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Screening cell–cell communication in  
spatial transcriptomics via collective  
optimal transport

Zixuan Cang    1, Yanxiang Zhao2, Axel A. Almet3,4, Adam Stabell4,5, 
Raul Ramos4,5, Maksim V. Plikus    4,5, Scott X. Atwood4,5 & Qing Nie    3,4,5 

Spatial transcriptomic technologies and spatially annotated single-cell 
RNA sequencing datasets provide unprecedented opportunities to 
dissect cell–cell communication (CCC). However, incorporation of the 
spatial information and complex biochemical processes required in 
the reconstruction of CCC remains a major challenge. Here, we present 
COMMOT (COMMunication analysis by Optimal Transport) to infer CCC 
in spatial transcriptomics, which accounts for the competition between 
different ligand and receptor species as well as spatial distances between 
cells. A collective optimal transport method is developed to handle complex 
molecular interactions and spatial constraints. Furthermore, we introduce 
downstream analysis tools to infer spatial signaling directionality and genes 
regulated by signaling using machine learning models. We apply COMMOT 
to simulation data and eight spatial datasets acquired with five different 
technologies to show its effectiveness and robustness in identifying spatial 
CCC in data with varying spatial resolutions and gene coverages. Finally, 
COMMOT identifies new CCCs during skin morphogenesis in a case study of 
human epidermal development.

The complex structures and functions of multicellularity are achieved 
through the coordinated activities of various cells. Cells make deci-
sions and accomplish their goals by interacting with an environ-
ment consisting of external stimuli and other cells. A major form 
of cell–cell interaction is cell–cell communication (CCC), mainly 
mediated by biochemical signaling through ligand–receptor bind-
ing that induces downstream responses that shape development, 
structure and function.

Traditionally, CCC studies were restricted to a few cell types and 
a small number of selected genes at the resolution of cell groups. 
Recently, the emergence of single-cell transcriptomics (that is, 
single-cell RNA sequencing, scRNA-seq) has enabled the examina-
tion of tissues at single-cell resolution at unprecedented genomic 

coverage1. Computational tools have been developed to estimate CCC 
activities from scRNA-seq data2,3 using signaling databases4–6. Most 
of these methods rely on the expression levels of ligand and receptor 
pairs and explicitly defined functions. For example, the products of 
ligand and receptor levels5,7 or non-linear Hill function-based models6 
are used. In addition, these methods emphasize different aspects of 
CCC. For example, CellPhoneDB5, ICELLNET7 and CellChat6 account 
for the multi-subunit composition of protein complexes; SoptSC8, 
NicheNet9 and CytoTalk10 utilize downstream intracellular gene–gene 
interactions; and scTensor11 examines higher-order CCC represented 
as hypergraphs. These inference methods designed for scRNA-seq 
data have provided biological insights based on non-spatial tran-
scriptomic data2,12,13. However, these non-spatial studies often contain 
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Based on collective optimal transport, we develop COMMunica-
tion analysis by Optimal Transport (COMMOT), a package that infers 
CCC by simultaneously considering numerous ligand–receptor pairs 
for either spatial transcriptomics data or spatially annotated scRNA-seq 
data equipped with spatial distances between cells estimated from 
paired spatial imaging data; summarizes and compares directions 
of spatial signaling; identifies downstream effects of CCC on gene 
expressions using ensemble of trees models; and provides visualization 
utilities for the various analyses.

We show that COMMOT accurately reconstructs CCC on simu-
lated data generated by partial differential equation (PDE) models 
and outperforms three related optimal transport methods. We then 
apply COMMOT to analyze scRNA-seq data that have been spatially 
annotated using paired spatial datasets and five types of spatial 
transcriptomics data that differ with respect to spatial resolution 
or gene coverage. Finally, we examine a specific system of human 
epidermal development and elucidate connections between CCC 
and skin development.

Results
Overview of COMMOT
Ligands and receptors often interact with multiple species and within 
limited spatial ranges (Fig. 1a). Considering this, we present collective 
optimal transport (Fig. 1b) with three important features: first, the use 
of non-probability mass distributions to control the marginals of the 
transport plan to maintain comparability between species; second, 
enforcement of spatial distance constraints on CCC to avoid connecting 
cells that are spatially far apart; and last, the transport of multi-species 
distributions (ligands) to multi-species distributions (receptors) to 
account for multi-species interactions (Fig. 1c).

Given a spatial transcriptomics dataset of ns cells or spots and  
nl ligand species and nr receptor species, the collective optimal trans-
port determines an optimal multi-species coupling PPP∗ ∈ ℝnl ×nr ×ns ×ns

+  
where PPP∗i,j,k,l scores the signaling strength from sender cell k to receiver 
cell l through ligand i and receptor j. This is achieved by solving a  
minimization problem, min

PPP∈Γ
∑(i,j)∈I α(i,j) ⟨PPPi,j,⋅,⋅, CCC(i,j)⟩F where

Γ = {PPP ∈ ℝnl ×nr ×ns ×ns
+ ∶ PPPi,j,⋅,⋅ = 0 for (i, j) ∉ I,

∑j,l PPPi,j,k,l ≤ XXXi,k,∑i,k PPPi,j,k,l ≤ XXXj,l} ,

I is the index set for ligand and receptor species that can bind together, 
and XXXi,k is the expression level of gene i on spot k. The species-specific 
cost matrix CCC(i,j) is a modified distance matrix for between-spot distance 
that replaces distances exceeding the spatial range of ligand i by infin-
ity. The competitions between molecule species and cells are consid-
ered by assuming that a given receptor species or cell has limited 
capacity for interactions, such that a stronger inferred interaction with 
one ligand species or cell reduces the potential of interaction with 
other ligand species or cells (see the Methods and Supplementary Note 
for detailed formulations and algorithm derivations).

Direct validation of CCC inference methods for spatial data is dif-
ficult due to a lack of spatial co-localization measurements of ligand 
and receptor proteins. Here, we built PDE models to simulate CCC in 
space (Extended Data Fig. 1). Simulating various numbers of ligand and 
receptor species and diverse competition patterns, COMMOT accu-
rately reconstructs the CCC connections from the resulting synthetic 
data (Extended Data Fig. 1d and Supplementary Figs. 1–4). COMMOT 
outperformed, and is significantly different from, two related optimal 
transport variants: unbalanced optimal transport and partial optimal 
transport (Supplementary Figs. 5–9). COMMOT’s characteristics of 
enforcing spatial limits and not requiring probability distributions 
are further illustrated with other real spatial transcriptomics datasets 
(Supplementary Figs. 10 and 11).

significant false positives given that CCC takes place only within 
limited spatial distances that are not measured in scRNA-seq data-
sets. Improvements can be made by filtering the inferred CCC using 
spatial annotations14.

Spatial transcriptomics15–20 provides information on the distance 
between cells or spots containing multiple or fractions of cells. At vari-
ous cellular resolutions these technologies measure the spatial expres-
sion of hundreds to tens of thousands of genes in 2-dimensional (2D) or 
3-dimensional tissue (3D) samples21. Methods and software22–24 devel-
oped for non-spatial data analysis have been applied to spatial data, 
with a small number of methods designed specifically for spatial data. 
Giotto builds a spatial proximity graph to identify interactions through 
membrane-bound ligand–receptor pairs23; CellPhoneDB v3 restricts 
interactions to cell clusters in the same microenvironment defined 
based on spatial information25; stLearn relates the co-expression of 
ligand and receptor genes to the spatial diversity of cell types24; SVCA26 
and MISTy27 use probabilistic and machine learning models, respec-
tively, to identify the spatially constrained intercellular gene–gene 
interactions; and NCEM fits a function to relate cell type and spatial 
context to gene expression28. However, current methods examine 
CCC locally and on cell pairs independently, and focus on information 
between cells or in the neighborhoods of individual cells. As a result, 
collective or global information in CCC, such as competition between 
cells, is neglected.

Optimal transport has recently been used for transcriptomic data 
analysis, including batch effect correction29, developmental trajec-
tory reconstruction30 and spatial annotation of scRNA-seq data31,32. 
Naturally, one can form an optimal transport problem by viewing 
ligand and receptor expression as two distributions to be coupled 
with a cost based on spatial distance31,33,34. However, when using clas-
sical optimal transport, different molecule species with significantly 
different expression levels are normalized to ensure the same total 
mass, which renders the units of distributions unable to be compared. 
Furthermore, multiple ligand species can bind to multiple receptor 
species, resulting in competition. Of the 1,735 (secreted) ligand–recep-
tor pairs in the Fantom5 database35, 72% of ligands (372 of 516) and 60% 
of receptors (309 of 512) bind to multiple species. Such competition 
between multiple molecule species is ubiquitous and a critical bio-
physical process but it is ignored in existing methods. Although recent 
optimal transport variants such as unbalanced optimal transport and 
partial optimal transport can deal with unnormalized distributions and 
avoid certain coupling due to signaling spatial range and simultaneous 
consideration of multiple species33,36–38, they introduce other issues. 
Specifically, unbalanced optimal transport38 in its common form uses 
Kullback–Leibler divergence as a soft constraint on marginal distribu-
tion preservation. This approach may result in the total amount of 
coupled signaling molecule species significantly exceeding the total 
amount of either ligand or receptor initially available. By contrast, 
partial optimal transport36 requires an additional parameter, the total 
coupled mass, which is usually difficult to estimate in the context of 
CCC inference.

To adapt optimal transport theory for the application of CCC 
inference, we present a method called collective optimal transport, 
which is capable of preserving the comparability between distribu-
tions, ensuring that the total signal does not exceed the individual 
species amounts (ligand or receptor), enforcing spatial range limits 
of signaling, and handling multiple competing species. The collec-
tive optimal transport method achieves this by optimizing the total 
transported mass and the ligand–receptor coupling simultaneously, 
unlike existing optimal transport methods. By introducing an entropy 
regularization to enforce the inequalities for marginal distributions, 
the collective optimal transport can be reformulated as a special case 
of the general unbalanced optimal transport framework38. An efficient 
algorithm is developed specifically for solving the collective optimal 
transport problem.
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For each ligand–receptor pair and each pair of cells or spots, the 
CCC inference quantifies the ligand contributed by one spot to the 
ligand–receptor complex in another spot. We then perform several 
downstream analyses: first, interpolation of the spatial signaling direc-
tion and identification of the differences between CCC regions; sec-
ond, summarization and grouping of CCC at the spatial cluster level; 
and last, identification of the downstream genes affected by the CCC 
(Fig. 1d). The spatial signaling direction is obtained by interpolating 
the cell-by-cell CCC matrix to a vector field to identify the direction 
from which the signal is received or sent. For downstream analysis we 
first identify genes that are differentially expressed with the received 
signal, then quantify the CCC effect on these genes while considering 
the effect of other genes by incorporating a machine learning model 
that predicts a target gene level using both the received signal and 
other correlated genes. See Methods for the algorithms that perform 
the downstream tasks.

The roles of CCC in human epidermal development
We applied COMMOT to examine the development of epidermis in 
human skin. Our recent work profiled neonatal human epidermis using 
scRNA-seq and identified four stem cell clusters (basal I, II, III and IV) 
found in different regions of the innermost basal layer of the epidermis, 
a differentiating spinous cell cluster in the intermediate layer, and a 
granular cell cluster in the outermost living layers39. A refined in situ spa-
tial transcriptomic map was constructed using SpaOTsc31 by integrating 

scRNA-seq data with spatial data digitized from immunofluorescence 
staining images. The integrated dataset correctly identified previously 
known locations of the epidermal cell types and agreed with a known 
developmental path by epidermal cells from basal to suprabasal layers 
(Fig. 2a). This result was further validated by leave-one-out validation 
(Supplementary Fig. 12).

The spatial signaling between epidermal cells was inferred in the 
integrated dataset by considering ligand–receptor pairs annotated 
in the database CellChatDB. For example, our computational analysis 
predicted that molecular interactions between the ligands GAS6 and 
PROS1 with their receptor TYRO3 (GAS6-TYRO3 and PROS1-TYRO3) 
are significant in granular cells and moderately present in basal cells 
(Fig. 2b). This prediction was confirmed by both immunostaining for 
proteins (Fig. 2d) and using RNAscope to stain for RNA (Fig. 2e).

At the signaling pathway level we examined four specific pathways 
with known important roles in epidermal homeostasis, namely the 
WNT, TGF-β (transforming growth factor-β), NOTCH and JAK/STAT 
( Janus kinase/signal transducers and activators of transcription) path-
ways39 (Fig. 2f and Supplementary Figs. 13–16). For all four pathways 
we observed mainly upward-directed signaling, with some downward 
signaling to the basal layers at the bottom of the ridges (Fig. 2f). WNT 
signaling is known to promote basal stem cell proliferation40, whereas 
TGF-β suppresses it41,42. Thus, this observed directional signaling from 
the suprabasal layers may be regulating the communications to basal 
cells on proliferation.

Based on the inferred signaling activities, we further identified 
differentially expressed genes corresponding to each signaling 
pathway and modeled their expression level changes with increas-
ing received signal without further considering spatial information 
(Fig. 2g). For the WNT pathway, increasing signal results in higher 
expression of the known basal cell markers KRT15 and KRT5, as well as 
lower expression of the known terminally differentiated granular cell 
markers LOR and FLG, reinforcing the WNT pathway’s known role in 
stem cell proliferation40. The analysis also predicted that higher WNT 
signaling would increase the expression of BCAM, POSTN and STMN1, 
the expression localization of which we confirmed by immunostain-
ing on human epidermis (Fig. 2h). Interestingly, computational 
results predicted that IGFBP6, PMAIP1 and FGF7 would correlate 
positively with WNT signaling, but we observed their expression 
mainly in the spinous and granular layers, possibly due to predicted 
WNT signaling in both directions in basal-IV (Fig. 2h). TGF-β signal-
ing had a similar profile to that of the WNT pathway, with NOTCH 
and JAK/STAT signaling having a more complex response (Fig. 2g). 
These results suggest how testable hypotheses can be derived from 
inferred signaling activities.

Signaling analysis in spatial transcriptomics data with high 
spatial resolution
We first studied CCC in spatial transcriptomics data with high spa-
tial resolution using the CellChatDB6. We analyzed MERFISH (mul-
tiplexed error-robust fluorescence in situ hybridization) data of the 
mouse hypothalamic preoptic region with 161 genes and 73,655 cells 
across 12 slices along the anterior–posterior axis43 (Fig. 3a–c). Of the 
signaling pathways available in the data, oxytocin (OXT) signaling, an 
important pathway that modulates social behaviors, was found to be 
most active. Self-modulation of excitatory neurons and modulation 
of inhibitory neurons by excitatory neurons through OXT signaling 
were identified across all of the slices (Fig. 3b, Extended Data Fig. 2 and 
Supplementary Fig. 17), a result consistent with the known major func-
tions of OXT signaling44. Further analysis identified the local regions of 
high OXT signaling activity and the spatial direction of OXT signaling 
(Fig. 3c), which agreed with the results of protein staining of OXT and 
its receptor45. A gradual change of predicted signaling direction and 
high-activity regions was observed through adjacent slices (Fig. 3c 
and Extended Data Fig. 2).
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We then analyzed STARmap (spatially-resolved transcript amplicon 
readout mapping) data of mouse placenta with 903 genes and 7,203 
cells46 (Fig. 3d). Midkine and insulin-like growth factor (IGF) signaling 

were found to be active in the same regions but with opposing directions 
(Fig. 3e), suggesting a potential feedback loop47. In addition, it was found 
that IGF signaling is active in the labyrinth region and in endothelial 
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cells, both of which were consistent with our predictions48. Midkine 
signaling was inferred to be active in trophoblast cells, consistent with 
previous findings on the role of SDC1 and SDC4 in trophoblast cells49,50 
(Supplementary Fig. 18). We also found that the annexin and the angi-
opoietin signaling pathways were active in similar regions with similar 
directions, suggesting that they may function cooperatively (Fig. 3e).

To demonstrate downstream analyses of CCC, we first studied 
seqFISH+ (sequential fluorescence in situ hybridization) data of mouse 

secondary somatosensory cortex with 10,000 genes measured in 
523 individual cells18 (Fig. 4a–e). Using the inferred CCC, each cell 
was assigned a CCC profile quantifying the amount of signal sent or 
received through each ligand–receptor pair to assemble a (ns × 2nlr) 
CCC profile matrix for the ns cells and nlr ligand–receptor pairs. Differ-
ential expression analysis of the cell types and CCC profile found neu-
ron cells to be most active through various ligand–receptor pairs, and 
distinct CCC activities for relatively rare cell types (Fig. 4b). Predicted 
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significant WNT signaling in neurons (Supplementary Fig. 19) cor-
related well with known critical roles of WNT signaling in neuronal 
migration and activity in the somatosensory cortex51.

After clustering with respect to CCC activities, cells in the same 
group are expected to have similar signaling activities (Fig. 4c). Clus-
ters 2 and 4 showed hyperactive signaling while clusters 0 and 3 were 
significant signal senders and receivers, respectively (Fig. 4d). We next 
identified differentially expressed genes that matched the signaling 
patterns of each CCC-induced cluster (Fig. 4e). This analysis identified 
both known signaling components in the relevant pathways and regula-
tors of each pathway. For example, the positive differentially expressed 
genes associated with cluster 0 (WNT signal senders) included the 
known WNT ligands Wnt5b, Wnt10a and Wnt2b, while the differentially 
expressed genes in cluster 3 (WNT signal receivers) included known 
target genes of the WNT signaling pathway such as Gja1 and Acsf2 and 
the known corresponding intracellular signaling transductors Lrp5 
and Lrp6 (Fig. 4e).

We further jointly analyzed CCC in mouse cortex datasets gener-
ated with three different technologies: Visium, seqFISH+ and STAR-
map. We found CCC patterns across the datasets that were consistent 
with existing knowledge, demonstrating the robustness of COM-
MOT (Extended Data Figs. 3–5). Details of the findings are given in 
the Supplementary Note. We also applied COMMOT to a large-scale 
spatial transcriptomics dataset, that is, Slide-seqV2 data of mouse 
hippocampus, containing expression of 23,264 genes in 53,173 beads 
(spatial spots), which are similar in size to individual cells52 (Fig. 4f–h). 
Clustering based on CCC activities separated the spots into six clus-
ters, of which clusters 1 and 2, consisting mostly of DentatePyramid, 
CA1_CA2_CA3_Subiculum, and interneuron cells, are generally active 
in CCC (Fig. 4f–h).

Signaling analysis in multi-cell resolution spatial 
transcriptomics data
Finally, we applied COMMOT to signaling analysis with Visium16 spatial 
transcriptomics data, in which each spatial spot contains multiple cells. 
By analyzing the breast cancer data with 3,798 spots and 36,601 genes, 
we found clear spatial signaling directionality of midkine signaling, 
which was identified to be the most active (Fig. 5a), and the regions 
receiving such signals (Fig. 5b). To identify the genes that may be regu-
lated by or regulate CCC, we used tradeSeq53 to perform a differential 
expression test, in which the amount of received midkine signaling was 
used as the cofactor, analogous to a temporal differential expression 
test in which pseudotime is used as the cofactor (Fig. 5c,d). COL1A1 
was identified as a significant positive differentially expressed gene 
with a distinct spatial pattern, whereas S100G was a significant nega-
tive differentially expressed gene with its own unique spatial pattern 
(Fig. 5c). Furthermore, as the received midkine signaling increases, the 
level of COL1A1 expression increases while the S100G expression level 
decreases (Fig. 5d). Adapting temporal differentially expressed gene 
analysis methods for scRNA-seq data to the signaling differentially 
expressed gene analysis of spatial transcriptomics data identifies rela-
tionships between gene expression and signaling activity, for example, 
between COL1A1 expression and midkine signaling. In general, good 
coverage of genes and a large number of cells or spots is preferred 
for CCC-associated differentially expressed gene analysis of spatial 
transcriptomics data.

Differential expression tests typically examine the pairwise corre-
lation between a potential target gene and a cofactor. The higher-order 
interactions between multiple factors (multiple potential upstream 
genes and the cofactor) are often neglected. To prioritize the genes 
that are more likely to be regulated by CCC, we used a random forest 
model54,55 in which the potential target gene is the output and the CCC 
cofactor and the top intracellular correlated genes are the input fea-
tures. The feature importance of the cofactor in the trained model then 
served to quantify the unique information provided by the cofactor 

about the potential target gene, scoring the unique impact of individual 
ligand–receptor pairs on each of the identified signaling differentially 
expressed genes. This model showed that COL1A1 and S100G are dis-
tinctly impacted by various midkine ligand–receptor pairs (Fig. 5e). 
Such analysis may be carried out for any ligand–receptor pair expressed 
in the data, for example, the PD1 signaling pathway related to T-cell 
functions (Supplementary Fig. 20).

We also analyzed a Visium16 dataset of mouse brain tissue with 
3,355 spots and 32,285 genes (Fig. 5f,g). We found significant prosa-
posin signaling activity across the tissue (Fig. 5f), where broad protec-
tive roles of prosaposin in the nervous system were discovered56, and 
fibroblast growth factor signaling was identified on the border of the 
cerebellar cortex (Fig. 5g), consistent with its known role in cerebellum 
patterning during development57.

Robust identification of CCC direction and downstream target
To assess method robustness and efficiency we next studied the correla-
tion between inferred CCC and the expression of known downstream 
genes, and compared COMMOT with three existing methods: CellChat6, 
which was designed for scRNA-seq data, and Giotto23 and CellPhoneDB 
v325, which were designed for spatial transcriptomics data.

To test robustness, we used the stage 6 Drosophila embryo, 
an extensively studied system58,59. An in situ spatial transcriptomic 
map was generated by integrating an scRNA-seq dataset with spa-
tial single-cell resolution data60 using SpaOTsc31. From subsampled 
data, COMMOT consistently identified CCC directions, cluster-level 
CCC and the signaling differentially expressed genes (Extended Data  
Fig. 6). See Methods for evaluation metrics and the Supplementary 
Note for more details.

Utilizing scSeqComm61, a database of known target genes of 
ligand–receptor pairs combining major resources including Reac-
tome, TTRUST and RegNetwork, we investigated the correlation 
between the inferred signaling activities and the expression of the 
corresponding target genes. We used three datasets analyzed in the 
previous sections with transcriptome or near-transcriptome gene 
coverage: Visium human breast cancer data, Visium mouse brain data 
and seqFISH+ mouse somatosensory cortex data. COMMOT was used 
to quantify all available ligand–receptor pairs in the CellChatDB. At the 
individual-spot scale, Spearman’s correlation coefficient was com-
puted for each ligand–receptor pair between the received signal and 
the average expression of the known downstream genes. The median 
correlations on the three datasets were 0.237, 0.180 and 0.230, respec-
tively (Supplementary Fig. 21). At the cluster scale, we quantified the 
level of received signal using the average of the spots in the cluster.

We compared COMMOT with three methods that infer cluster-level 
CCC: CellChat6, Giotto23 and CellPhoneDB v325. The activity of the 
downstream genes of a ligand–receptor pair was quantified as the 
percentage of significant positive differentially expressed genes of 
a cluster. By studying the correlation between the inferred CCC and 
the activity of known downstream genes, we found COMMOT to have 
a stronger correlation than the three methods for most datasets, and 
a comparable correlation to CellPhoneDB v3 in some cases (Supple-
mentary Figs. 22–24). This evaluation can be further improved if more 
complete knowledge of gene regulation is available. With such a list, 
one may also formulate the evaluation as a classification problem. The 
differences between COMMOT and the three methods are illustrated in 
Supplementary Figs. 25–30 and discussed in the Supplementary Note. 
Furthermore, COMMOT can identify localized signaling hotspots com-
pared with cluster-level approaches (Supplementary Figs. 31 and 32).  
For a specific ligand–receptor pair, COMMOT prioritizes regions con-
taining its high signaling activity with low competition from other pairs 
(Supplementary Figs. 33 and 34), showing its unique strength.

To study algorithm efficiency, we found that COMMOT running 
time scales linearly with the number of non-zero elements in the CCC 
(Supplementary Fig. 35). The number of non-zero elements in the CCC 
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matrices scales linearly with the number of locations in spatial transcrip-
tomics data due to the spatial range constraint, and the memory usage 
also scales linearly with the number of locations given that only the finite 
values of the cost matrix and the non-zero values of the CCC matrix 
need to be stored. Thus, COMMOT can effectively handle the existing 
spatial transcriptomics datasets given that both computing time and 
memory usage both scale linearly with the number of spatial locations.

Discussion
To dissect CCC from the emerging spatial transcriptomics data we have 
developed COMMOT to infer CCC for all ligand and receptor species, 
simultaneously; visualize spatial CCC at various scales including a 
vector field visualization of spatial signaling directions; and analyze 
their downstream effects. This tool is based on collective optimal trans-
port that incorporates both competing marginal distributions and 
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constrained transport plans, two important features that cannot be 
dealt with using current variants of optimal transport.

We have studied a wide range of data types with different  
spatial resolutions and gene coverage: in silico spatial transcriptom-
ics data obtained by integrating scRNA-seq and spatial staining data, 
Visium, Slide-seq, STARmap, MERFISH and seqFISH+ spatial tran-
scriptomics. COMMOT could consistently capture the CCC activities 
known from the literature. In human skin, COMMOT showed that 
higher WNT signaling increases the expression of several genes, 
a result confirmed by immunofluorescence staining. We acknowl-
edge that false positives in our inferred CCC are inherently possible 
because spatial transcriptomics data do not directly represent 
protein abundancy and our method cannot capture protein-specific 
modifications such as protein phosphorylation, glycosylation, 
proteolytic cleavage into fragments, and dimerization, which cer-
tainly affect the signaling functions and, thus, the CCC mechanisms 
that COMMOT aims to infer. The reliability of CCC predictions is 
expected to significantly improve as emerging spatial proteomics 
approaches mature.

The spatial distance constraint used to capture the effect of ligand 
diffusivity is usually determined by several factors, including protein 
weight and tortuosity of extracellular space62. It is difficult to accu-
rately estimate this parameter for every pair in the database. In our 
model the local short-range interactions are emphasized even when 
the spatial distance range is increased (Supplementary Fig. 36). Thus, 
when screening many ligand–receptor pairs a uniform and relatively 
large spatial distance limit may be used to avoid missing important 
interactions. Once the important interactions are identified, an accu-
rate estimation of this parameter would further refine the prediction 
to remove false-positive CCC links.

Most recently, several methods and packages have been intro-
duced to study CCC with spatial transcriptomics data. SpatialDM63 
evaluates the co-expression of ligand and receptor genes; SpaTalk64 
and stMLnet65 are focused on signaling target genes; HoloNet66 stud-
ies the joint impact from different combinations of CCC events; and 
DeepLinc67 constructs de novo cell–cell interaction landscapes without 
the need for annotated ligand and receptor genes. Although COMMOT 
has a different focus, these methods arguably complement each other 
when studying different aspects of CCC.

With the foreseeable availability of temporal sequences of spatial 
transcriptomics data68, CCC dynamics may be elucidated, for example 
by extending collective optimal transport into a dynamic optimal 
transport formulation. The PDE model of CCC can be generalized to 
further incorporate the intracellular gene regulatory network. While 
traditional optimal transport is powerful at integrating a pair of data-
sets and multimarginal optimal transport69 integrates multiple data-
sets, the collective optimal transport is able to effectively control the 
coupling and deal with competing species, which is useful for a broad 
range of problems beyond CCC inference.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-022-01728-4.

References
1. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential 

scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 
599–604 (2018).

2. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. 
Deciphering cell–cell interactions and communication from gene 
expression. Nat. Rev. Genet. 22, 71–88 (2021).

3. Almet, A. A., Cang, Z., Jin, S. & Nie, Q. The landscape of cell–cell 
communication through single-cell transcriptomics. Curr. Opin. 
Syst. Biol. 26, 12–23 (2021).

4. Türei, D. et al. Integrated intra‐ and intercellular signaling 
knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, 
e9923 (2021).

5. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, 
R. CellPhoneDB: inferring cell–cell communication from 
combined expression of multi-subunit ligand–receptor 
complexes. Nat. Protoc. 15, 1484–1506 (2020).

6. Jin, S. et al. Inference and analysis of cell–cell communication 
using CellChat. Nat. Commun. 12, 1088 (2021).

7. Noël, F. et al. Dissection of intercellular communication using 
the transcriptome-based framework ICELLNET. Nat. Commun. 12, 
1089 (2021).

8. Wang, S., Karikomi, M., Maclean, A. L. & Nie, Q. Cell lineage and 
communication network inference via optimization for single-cell 
transcriptomics. Nucleic Acids Res. 47, e66 (2019).

9. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling 
intercellular communication by linking ligands to target genes. 
Nat. Methods 17, 159–162 (2020).

10. Hu, Y., Peng, T., Gao, L. & Tan, K. CytoTalk: de novo construction 
of signal transduction networks using single-cell transcriptomic 
data. Sci. Adv. 7, eabf1356 (2021).

11. Tsuyuzaki, K., Ishii, M. & Nikaido, I. Uncovering hypergraphs 
of cell–cell interaction from single cell RNA-sequencing data. 
Preprint at https://doi.org/10.1101/566182 (2019).

12. Vento-Tormo, R. et al. Single-cell reconstruction of the early 
maternal–fetal interface in humans. Nature 563, 347–353 (2018).

13. Abbasi, S. et al. Distinct regulatory programs control the latent 
regenerative potential of dermal fibroblasts during wound 
healing. Cell Stem Cell 27, 396–412 (2020).

14. Armingol, E. et al. Inferring a spatial code of cell–cell interactions 
across a whole animal body. PLoS Comput. Biol. 18, e1010715 
(2022).

15. Dries, R. et al. Advances in spatial transcriptomic data analysis. 
Genome Res. 31, 1706–1718 (2021).

16. Ståhl, P. L. et al. Visualization and analysis of gene expression in 
tissue sections by spatial transcriptomics. Science 353, 78–82 
(2016).

17. Rodriques, S. G. et al. Slide-seq: a scalable technology for 
measuring genome-wide expression at high spatial resolution. 
Science 363, 1463–1467 (2019).

18. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in 
tissues by RNA seqFISH+. Nature 568, 235–239 (2019).

19. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. 
RNA imaging. Spatially resolved, highly multiplexed RNA profiling 
in single cells. Science 348, aaa6090 (2015).

20. Wang, X. et al. Three-dimensional intact-tissue sequencing of 
single-cell transcriptional states. Science 361, eaat5691 (2018).

21. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue 
architecture using spatial transcriptomics. Nature 596, 211–220 
(2021).

22. Palla, G. et al. Squidpy: a scalable framework for spatial omics 
analysis. Nat. Methods 19, 171–178 (2022).

23. Dries, R. et al. Giotto: a toolbox for integrative analysis and 
visualization of spatial expression data. Genome Biol. 22,  
78 (2021).

24. Pham, D. T. et al. stLearn: integrating spatial location, tissue 
morphology and gene expression to find cell types, cell–cell 
interactions and spatial trajectories within undissociated tissues. 
Preprint at https://doi.org/10.1101/2020.05.31.125658 (2020).

25. Garcia-Alonso, L. et al. Mapping the temporal and spatial 
dynamics of the human endometrium in vivo and in vitro.  
Nat. Genet. 53, 1698–1711 (2021).

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01728-4
https://doi.org/10.1038/s41592-022-01728-4
https://doi.org/10.1101/566182
https://doi.org/10.1101/2020.05.31.125658


Nature Methods | Volume 20 | February 2023 | 218–228 227

Article https://doi.org/10.1038/s41592-022-01728-4

26. Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & 
Stegle, O. Modeling cell–cell interactions from spatial molecular 
data with spatial variance component analysis. Cell Rep. 29, 
202–211 (2019).

27. Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & 
Saez-Rodriguez, J. Explainable multiview framework for 
dissecting spatial relationships from highly multiplexed data. 
Genome Biol. 23, 97 (2022).

28. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular 
communication in tissues using spatial graphs of cells. Nat. 
Biotechnol. (2022).

29. Forrow, A. et al. Statistical optimal transport via factored 
couplings. In Proceedings of the Twenty-Second International 
Conference on Artificial Intelligence and Statistics (eds. Chaudhuri, 
K. & Sugiyama, M.) 89 2454–2465 (PMLR, 2019).

30. Schiebinger, G. et al. Optimal-transport analysis of single-cell 
gene expression identifies developmental trajectories in 
reprogramming. Cell 176, 928–943 (2019).

31. Cang, Z. & Nie, Q. Inferring spatial and signaling relationships 
between cells from single cell transcriptomic data. Nat. Commun. 
11, 2084 (2020).

32. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene 
expression cartography. Nature 576, 132–137 (2019).

33. Peyré, G. & Cuturi, M. Computational optimal transport: with 
applications to data science. Foundations and Trends in Machine 
Learning 11, 355–607 (2019).

34. Villani, C. Optimal Transport: Old and New (Springer Science & 
Business Media, 2008).

35. Ramilowski, J. A. et al. A draft network of ligand–
receptor-mediated multicellular signalling in human. Nat. 
Commun. 6, 7866 (2015).

36. Figalli, A. The optimal partial transport problem. Arch. Rational 
Mech. Anal. 195, 533–560 (2010).

37. Bonneel, N. & Coeurjolly, D. SPOT: sliced partial optimal transport. 
ACM Transactions on Graphics 38, 89 (2019).

38. Chizat, L., Peyré, G., Schmitzer, B. & Vialard, F.-X. Scaling 
algorithms for unbalanced optimal transport problems. 
Mathematics of Computation 87, 2563–2609 (2018).

39. Wang, S. et al. Single cell transcriptomics of human epidermis 
identifies basal stem cell transition states. Nat. Commun. 11, 4239 
(2020).

40. Choi, Y. S. et al. Distinct functions for Wnt/β-catenin in hair follicle 
stem cell proliferation and survival and interfollicular epidermal 
homeostasis. Cell Stem Cell 13, 720–733 (2013).

41. Bamberger, C. et al. Activin controls skin morphogenesis 
and wound repair predominantly via stromal cells and in a 
concentration-dependent manner via keratinocytes. Am. J. Pathol. 
167, 733–747 (2005).

42. Mou, H. et al. Dual SMAD signaling inhibition enables long-term 
expansion of diverse epithelial basal cells. Cell Stem Cell 19, 
217–231 (2016).

43. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell 
profiling of the hypothalamic preoptic region. Science 362, 
eaau5324 (2018).

44. Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social 
behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

45. Warfvinge, K., Krause, D. & Edvinsson, L. The distribution of 
oxytocin and the oxytocin receptor in rat brain: relation to regions 
active in migraine. J. Headache Pain 21, 10 (2020).

46. He, Y. et al. ClusterMap for multi-scale clustering analysis of 
spatial gene expression. Nat. Commun. 12, 5909 (2021).

47. Bie, C. et al. Insulin-like growth factor 1 receptor drives 
hepatocellular carcinoma growth and invasion by  
activating Stat3-Midkine-Stat3 loop. Dig. Dis. Sci. 67,  
569–584 (2022).

48. Sandovici, I. et al. The imprinted Igf2–Igf2r axis is critical for 
matching placental microvasculature expansion to fetal growth. 
Dev. Cell 57, 63–79 (2022).

49. Marchese, M. J., Li, S., Liu, B., Zhang, J. J. & Feng, L. Perfluoroalkyl 
substance exposure and the BDNF pathway in the placental 
trophoblast. Front. Endocrinol. (Lausanne) 12, 694885 (2021).

50. Jeyarajah, M. J., Jaju Bhattad, G., Kops, B. F. & Renaud, S. J. 
Syndecan-4 regulates extravillous trophoblast migration  
by coordinating protein kinase C activation. Sci. Rep. 9,  
10175 (2019).

51. Bocchi, R. et al. Perturbed Wnt signaling leads to neuronal 
migration delay, altered interhemispheric connections and 
impaired social behavior. Nat. Commun. 8, 1158 (2017).

52. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at 
near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 
313–319 (2021).

53. Van den Berge, K. et al. Trajectory-based differential expression 
analysis for single-cell sequencing data. Nat. Commun. 11, 1201 
(2020).

54. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
55. Pedregosa, F. et al. Scikit-learn: machine learning in python.  

J. Mach. Learn. Res. 12, 2825–2830 (2011).
56. Meyer, R. C., Giddens, M. M., Coleman, B. M. & Hall, R. A. The 

protective role of prosaposin and its receptors in the nervous 
system. Brain Res. 1585, 1–12 (2014).

57. Yaguchi, Y. et al. Fibroblast growth factor (FGF) gene expression 
in the developing cerebellum suggests multiple roles for FGF 
signaling during cerebellar morphogenesis and development. 
Dev. Dyn. 238, 2058–2072 (2009).

58. Lécuyer, E. et al. Global analysis of mRNA localization reveals a 
prominent role in organizing cellular architecture and function. 
Cell 131, 174–187 (2007).

59. Tomancak, P. et al. Global analysis of patterns of gene expression 
during Drosophila embryogenesis. Genome Biol. 8, R145 (2007).

60. Karaiskos, N. et al. The Drosophila embryo at single-cell 
transcriptome resolution. Science 358, 194–199 (2017).

61. Baruzzo, G., Cesaro, G. & Di Camillo, B. Identify, quantify and 
characterize cellular communication from single-cell RNA 
sequencing data with scSeqComm. Bioinformatics https://doi. 
org/10.1093/bioinformatics/btac036 (2022).

62. Lander, A. D., Nie, Q. & Wan, F. Y. M. Do morphogen gradients arise 
by diffusion? Dev. Cell 2, 785–796 (2002).

63. Li, Z., Wang, T., Liu, P. & Huang, Y. SpatialDM: Rapid identification 
of spatially co-expressed ligand-receptor reveals cell–cell 
communication patterns. Preprint at https://doi.org/ 
10.1101/2022.08.19.504616 (2022).

64. Shao, X. et al. Knowledge-graph-based cell–cell communication 
inference for spatially resolved transcriptomic data with SpaTalk. 
Nat. Commun. 13, 4429 (2022).

65. Cheng, J., Yan, L., Nie, Q. & Sun, X. Modeling spatial intercellular 
communication and multilayer signaling regulations using 
stMLnet. Preprint at https://doi.org/10.1101/2022.06.27.497696 
(2022).

66. Li, H., Ma, T., Hao, M., Wei, L. & Zhang, X. Decoding functional 
cell–cell communication events by multi-view graph learning on 
spatial transcriptomics. Preprint at https://doi. 
org/10.1101/2022.06.22.496105 (2022).

67. Li, R. & Yang, X. De novo reconstruction of cell interaction 
landscapes from single-cell spatial transcriptome data with 
DeepLinc. Genome Biol. 23, 124 (2022).

68. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating 
single-cell and spatial transcriptomics to elucidate intercellular 
tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

69. Pass, B. Multi-marginal optimal transport: theory and applications. 
ESAIM Math. Model. Numer. Anal. 49, 1771–1790 (2015).

http://www.nature.com/naturemethods
https://doi.org/10.1093/bioinformatics/btac036
https://doi.org/10.1093/bioinformatics/btac036
https://doi.org/10.1101/2022.08.19.504616
https://doi.org/10.1101/2022.08.19.504616
https://doi.org/10.1101/2022.06.27.497696
https://doi.org/10.1101/2022.06.22.496105
https://doi.org/10.1101/2022.06.22.496105


Nature Methods | Volume 20 | February 2023 | 218–228 228

Article https://doi.org/10.1038/s41592-022-01728-4

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 

article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemethods
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Article https://doi.org/10.1038/s41592-022-01728-4

Methods
Full details of the theoretical background and implementation of  
COMMOT can be found in the Supplementary Information.

COMMOT model
COMMOT constructs a collection of CCC networks through various 
predefined ligand–receptor pairs (user-defined or from aggregated 
ligand–receptor interaction databases) by solving a global optimiza-
tion problem that accounts for potential higher-order interactions 
between the multiple ligand and receptor species. To this end, we 
introduce collective optimal transport that determines a collection 
of optimal transport plans for all pairs of species that can be coupled 
simultaneously. As a result, the coupling between a species pair will 
affect other couplings and vice versa, which cannot be realized in 
traditional optimal transport34. The collective optimal transport 
results in a large-scale optimization problem for which new algo-
rithms are needed, and thus we present one based on the efficient 
Sinkhorn iteration70.

For a spatial transcriptomics dataset of ns spatial locations and 
a set of nl ligand species and nr receptor species, a collective optimal 
transport problem is formulated as follows:

min
PPP∈Γ

∑
(i,j)∈I

⟨PPPi,j,⋅,⋅,CCC(i,j)⟩F +∑
i
F (μi) + ∑

j
F (νj),

Γ = {PPP ∈ ℝnl×nr×ns×ns
+ ∶ PPPi,j,⋅,⋅ = 0 for (i, j) ∉ I,∑

j,l
PPPi,j,k,l ≤ XXXL

i,k,∑
i,k
PPPi,j,k,l ≤ XXXR

j,l} ,

μi (k) = XXXL
i,k −∑

j,l
PPPi,j,k,l, νj (l) = XXXR

j,l −∑
i,k
PPPi,j,k,l

(1)

where XXXL
i,k is the expression level of ligand i on spot k, XXXR

j,l is the expres-
sion level of receptor j on spot l and F penalizes the untransported 
mass μi and vj. The coupling matrix PPPi,j,k,l scores the signaling strength 
from spot k to spot l through the pair consisting of the ligand i and 
receptor j for (i, j) ∈ I where I is the index set of ligand and receptor 
species that can bind. The cost matrix C(i, j) is based on the thresh-
olded distance matrix such that its kl-th entry equals φ(Dk,l) if 
Dk,l ≤ T(i, j) and infinity otherwise, where D is the Euclidean distance 
matrix for the distances between the spots, T(i, j) is the spatial limit 
of signaling through the pair of ligand i and receptor j, and φ is a 
scaling function, such as square or exponential. When the ligands 
or receptors contain heteromeric units, the minimum of units is 
used by default in the package to represent the amount of ligand or 
receptor. For example, if receptor species j is composed of two 
subunits, the minimum of them in spot l is used to represent the 
level of this receptor species XR

j,l.

Collective optimal transport algorithm
To solve the collective optimal transport problem described above, we 
rewrite the original problem as:

min
P̂PP,μ̂μμ, ̂ννν≥0

⟨P̂PP, ĈCC⟩F + ϵpH(P̂PP) + ϵμH (μ̂μμ) + ϵνH ( ̂ννν) + ρ (‖μ̂μμ‖1 + ‖ ̂ννν‖1) ,

s.t. P̂PP1n = aaa − μ̂μμ, P̂PP
T
1m = bbb − ̂ννν

(2)

where P̂PP is obtained by reshaping PPP such that P̂PP(i−1)×ns+k, (j−1)×ns+l = PPPi,j,k,l. 
The cost matrix ĈCC is obtained similarly and we set ĈCC(i−1)×ns+k,(j−1)×ns+l = ∞ 
for ligand i and receptor j that cannot bind. The marginal distributions 
are constructed such that aaa(i−1)×ns+k = XXXL

i,k and bbb(j−1)×ns+l = XXXR
j,l. Entropy 

regularization is added to speed up computation and smooth the result 
with H (xxx) = ∑i xi (ln (xi) − 1).

When the entropy regularization terms have the same coefficient 
values, ϵ = ϵp = ϵμ = ϵν , the problem can be efficiently solved with a 
stabilized Sinkhorn iteraction70

fff(l+1) ← ϵ logaaa + fff (l) − ϵ log (e
fff(l)

ϵ ⊙ e−
CCC
ϵ e

ggg(l)

ϵ + e
fff(l)−ρ

ϵ ) ,

ggg(l+1) ← ϵ logbbb + ggg(l) − ϵ log (e
ggg(l)

ϵ ⊙ e−
CCCT

ϵ e
fff(l+1)

ϵ + e
ggg(l)−ρ

ϵ ) ,
(3)

for l ≥ 0 with arbitrary initial fff(0) and ggg(0). The resulting numerical solu-
tion to the optimization problem can be constructed by P̂PP

∗
= e(fff⊕ggg−CCC)/ϵ. 

The formulation in Eq. (2) solved by the algorithm in Eq. (3) was used 
to generate the results in this study. The derivation of the algorithm, 
and that of algorithms for the general case in which the regularization 
terms have different coefficients, is described in the Supplementary 
Information.

Spatial signaling direction
To visualize the spatial signaling directions, we estimate a spatial vector 
field V ∈ ℝns×d  of signaling directions given a CCC matrix SSS ∈ ℝns×ns

+  
obtained from collective optimal transport algorithm where SSSi,j is the 
strength of the signal sent by spot i to spot j. The ith row of VVV represents the  
spatial signaling direction. We construct two vector fields, VVVs and VVVr 
describing the direction to/from which the spots are sending/receiving 

signals, respectively. Specifically, VVVs
i = (∑j SSSi,j) × 𝒩𝒩 (∑j∈Ns

i
SSSi,j𝒩𝒩(xxxj − xxxi)),  

where 𝒩𝒩(x) = x‖x  and Ns
i  is the index set of top k signal-sending  

spots with the largest value on the ith row of S. Similarly,  

VVVr
i = (∑j SSSj,i) × 𝒩𝒩 (∑j∈Nr

i
SSSj,i𝒩𝒩(xxxi − xxxj)) , where Nr

i  is the index set of top  

k signal-receiving spots with the largest value on the ith column of S.

Cluster-level CCC
To elucidate CCC among cell states or local groups of spots, we aggre-
gate the spot-by-spot CCC matrix SSS to a cluster-by-cluster matrix SSScl. 
The signaling strength from cluster i to cluster j is quantified as 
SSScli,j = ∑(k,l)∈Icli,j

SSSk,l/|Icli,j|, where IIIcli,j = {(k, l) ∶ Lk = i, Ll = j} and Lk is the cluster 
label of spot k. The significance (P value) of the cluster-level CCC is 
determined by performing n independent permutations of the cluster 
labels and computing the percentile of the original signaling strength 
in the signaling strengths resulting from these label permutations. 
Permuting cluster labels after computing the spot-level CCC matrices 
may neglect communications between different clusters. To address 
this limitation, we provide an option that randomly permutes the loca-
tions of all spots or the spots within each cluster and then computes 
the spot-level CCC matrices.

Evaluation metrics
The spatial signaling direction is described by a vector field defined on 
a discretized tissue space consisting of n grid points and is represented 
by an array VVV ∈ ℝn×d. The cosine distance is used to compare the vector 
field VVVsub from subsampled data with the one from the full data VVVfull and 
is defined as

dcos (VVVfull, VVVsub) =

∑i ‖VVVfull(i)‖ [1 −VVVfull (i) ⋅VVVsub (i) / (‖VVVfull(i)‖ ‖VVVsub(i)‖)] /∑i ‖VVVfull (i)‖ .

To compare two cluster-level CCC networks SSScl1  and SSScl2 , we first 
binarize them such that the edges with P < 0.05 are kept in the edge 
sets ̄SSScl1  and ̄SSScl2 . Then, the Jaccard distance is used for quantitative  

comparison, dJaccard ( ̄SSScl1 , ̄SSScl2 ) = 1 − ||| ̄SSS
cl
1 ∩ ̄SSScl2 ||| /

||| ̄SSS
cl
1 ∪ ̄SSScl2 |||.

The Spearman’s correlation coefficient is used to quantify the  
correlation between the inferred signaling activity and the activity of 
the known target genes across the cell clusters, defined as  

cov (R (XXXLR) ,R (XXXtgt)) / (σR(XXXLR)σR(XXXtgt)), where XXXLR
i  i s the average received  

signal through a ligand–receptor pair in cell cluster i, and XXXtgt
i  is the  

activity of the known target genes of this ligand–receptor pair in cell 
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cluster i quantified as the percentage of differentially expressed genes. 
The function R converts the vectors into ranks and σ is the standard 
deviation of the rank variables.

Downstream gene analysis
After computing the CCC matrix SSS of a ligand–receptor pair or a signal-
ing pathway, genes that are potential downstream targets of the cor-
responding CCC can be identified. The amount of signal received by 
each spot is quantified by rrr ∈ ℝns where rrri = ∑j SSSj,i. Then the tradeSeq 
package53 is used to identify the genes that are differentially expressed 
with respect to rrr, which we call differentially expressed CCC genes.

The identified differentially expressed CCC genes may be regu-
lated by other genes in cells through gene regulation. To further 
prioritize the downstream genes, the expressions of which are 
affected by CCC, we train a random forest regression model54,55 that 
takes a potential downstream gene as the output, and rrr and a collec-
tion of highly correlated genes as input features. The unique impact 
of CCC on this potential downstream gene is quantified by the feature 
importance (Gini importance computed as the mean of total impurity 
decrease in each tree) of rrr in the trained random forest model. The 
inclusion of highly correlated genes in a cell as input features empha-
sizes the amount of information of potential target genes explained 
by inferred CCC, which is unlikely to be explained only by intracellular 
interactions. If such a dilution of importance is not preferred, the 
users may choose a smaller number of highly correlated genes as 
input features. The implementation in the scikit-learn package55  
is used.

CellChat, Giotto and CellPhoneDB analysis
For the CellChat analysis the spatial data were treated as non-spatial 
scRNA-seq data, and the count matrix was first normalized using the 
normalizeData function. The data were then filtered using the functions 
identifyOverExpressedGenes and identifyOverExpressedInteractions 
with the default parameters. The cluster-level communication scores 
in CellChat were computed using the computeCommunProb function 
with default parameters, and the results were further filtered using the 
filterCommunication function with min.cells set to 10. The ligand–
receptor pairs categorized under ‘Secreted Signaling’ in the CellChatDB 
were examined. For Giotto analysis, the count data were first normal-
ized using the normalizeGiotto function with default parameters. A 
spatial network was then created using the createSpatialNetwork func-
tion with the k-nearest neighbors method and k set to 100 and the maxi-
mum distance threshold of 1000 μm for Visium data and 500 μm for 
seqFISH+ data. The heteromeric ligand–receptor pairs in CellChatDB 
were converted to pairs of individual subunits. The spatCellCellcom 
function was then used to generate the cluster-level communication 
scores with the adjust_method set to fdr. For CellPhoneDB v3 analysis, 
the distance between clusters was quantified as the average distance 
between cells from the pair of clusters. The command ‘cellphonedb 
method statistical_analysis’ was used to generate CellPhoneDB results 
with the threshold parameter set to 0.1.

Immunostaining and fluorescence in situ hybridization
Frozen tissue sections (10 μm) were fixed with 4% paraformaldehyde 
in PBS for 15 min. Ten percent BSA in PBS was used for blocking. Fol-
lowing blocking, 5% BSA and 0.1% Triton X-100 in PBS was used for per-
meabilization. The following antibodies were used: mouse anti-KRT5 
(1:100; Santa Cruz Biotechnology, sc-32721), mouse anti-KRT15 (1:100; 
Santa Cruz Biotechnology, sc-47697), mouse anti-BCAM (1:100; Santa 
Cruz Biotechnology, sc-365191), mouse anti-FGF7 (1:100; Santa Cruz 
Biotechnology, sc-365440), mouse anti-STMN1 (1:100; Santa Cruz Bio-
technology, sc-48362); mouse anti-IGFBP6 (1:500; Abgent, AP6764b); 
mouse anti-PMAIP1 (1:100; Santa Cruz Biotechnology, sc-56169), 
mouse anti-POSTN (1:100; Santa Cruz Biotechnology, sc-398631); 
mouse anti-FLG (1:100; Santa Cruz Biotechnology, sc-66192); rabbit 

anti-LOR (1:1000; abcam, ab85679); mouse anti-TYRO3 (1:100; LSBio, 
LS-C114523-100); rabbit anti-GAS6 (1:100; abcam, ab227174); and rab-
bit anti-PROS1 (1:100; Proteintech, 16910-1-AP). Secondary antibodies 
include Alexa Fluor 488 (1:500; Jackson ImmunoResearch, 715-545-150, 
711-545-152) and Cy3 AffiniPure (1:500; Jackson ImmunoResearch, 
711-165-152, 111-165-003). Slides were mounted with Prolong Diamond 
Antifade Mountant containing DAPI (Molecular Probes). Confocal 
images were acquired at room temperature (22.2 ºC) on a Zeiss LSM700 
laser scanning microscope with a Plan-Apochromat ×20 objective or 
×40 and ×63 oil immersion objectives.

Frozen neonatal human foreskin tissue sections were used for 
RNA in situ hybridization using RNAscope kit v2 (323100, Advanced 
Cell Diagnostics) as per the manufacturer’s instructions. The following 
Homo sapiens probes from Advanced Cell Diagnostics were used: Tyro3 
probe (429611), Gas6 (427811-C2) and Pros1 (506991-C2). Confocal 
images were acquired at room temperature on an Olympus FV3000 
confocal microscope with a Plan-Apochromat ×20 objective or ×40 
and ×60 oil immersion objectives.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The original public data used in this work can be accessed through 
the following links: Drosophila embryo spatial and scRNA-seq data: 
Dream Single cell Transcriptomics Challenge through Synapse ID 
(syn15665609)60; human epidermal scRNA-seq data39: GEO accession 
code GSE147482 (protocols involving human skin data were approved 
by the Institutional Review Board of the University of California, Irvine); 
mouse hypothalamic preoptic region MERFISH data43: original data 
available at Dryad71 at the link https://doi.org/10.5061/dryad.8t8s248 
(this work used the preprocessed data through the Squidpy pack-
age22 with the utility squidpy.datasets.merfish); mouse placenta STAR-
map data46: downloaded from Code Ocean (https://codeocean.com/ 
capsule/9820099/tree/v1) with the https://doi.org/10.24433/ 
CO.6072400.v1; mouse brain STARmap data20: processed data 
were downloaded from the same repository as the mouse placenta 
STARmap data; mouse somatosensory cortex seqFISH+ data18: 
downloaded through the Giotto package23; mouse hippocampus 
Slide-seqV2 data52: downloaded from the Broad Institute Single Cell 
Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP815/ 
sensitive-spatial-genome-wide-expression-profiling-at-cellular- 
resolution#study-summary); breast cancer Visium data: downloaded 
from the 10X Genomics website (https://www.10xgenomics.com/ 
resources/datasets/human-breast-cancer-block-a-section-1-1- 
standard-1-1-0); mouse brain (sagittal posterior) Visium data: down-
loaded from the 10X Genomics website (https://www.10xgenomics. 
com/resources/datasets/mouse-brain-serial-section-1-sagittal- 
anterior-1-standard-1-1-0). The ligand–receptor pairs with secreted 
ligands, as categorized in the CellChatDB6, were used and can be 
accessed at http://www.cellchat.org/cellchatdb/. The downstream 
target genes were taken from scSeqComm61 and the target gene librar-
ies TF_TG_TRRUSTv2 and TF_TG_TRRUSTv2_RegNetwork_High_mouse 
were used for human and mouse, respectively.

Code availability
The open-source software is available at https://github.com/zcang/ 
COMMOT. The code for reproducing the presented analysis results is 
available at https://doi.org/10.5281/zenodo.7272562 (ref. 72).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Validation using simulated data by partial differential 
equations (PDE) model. The example PDE model where two ligand species 
can bind to the same receptor. The inference by COMMOT is compared to the 
simulation results in several 1-dimensional cases. b Comparison to simulated 
results in a 2-dimensional case with three ligand species and two receptor 
species. c An example of randomly generated 2-dimensional benchmark with two 

ligand species that binds to the same receptor. The simulated result, inference 
by COMMOT, and inference by pairwise method are shown. d Ten different cases 
of ligand–receptor binding and the performance of COMMOT and pairwise OT 
(with the same spatial limit as COMMOT but each LR pair examined separately) 
obtained by comparing to simulated results.
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Extended Data Fig. 2 | OXT CCC in MERFISH mouse hypothalamic preoptic region. The inferred signaling directions and cluster-level CCC of OXT signaling in each 
of the slice of the MERFISH data.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | AGT signaling pathway in mouse cortex. 1) Cell type 
plots, 2) spatial directions of CCC, and 3) heatmaps of cluster-level CCC of the 
AGT signaling pathway in a Visium, b STARmap, and c seqFISH+ mouse cortex 
data. Across these three datasets, AGT signaling was identified in neurons. 
Spatially, neurons in the L2-3 region were identified as strong receivers of AGT 

ligands across the three datasets. Interestingly, a striped signaling pattern was 
observed, wherein strong signals within individual layers form stripes, while 
weak signals form inter-stripe regions. Strong AGT signaling activity among 
oligodendrocytes was also identified in both STARmap and seqFISH+ datasets.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-022-01728-4

L2/3 IT L4 L5 IT L5 PT

L6 IT L6b

Se
nd
er

R
ec
ei
ve
d
si
gn
al high

low

R
ec
ei
ve
d
si
gn
al high

low

Se
nd
er

CCC direction

CCC direction

Cluster-level CCC

Cluster-level CCC

Visium
WNT signaling pathway

seqFISH+

a

b

Receiver

Receiver

L6 PT

Extended Data Fig. 4 | WNT signaling pathway in mouse cortex. 1) Cell type 
plots, 2) spatial directions of CCC, and 3) heatmaps of cluster-level CCC of the 
WNT signaling pathway in a Visium and b seqFISH+ mouse cortex data. In both 

Visium and seqFISH+ cortex datasets, we inferred WNT signaling to be active 
across different cortical layers. In both datasets, we identified WNT signaling to 
be relatively low in layer 5, compared to other layers.
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Extended Data Fig. 5 | TAC signaling pathway in mouse cortex. 1) Cell type 
plots, 2) spatial directions of CCC, and 3) heatmaps of cluster-level CCC of the 
TAC signaling pathway in a Visium and b STARmap mouse cortex data. TAC 

(tachykinin neuropeptide family) signaling activity was consistently found in 
both Visium and STARmap cortex datasets to be active in non-neuronal cells and 
in inhibitory neurons, especially in somatostatin-expressing neurons (Sst).
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Extended Data Fig. 6 | Robustness of CCC analysis on a well-studied 
drosophila embryo dataset. a Spatial signaling direction and signaling among 
cell clusters for Dpp and Wg signaling pathways. b Robustness of inferred 
signaling direction evaluated by comparing the direction obtained from 
subsampled dataset to the one from the full dataset using cosine distance.  
Each point is an independent test and the line shows the average of the tests.  
c Robustness of inferred cluster-level communication evaluated by comparing 

random subsamples to the full dataset using the Jaccard distance. d Robustness 
of downstream gene identification. e Percentage of known downstream genes 
that are identified as differentially expressed gene due to signaling activity.  
f Examples of the identified positively, negatively, and partially differentially 
expressed genes associated to Dpp signaling. For panels b–e, the averages of 5 
independent random subsampling are plotted.
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