Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-cell proteomics enabled by next-generation sequencing or mass spectrometry

Abstract

In the last decade, single-cell RNA sequencing routinely performed on large numbers of single cells has greatly advanced our understanding of the underlying heterogeneity of complex biological systems. Technological advances have also enabled protein measurements, further contributing to the elucidation of cell types and states present in complex tissues. Recently, there have been independent advances in mass spectrometric techniques bringing us one step closer to characterizing single-cell proteomes. Here we discuss the challenges of detecting proteins in single cells by both mass spectrometry and sequencing-based methods. We review the state of the art for these techniques and propose that there is a space for technological advancements and complementary approaches that maximize the advantages of both classes of technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key areas of development for mass spectrometry-based single-cell proteomics.
Fig. 2: Single-cell antibody-based proteomics in combination with RNA transcript detection.
Fig. 3: Single-cell PTM and proteomic-detection methods using antibody complexes.

Similar content being viewed by others

References

  1. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  Google Scholar 

  3. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  4. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). The publication that introduced CITE-seq, high-throughput single-cell RNA-seq in droplets with simultaneous measurement of protein epitopes via oligonucleotide-conjugated antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanada, K.-I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antunes, A. R. P. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  Google Scholar 

  14. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, A., Xin, G. & Ma, Q. The use of single-cell multi-omics in immuno-oncology. Nat. Commun. 13, 2728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Labib, M. & Kelley, S. O. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 4, 143–158 (2020).

    Article  Google Scholar 

  20. Ctortecka, C. & Mechtler, K. The rise of single‐cell proteomics. Anal. Sci. Adv. 2, 84–94 (2021).

    Article  CAS  Google Scholar 

  21. Woo, J. et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat. Commun. 12, 6246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rubakhin, S. S., Romanova, E. V., Nemes, P. & Sweedler, J. V. Profiling metabolites and peptides in single cells. Nat. Methods 8, S20–S29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Virant-Klun, I., Leicht, S., Hughes, C. & Krijgsveld, J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol. Cell. Proteomics 15, 2616–2627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lombard-Banek, C., Moody, S. A. & Nemes, P. Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew. Chem. Int. Ed. Engl. 55, 2454–2458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Specht, H. et al. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol. 22, 50 (2021). This publication describes the optimized version of SCoPE-MS, including the amount of carrier proteome that should be added and the required control channels within the multiplexed experimental setup.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunner, A.-D. et al. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022). Large-scale DIA analysis of single cells on an instrument specifically designed to achieve the sensitivity required for single-cell MS analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schoof, E. M. et al. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12, 3341 (2021). Large-scale analysis of thousands of cells demonstrated the potential for single-cell proteomics to inform on the maturation of differentiating cells. Includes discussions on data analysis and key challenges with analyzing single-cell MS data that are collected in various batches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu, Y. et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9, 882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ctortecka, C. et al. An automated workflow for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2021.04.14.439828 (2022). A description of a commercial solution of nanoliter-volume sample processing for multiplexed analysis of single cells using SCoPE-MS as well as multiplexed analysis without the use of a carrier proteome.

  30. Leduc, A. et al. Exploring functional protein covariation across single cells using nPOP. Genome Biol. 23, 261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cong, Y. et al. Improved single-cell proteome coverage using narrow-bore packed nanoLC columns and ultrasensitive mass spectrometry. Anal. Chem. 92, 2665–2671 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petelski, A. A. et al. Multiplexed single-cell proteomics using SCoPE2. Nat. Protoc. 16, 5398–5425 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Webber, K. G. I. et al. Label-free profiling of up to 200 single-cell proteomes per day using a dual-column nanoflow liquid chromatography platform. Anal. Chem. 94, 6017–6025 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Tsang, J. C. H. et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 16, 178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Braun, C. R. et al. Generation of multiple reporter ions from a single isobaric reagent increases multiplexing capacity for quantitative proteomics. Anal. Chem. 87, 9855–9863 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dwivedi, P. & Rose, C. M. Understanding the effect of carrier proteomes in single cell proteomic studies—key lessons. Expert Rev. Proteom. 19, 5–15 (2022).

    Article  CAS  Google Scholar 

  39. Cheung, T. K. et al. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 18, 76–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Bradshaw, R. A., Burlingame, A. L., Carr, S. & Aebersold, R. Protein identification: the good, the bad, and the ugly. Mol. Cell. Proteomics 4, 1221–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Griffiths, J. R. et al. Mass spectral enhanced detection of Ubls using SWATH acquisition: MEDUSA—simultaneous quantification of SUMO and ubiquitin-derived isopeptides. J. Am. Soc. Mass Spectrom. 25, 767–777 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Pino, L. K., Baeza, J., Lauman, R., Schilling, B. & Garcia, B. A. Improved SILAC quantification with data-independent acquisition to investigate bortezomib-induced protein degradation. J. Proteome Res. 20, 1918–1927 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2022). Introduction of multiplexing into DIA analysis for the analysis of single-cell proteomics. This approach has the promise to improve sample throughput while avoiding challenges to quantitative accuracy that are associated with multiplexed tags.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ctortecka, C., Stejskal, K., Krššáková, G., Mendjan, S. & Mechtler, K. Quantitative accuracy and precision in multiplexed single-cell proteomics. Anal. Chem. 94, 2434–2443 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Orsburn, B. C., Yuan, Y. & Bumpus, N. N. Insights into protein post-translational modification landscapes of individual human cells by trapped ion mobility time-of-flight mass spectrometry. Nat. Commun. 13, 7246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsai, C.-F. et al. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteomics 19, 828–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dodds, J. N. & Baker, E. S. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 30, 2185–2195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cong, Y. et al. Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chem. Sci. 12, 1001–1006 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Woo, J. et al. Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Cell Syst. 13, 426–434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pasa-Tolić, L., Masselon, C., Barry, R. C., Shen, Y. & Smith, R. D. Proteomic analyses using an accurate mass and time tag strategy. BioTechniques 37, 621–624 (2004).

    Article  PubMed  Google Scholar 

  53. Furtwängler, B. et al. Real-time search-assisted acquisition on a tribrid mass spectrometer improves coverage in multiplexed single-cell proteomics. Mol. Cell. Proteomics 21, 100219 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huffman, R. G. et al. Prioritized single-cell proteomics reveals molecular and functional polarization across primary macrophages. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484655 (2022).

  55. Noor, Z., Ahn, S. B., Baker, M. S., Ranganathan, S. & Mohamedali, A. Mass spectrometry-based protein identification in proteomics—a review. Brief Bioinform. 22, 1620–1638 (2020).

    Article  Google Scholar 

  56. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods 16, 509–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogbeide, S., Giannese, F., Mincarelli, L. & Macaulay, I. C. Into the multiverse: advances in single-cell multiomic profiling. Trends Genet. 38, 831–843 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Shahi, P., Kim, S. C., Haliburton, J. R., Gartner, Z. J. & Abate, A. R. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7, 44447 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buus, T. B. et al. Improving oligo-conjugated antibody signal in multimodal single-cell analysis. eLife 10, e61973 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Obradovic, A. et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 184, 2988–3005 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trzupek, D. et al. Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein–RNA single-cell analysis. Genome Med. 12, 55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Demaree, B. et al. Joint profiling of DNA and proteins in single cells to dissect genotype–phenotype associations in leukemia. Nat. Commun. 12, 1583 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fiskin, E. et al. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. Nat. Biotechnol. 40, 374–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204–1212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. et al. Multiplexed in situ protein imaging using DNA-barcoded antibodies with extended hybridization chain reactions. Preprint at bioRxiv https://doi.org/10.1101/274456 (2020).

  74. Gerlach, J. P. et al. Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep. 9, 1469 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baars, M. J. D. et al. MATISSE: a method for improved single cell segmentation in imaging mass cytometry. BMC Biol. 19, 99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duncan, D. J., Scott, M., Scorer, P. & Barker, C. Assessment of PD-L1 mRNA and protein expression in non-small cell lung cancer, head and neck squamous cell carcinoma and urothelial carcinoma tissue specimens using RNAScope and immunohistochemistry. PLoS ONE 14, e0215393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reimegård, J. et al. A combined approach for single-cell mRNA and intracellular protein expression analysis. Commun. Biol. 4, 624 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Zhao, Z. & Shilatifard, A. Epigenetic modifications of histones in cancer. Genome Biol. 20, 245 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rotem, A. et al. Single-cell ChIP–seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing (scChIC–seq) to profile histone modification. Nat. Methods 16, 323–325 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, Q. et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol. Cell 76, 206–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019). Many protocols capturing protein–nucleotide interactions in single cells are built upon the concepts of the CUT&Tag method.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gopalan, S., Wang, Y., Harper, N. W., Garber, M. & Fazzio, T. G. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol. Cell 81, 4736–4746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meers, M. P., Llagas, G., Janssens, D. H.,Codomo, C. A. & Henikoff, S. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01522-9 (2022)

  95. Stuart, T. et al. Nanobody-tethered transposition allows for multifactorial chromatin profiling at single-cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2022.03.08.483436 (2022).

  96. Bartosovic, M. & Castelo-Branco, G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01535-4 (2022).

  97. Zhang, B. et al. Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro. Nat. Biotechnol. 40, 1220–1230 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bartlett, D. A. et al. High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). J. Cell Biol. 220, e202103078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zheng, S. C. et al. Universal prediction of cell-cycle position using transfer learning. Genome Biol. 23, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Manno, G. L. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gorin, G., Svensson, V. & Pachter, L. Protein velocity and acceleration from single-cell multiomics experiments. Genome Biol. 21, 39 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  105. Andrews, T. S. & Hemberg, M. M3Drop: dropout-based feature selection for scRNASeq. Bioinformatics 35, 2865–2867 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11, 41–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article  CAS  PubMed  Google Scholar 

  109. Fulcher, J. M. et al. Parallel measurement of transcriptomes and proteomes from same single cells using nanodroplet splitting. Preprint at bioRxiv https://doi.org/10.1101/2022.05.17.492137 (2022). A description of performing scRNA-seq and scMS from the same single cell. This was accomplished by using the nanoPOTS platform and splitting the nanoliter droplet following cell lysis.

  110. Qiu, X. et al. Mapping transcriptomic vector fields of single cells. Cell 185, 690–711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van Buggenum, J. A. et al. A covalent and cleavable antibody–DNA conjugation strategy for sensitive protein detection via immuno-PCR. Sci. Rep. 6, 22675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Darmanis, S. et al. Self-assembly of proximity probes for flexible and modular proximity ligation assays. BioTechniques 43, 443–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Wiener, J., Kokotek, D., Rosowski, S., Lickert, H. & Meier, M. Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics. Sci. Rep. 10, 1457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yazaki, J. et al. HaloTag-based conjugation of proteins to barcoding-oligonucleotides. Nucleic Acids Res. 48, e8 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.R. Lill, Z. Modrusan, O. Rozenblatt-Rosen, K. Geiger-Schuller, S. Klaeger, W.R. Mathews and T.K. Cheung for their insight, guidance and comments.

Author information

Authors and Affiliations

Authors

Contributions

H.M.B. and S.D. were responsible for leading the draft manuscript preparation. H.M.B., S.D., W.S. and C.M.R. all contributed to the preparation of the final version of the text and figures.

Corresponding author

Correspondence to Spyros Darmanis.

Ethics declarations

Competing interests

H.M.B., S.D., W.S. and C.M.R. are currently employees and shareholders of Genentech, a member of the Roche Group.

Peer review

Peer review information

Nature Methods thanks Andreas Mund and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Allison Doerr, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, H.M., Stephenson, W., Rose, C.M. et al. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods 20, 363–374 (2023). https://doi.org/10.1038/s41592-023-01791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-01791-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research