± 0.02 Raw 2p and 
0.46 ± 0.02 µm XTC mean Jaccard index, p = 7.7 × 10−8; unpaired two-tailed t-test. 
(c) Number of unmatched and matched synapses between human annotators 
(defined as having at least 75% shared voxels) before and after XTC restoration. 
(d) The absolute difference in mean synapse diameter between human 
annotators before and after XTC restoration.
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Extended Data Fig. 3 | Pre-trained CARE models hallucinate when applied to 
synapse data. Application of pre-trained CARE restoration algorithm (trained on 
a microtubules dataset) to SEP-GluA2 input volume. Hallucinated microtubules 

visible when applied to both in vivo 2p and Slice 2p data. Data are representative 
of larger volumes from two SEP-GluA2 mice, examined over two independent 
experiments.
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Extended Data Fig. 4 | Additional comparison of synapses detected before 
and after XTC restoration. To serve as a semi-randomized baseline, the Slice 
Airy volume was rotated 90°. (a) Correlation of the mean intensity of matched 
segmented synapses between rotated and unrotated Slice Airy volumes 

(r = −0.14). (b) Optimal overlap similarity ( Jaccard index) between matched 
segmented synapses between Slice Airy and either Slice 2p, XTC or rotated 
volumes. (c) The structural similarity index (SSIM) for full volumes, as compared 
between Slice Airy and either Slice 2p, XTC or rotated data.
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Extended Data Fig. 5 | XTC performs optimally within scale of training data. 
Assessment of varied image XY resolution (scaling) on XTC model performance. 
Volumes tested between range of 20 – 180% of training data resolution. Training 

data was acquired between 0.063–0.095 µm/px in XY resolution. Data are 
representative of larger volumes from three SEP-GluA2 mice, examined over one 
independent experiment.
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Extended Data Fig. 6 | Comparison of XTC to existing algorithms using slice 
2p data. Comparison of XTC restoration to four algorithms (NLM, Deconvolution, 
BM3D and Noise2Void) using slice 2p validation data. Identical ‘Input’ slice 2p 
volume provided to all algorithms. Inset crop from orange boxes shown on 

right of each comparison, with XY and XZ projections at the top and bottom, 
respectively. PSNR and NRMSE values for each algorithm output compared to 
ground truth shown in Fig. 4g, i. Data are representative of larger volume from 
one SEP-GluA2 mice, examined over one independent experiment.
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