Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing

The year 2022 will be remembered as the turning point for accurate long-read sequencing, which now establishes the gold standard for speed and accuracy at competitive costs. We discuss the key bioinformatics techniques needed to power long reads across application areas and close with our vision for long-read sequencing over the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Long-read sequencing methods and applications.
Fig. 2: Improvement of sequencing technologies.


  1. Nurk, S. et al. Science 376, 44–53 (2022).

    Article  CAS  Google Scholar 

  2. Aganezov, S. et al. Science 376, eabl3533 (2022).

    Article  CAS  Google Scholar 

  3. Gorzynski, J. E. et al. N. Engl. J. Med. 386, 700–702 (2022).

    Article  Google Scholar 

  4. Hufford, M. B. et al. Science 373, 655–662 (2021).

    Article  CAS  Google Scholar 

  5. Glinos, D. A. et al. Nature 608, 353–359 (2022).

    Article  CAS  Google Scholar 

  6. Naish, M. et al. Science 374, eabi7489 (2021).

    Article  Google Scholar 

  7. Gershman, A. et al. Science 376, eabj5089 (2022).

    Article  CAS  Google Scholar 

  8. Goodwin, S., McPherson, J. D. & McCombie, W. R. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  Google Scholar 

  9. Wenger, A. M. et al. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  Google Scholar 

  10. Silvestre-Ryan, J. & Holmes, I. Genome Biol. 22, 38 (2021).

    Article  Google Scholar 

  11. Ekim, B., Berger, B. & Chikhi, R. Cell Syst. 12, 958–968.e6 (2021).

    Article  CAS  Google Scholar 

  12. Baid, G. et al. Nat. Biotechnol. (2022).

    Article  Google Scholar 

  13. Furlan, M. et al. RNA Biol. 18 (Suppl. 1), 31–40 (2021).

  14. Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Nat. Biotechnol. 39, 431–441 (2021).

    Article  CAS  Google Scholar 

  15. Payne, A. et al. Nat. Biotechnol. 39, 442–450 (2021).

    Article  CAS  Google Scholar 

  16. Gamaarachchi, H. et al. Nat. Biotechnol. 40, 1026–1029 (2022).

    Article  CAS  Google Scholar 

  17. Watson, M. & Warr, A. Nat. Biotechnol. 37, 124–126 (2019).

    Article  CAS  Google Scholar 

  18. Rautiainen, M. et al. Preprint at bioRxiv (2022).

  19. Ou, S. et al. Preprint at bioRxiv (2022).

  20. Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. Bioinformatics (2022).

    Article  Google Scholar 

  21. Sedlazeck, F. J. et al. Nat. Methods 15, 461–468 (2018).

    Article  CAS  Google Scholar 

  22. Audano, P. A. et al. Cell 176, 663–675.e19 (2019).

    Article  CAS  Google Scholar 

  23. Alonge, M. et al. Cell 182, 145–161.e23 (2020).

    Article  CAS  Google Scholar 

  24. Sone, J. et al. Nat. Genet. 51, 1215–1221 (2019).

    Article  CAS  Google Scholar 

  25. Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B. & Hirsch, C. N. Genome Biol. 22, 3 (2021).

    Article  Google Scholar 

  26. Li, H. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  Google Scholar 

  27. Marco-Sola, S., Moure, J. C., Moreto, M. & Espinosa, A. Bioinformatics 37, 456–463 (2021).

    Article  CAS  Google Scholar 

  28. Kirsche, M. et al. Preprint at bioRxiv (2021).

  29. Wyman, D. & Mortazavi, A. Bioinformatics 35, 340–342 (2019).

    Article  CAS  Google Scholar 

  30. Kovaka, S. et al. Genome Biol. 20, 278 (2019).

    Article  CAS  Google Scholar 

  31. Chen, Y. et al. Preprint at bioRxiv (2021).

  32. Drexler, H. L. et al. Nat. Protoc. 16, 1343–1375 (2021).

    Article  CAS  Google Scholar 

  33. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. Nat. Commun. 11, 4025 (2020).

    Article  CAS  Google Scholar 

Download references


We would like to thank all past and current members of the Schatz lab, as well as our long-read collaborators, especially Timour Baslan, Andrew Carroll, Jason Chin, Megan Dennis, Evan Eichler, Tom Gingeras, Mark Gerstein, Sara Goodwin, Ian Henderson, Candice Hirsch, Matthew Hufford, Alison Klein, Ben Langmead, Zach Lippman, Erich Jarvis, W. Richard McCombie, Rajiv McCoy, Karen Miga, Rachel O’Neill, Mihaela Pertea, Adam Phillippy, Fritz Sedlazeck, Steven Salzberg, Winston Timp, Eli Van Allen, Justin Zook, and many others. Finally, we would also like to thank the researchers at PacBio and Oxford Nanopore for their developments and collaborations. This work was supported in part by the US National Science Foundation (IOS-2216612, IOS-1758800), the US National Institutes of Health (U24HG010263, U41HG006620, U01CA253481), and the Human Frontier Science Program (RGP0025/2021).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael C. Schatz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovaka, S., Ou, S., Jenike, K.M. et al. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. Nat Methods 20, 12–16 (2023).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing