Mammalian cells have about 30,000 times as many protein molecules as mRNA molecules, which has major implications in the development of proteomics technologies. We discuss strategies that have been helpful for counting billions of protein molecules by liquid chromatography–tandem mass spectrometry and suggest that these strategies can benefit single-molecule methods, especially in mitigating the challenges posed by the wide dynamic range of the proteome.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Nau, H. & Biemann, K. Anal. Biochem. 73, 139–153 (1976).
Hass, G. M. et al. Biochemistry 14, 1334–1342 (1975).
Hunt, D. F., Yates, J. R. III, Shabanowitz, J., Winston, S. & Hauer, C. R. Proc. Natl Acad. Sci. USA 83, 6233–6237 (1986).
Johnson, R. S. & Biemann, K. Biochemistry 26, 1209–1214 (1987).
Yamashita, M. & Fenn, J. B. J. Phys. Chem. 88, 4451–4459 (1984).
Eng, J. K., McCormack, A. L. & Yates, J. R. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
Venable, J. D., Dong, M.-Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Nat. Methods 1, 39–45 (2004).
Ross, P. L. et al. Mol. Cell Proteomics 3, 1154–1169 (2004).
Specht, H. et al. Genome Biol. 22, 50 (2021).
Petelski, A. A. et al. Nat. Protoc. 16, 5398–5425 (2021).
Washburn, M. P., Wolters, D. & Yates, J. R. III Nat. Biotechnol. 19, 242–247 (2001).
Derks, J. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01389-w (2022).
Messner, C. B. et al. Cell Syst. 11, 11–24.e4 (2020).
Alfaro, J. A. et al. Nat. Methods 18, 604–617 (2021).
Swaminathan, J., Boulgakov, A. A. & Marcotte, E. M. PLOS Comput. Biol. 11, e1004080 (2015).
Palmblad, M. J. Proteome Res. 20, 3395–3399 (2021).
Swaminathan, J. et al. Nat. Biotechnol. https://doi.org/10.1038/nbt.4278 (2018).
Reed, B. D. et al. Science 378, 186–192 (2022).
Mallick, P. Methods of assaying proteins. US Patent 10948488B2 (2021).
Egertson, J. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463967 (2021).
Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).
Slavov, N. Cell 185, 232–234 (2022).
Milo, R. Bioessays 35, 1050–1055 (2013).
Bekker-Jensen, D. B. et al. Cell Syst. 4, 587–599.e4 (2017).
Anderson, N. L. & Anderson, N. G. Mol. Cell. Proteomics 1, 845–867 (2002).
Marinov, G. K. et al. Genome Res. 24, 496–510 (2014).
Peterson, D. W. & Hayes, J. M. Signal-to-noise ratios in mass spectroscopic ion-current-measurement systems. In Contemporary Topics in Analytical and Clinical Chemistry Vol. 3 (eds. Hercules, D. M. et al.) 217–252 (Springer US, 1978).
Scigelova, M., Hornshaw, M., Giannakopulos, A. & Makarov, A. Mol. Cell. Proteomics 10, M111.009431 (2011).
Makarov, A. & Denisov, E. J. Am. Soc. Mass Spectrom. 20, 1486–1495 (2009).
MacCoss, M. J., Toth, M. J. & Matthews, D. E. Anal. Chem. 73, 2976–2984 (2001).
Schwartz, J. C., Zhou, X.-G. & Bier, M. E. Method and apparatus of increasing dynamic range and sensitivity of a mass spectrometer. US Patent 5572022A (1996).
Zhao, S., Ye, Z. & Stanton, R. RNA 26, 903–909 (2020).
Belov, M. E. et al. Anal. Chem. 73, 5052–5060 (2001).
Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. Nat. Methods 15, 440–448 (2018).
Egertson, J. D. et al. Nat. Methods 10, 744–746 (2013).
Anderson, N. L. et al. Mol. Cell. Proteomics 3, 311–326 (2004).
Pieper, R. et al. Proteomics 3, 422–432 (2003).
Macdonald, I. K., Parsy-Kowalska, C. B. & Chapman, C. J. Trends Cancer Res. 3, 198–213 (2017).
Hoofnagle, A. N. & Wener, M. H. J. Immunol. Methods 347, 3–11 (2009).
McVicar, J. P., Kunitake, S. T., Hamilton, R. L. & Kane, J. P. Proc. Natl Acad. Sci. USA 81, 1356–1360 (1984).
