Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tackling tumor complexity with single-cell proteomics

The development of mass spectrometry-based single-cell proteomics technologies opens unique opportunities to understand the functional crosstalk between cells that drive tumor development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell proteomics of tumor samples.

References

  1. Hickey, J. W. et al. Nat. Methods 19, 284–295 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez Castro, L. N., Tirosh, I. & Suvà, M. L. Cancer Discov. 11, 960–970 (2021).

    Article  PubMed  Google Scholar 

  3. Jerby-Arnon, L. et al. Cell 175, 984–997.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, C. et al. Cell 173, 879–893.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaffer, S. M. et al. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beck, L. & Geiger, T. Curr. Opin. Biotechnol. 76, 102736 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Slavov, N. Curr. Opin. Chem. Biol. 60, 1–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Mertins, P. et al. Nature 534, 55–62 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, H. et al. Cell 166, 755–765 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, C. et al. Cancer Cell 39, 361–379.e16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yanovich-Arad, G. et al. Cell Rep. 34, 108787 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, Y. et al. Angew. Chem. Int. Edn Engl. 57, 12370–12374 (2018).

    Article  CAS  Google Scholar 

  13. Zhu, Y. et al. Nat. Commun. 9, 882 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Budnik, B., Levy, E., Harmange, G. & Slavov, N. Genome Biol. 19, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Specht, H. & Slavov, N. J. Proteome Res. 21, 299–300 (2022).

    Article  CAS  Google Scholar 

  16. Li, Z. Y. et al. Anal. Chem. 90, 5430–5438 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Shao, X. et al. Anal. Chem. 90, 14003–14010 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Schoof, E. M. et al. Nat. Commun. 12, 3341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheung, T. K. et al. Nat. Methods 18, 76–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Ye, Z., Batth, T. S., Rüther, P. & Olsen, J. V. Commun. Biol. 5, 150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ctortecka, C. et al. An automated workflow for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity. Preprint at bioRxiv https://doi.org/10.1101/2021.04.14.439828 (2022).

  22. Brunner, A. D. et al. Mol. Syst. Biol. 18, e10798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu, L. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.01.02.474723 (2022).

  24. Leduc, A., Huffman, R. G., Cantlon, J., Khan, S. & Slavov, N. Genome Biol. 23, 261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bache, N. et al. Mol. Cell Proteomics 17, 2284–2296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Savitski, M. M. et al. J. Proteome Res. 12, 3586–3598 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Proteomics 20, e1900276 (2020).

    Article  PubMed  Google Scholar 

  28. Mund, A. et al. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I acknowledge funding from the Israel Science Foundation–Israel Personalized Medicine Program (grant no. 3495/19) and Horizon Europe ERC-CoG (ProACCT grant no. 101044574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Geiger.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geiger, T. Tackling tumor complexity with single-cell proteomics. Nat Methods 20, 324–326 (2023). https://doi.org/10.1038/s41592-023-01784-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-023-01784-4

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer