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Editorial

AlphaFold and beyond

A great deal has happened in the 
protein structure prediction field 
since Nature Methods selected this 
topic as our Method of the Year 2021. 
Here’s a quick, non-comprehensive 
update.

I
n 2021, our choice for the Method of 
the Year was clear: major advances in 
three-dimensional protein structure 
prediction from amino acid sequence 
were expected to have a transformative 

impact in structural biology. In particular, 
deep learning-based approaches for struc-
ture prediction, exemplified by AlphaFold 
from DeepMind, made an astounding leap 
in accuracy, allowing the structures of many 
proteins to be predicted with high confidence. 
We certainly have not been disappointed with 
our choice; the pace of rapid new development 
in the structure prediction field since has even 
exceeded our expectations.

In July 2021, DeepMind published the results 
of applying AlphaFold to predict highly accu-
rate structures for 98.5% of the human pro-
teome, about 20,000 proteins in total — a feat 
that cemented our Method of the Year deci-
sion. One year later, DeepMind had increased 
this number by 10,000-fold. The AlphaFold 
Protein Structure Database currently contains 
an incredible ~200 million predicted protein 
structures from hundreds of thousands of 
species.

Other groups have tried their hand at best-
ing AlphaFold. One preprint that has received 
a great detail of attention comes from authors 
at Meta AI, who developed a large language 
model-based protein structure prediction 
method called ESMFold. Whereas AlphaFold 
relies on multiple sequence alignments and 
template structures, ESMFold requires only a 
single input sequence. Though ESMFold does 
not quite meet the accuracy of AlphaFold, 
according to the authors, it is an order of mag-
nitude faster and is also uniquely able to pre-
dict accurate structures for orphan proteins 
with limited sequence homologs. The authors 
present their predictions for 617 million 
microbial proteins in the ESM Metagenomic 
Atlas. Another, recently published tool called 
trRosettaX-Single also takes single sequences 
as inputs. The authors show it can predict the 

structures of orphan proteins with higher 
accuracy than AlphaFold and also works well 
to predict the structures of designed proteins. 
In general, the protein design field stands to 
benefit hugely from large language models, as 
exemplified by the recently published method 
ProGen, which generates novel sequences with 
predictable function.

AlphaFold is powerful, but it also requires 
powerful computing infrastructure. In par-
ticular, the process of building multiple 
sequence alignments requires computation-
ally intensive searches of protein databases 
using homology detection methods. Earlier 
this year, we published ColabFold, which 
allows users to perform homology searches 
40- to 60-fold faster than AlphaFold, enabling 
a thousand structures to be predicted in a day 
using a server with one graphics processing 
unit.

Researchers are also using experimental 
information to help boost the performance 
of AlphaFold and other prediction tools, as 
exemplified by a paper we published a few 
months ago. Using a hybrid, iterative proce-
dure, experimental information such as a den-
sity map allows greater portions of models to 
be predicted with higher accuracy than using 
AlphaFold alone.

An exciting frontier in the protein struc-
ture prediction field is the harder challenge 
of accurately predicting protein function. 
Understanding what a protein binds to, 
whether another protein or proteins or a 
small-molecule ligand, and what that bind-
ing interaction looks like can give research-
ers important clues about function. A 
preprint from the DeepMind group presents 
AlphaFold-Multimer, a method for predicting 
multichain protein complexes. When applied 
to a dataset of ~4,500 protein complexes, it 
predicted the interface of heteromeric com-
plexes with high accuracy 26% of the time, 
and with 36% accuracy for homomeric com-
plexes — a good start, but clearly a problem 
that needs more development to fully crack. 
Another group combined AlphaFold with 
Monte Carlo tree search to predict the struc-
tures of large protein complexes, some with 
high accuracy. However, the method requires 
that the stoichiometry of the components be 
known, and it did not perform well for asym-
metric complexes.

In this issue, we present AlphaFill, an 
algorithm that ‘transplants’ small-molecule 
ligands and ions from experimentally solved 
structures to protein models predicted by 
AlphaFold. The predictions for nearly a mil-
lion models are available in the alphafill.eu 
databank.

There has also been much interest in devel-
oping methods for accurately predicting 
three-dimensional RNA structures. Last year, 
we highlighted a pioneering approach based 
on geometric deep learning. More recently, 
several preprints have been released, one 
describing a tool called DeepFoldRNA and 
another RoseTTAFoldNA, which models both 
RNA structures and protein–nucleic acid 
complexes.

Though these methods have been rightly 
celebrated as major advances with impli-
cations across many areas of research, we 
should not blindly accept prediction results 
as biological truth. An important, independ-
ent, community-driven effort assessed how 
well AlphaFold could be used to predict the 
effects of missense variants, ligand binding 
sites and model interactions, among other 
tasks. A recently posted preprint indepen-
dently assessed the accuracy of AlphaFold 
predictions in comparison to density maps 
from recently solved crystal structures, find-
ing inconsistencies in domain orientation and 
backbone and side chain conformation. This 
led the authors to conclude that “while Alpha-
Fold predictions are useful hypotheses about 
protein structures, experimental information 
remains essential for creating an accurate 
model.” In this issue, a Comment makes the 
case that AlphaFold and its siblings are fun-
damentally limited in that they predict only 
single structures, whereas structural distri-
butions would better represent the dynamic, 
structurally heterogeneous nature of proteins.

Deep learning-based methods are here 
to stay, in protein structure prediction and 
far beyond. We are excited to see how such 
methods can be extended to tackle the more 
difficult challenges of protein function predic-
tion and RNA structure determination. We will 
continue watching and highlighting how such 
approaches are transforming of the practice 
of structural biology.
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