Heinecke, J. W. J. Lipid Res. 50 (Suppl.), S167–S171 (2009).
Siuti, N. & Kelleher, N. L. Nat. Methods 4, 817–821 (2007).
Kafader, J. O. et al. Nat. Methods 17, 391–394 (2020).
Wörner, T. P. et al. Nat. Methods 17, 395–398 (2020).
Gatlin, C. L., Eng, J. K., Cross, S. T., Detter, J. C. & Yates, J. R. III Anal. Chem. 72, 757–763 (2000).
MacCoss, M. J. et al. Proc. Natl Acad. Sci. USA 99, 7900–7905 (2002).
Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Nat. Methods 6, 315–316 (2009).
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Science 316, 1497–1502 (2007).
Huffman, R. G. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484655 (2022).
Panchaud, A. et al. Anal. Chem. 81, 6481–6488 (2009).
Slavov, N. Nat. Biotechnol. 39, 809–810 (2021).
Derks, J. & Slavov, N. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.2c00721 (2023).
Pino, L. K., Just, S. C., MacCoss, M. J. & Searle, B. C. Mol. Cell. Proteomics 19, 1088–1103 (2020).
Slavov, N. J. Proteome Res. 20, 4915–4918 (2021).
Schwartz, J. C. & Kovtoun, V. V. Automatic gain control (AGC) method for an ion trap and a temporally non-uniform ion beam. US Patent 7960690B2 (2011).
Klammer, A. A., Yi, X., MacCoss, M. J. & Noble, W. S. Anal. Chem. 79, 6111–6118 (2007).
Searle, B. C. et al. Nat. Commun. 9, 5128 (2018).
Chen, A. T., Franks, A. & Slavov, N. PLOS Comput. Biol. 15, e1007082 (2019).
Zrehen, A., Ohayon, S., Huttner, D. & Meller, A. Sci. Rep. 10, 15313 (2020).
Donnelly, D. P. et al. Nat. Methods 16, 587–594 (2019).
Zhu, Y. et al. Nat. Commun. 9, 882 (2018).
Specht, H. et al. Preprint at bioRxiv https://doi.org/10.1101/399774 (2018).
Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Genome Biol. 23, 261 (2022).
Budnik, B., Levy, E., Harmange, G. & Slavov, N. Genome Biol. 19, 161 (2018).
Slavov, N. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01411-1 (2022).
Hong, J. M. et al. iScience 25, 103586 (2021).
Hagemann-Jensen, M. et al. Nat. Biotechnol. 38, 708–714 (2020).
Acknowledgements
The authors acknowledge discussions with Edward Marcotte and members of the Alfaro, MacCoss and Slavov labs. M.J.M. appreciates the constructive feedback provided by UW Genome Sciences faculty. This work was supported in part by US National Institutes of Health grants U19 AG065156, R24 GM141156 and F31 AG066318; an Allen Distinguished Investigator award through The Paul G. Allen Frontiers Group to N.S.; a Seed Networks Award from CZI CZF2019-002424 to N.S.; award R01GM144967 from the US National Institute of General Medical Sciences; award R01HG10087 from the US National Human Genome Research Institute to M.W.; and the project ‘International Centre for Cancer Vaccine Science’ carried out within the International Agendas Programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. We thank the PL-Grid and CI-TASK Infrastructure, Poland, for providing their hardware and software resources. This work is supported by the Knowledge At the Tip of Your Fingers: Clinical Knowledge for Humanity (KATY) project funded from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 101017453.
Author information
Authors and Affiliations
Contributions
M.J.M., J.A. and N.S. conceived the project and wrote an initial draft. D.A.F., M.J.M. and N.S. made figures. C.C.W. collected the plasma extracellular vesicle data. All authors contributed significantly to the content, edited, and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The MacCoss laboratory at the University of Washington has a sponsored research agreement with Thermo Fisher Scientific, a manufacturer of mass spectrometry instrumentation. M.J.M. is a paid consultant for Thermo Fisher Scientific. The Slavov laboratory at Northeastern University has a research agreement with Bruker, a manufacturer of mass spectrometry instrumentation.
Peer review
Peer review information
Nature Methods thanks Tae-Young Yoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
MacCoss, M.J., Alfaro, J.A., Faivre, D.A. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat Methods 20, 339–346 (2023). https://doi.org/10.1038/s41592-023-01802-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-023-01802-5