Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing

Long-read sequencing has become a widely employed technology that enables a comprehensive view of RNA transcripts. Here, we discuss the importance of long-read sequencing in interpreting the variables along RNA molecules, such as polyadenylation sites, transcription start sites, splice sites and other RNA modifications. In addition, we highlight the history of short-read and long-read technologies and their advantages and disadvantages, as well as future directions in the field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA variables and their non-random combinations.
Fig. 2: Long-read sequencing applications.
Fig. 3: An overview and timeline of various SRS and LRS technologies.

References

  1. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  Google Scholar 

  2. Wang, E. T. et al. Nature 456, 470–476 (2008).

    Article  CAS  Google Scholar 

  3. Harrow, J. et al. Genome Biol. 7 (Suppl. 1), S4.1–S4.9 (2006).

  4. Yang, X. et al. Cell 164, 805–817 (2016).

    Article  CAS  Google Scholar 

  5. Breiling, A. & Lyko, F. Epigenetics Chromatin 8, 24 (2015).

    Article  Google Scholar 

  6. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  Google Scholar 

  7. Bolisetty, M. T., Rajadinakaran, G. & Graveley, B. R. Genome Biol. 16, 204 (2015).

    Article  Google Scholar 

  8. Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Proc. Natl. Acad. Sci. USA 111, 9869–9874 (2014).

    Article  CAS  Google Scholar 

  9. Glinos, D. A. et al. Nature 608, 353–359 (2022).

    Article  CAS  Google Scholar 

  10. Fededa, J. P. et al. Mol. Cell 19, 393–404 (2005).

    Article  CAS  Google Scholar 

  11. Tilgner, H. et al. Nat. Biotechnol. 33, 736–742 (2015).

    Article  CAS  Google Scholar 

  12. Tilgner, H. et al. Genome Res. 28, 231–242 (2018).

    Article  CAS  Google Scholar 

  13. Anvar, S. Y. et al. Genome Biol. 19, 46 (2018).

    Article  Google Scholar 

  14. Gupta, I. et al. Nat. Biotechnol. https://doi.org/10.1038/nbt.4259 (2018).

    Article  Google Scholar 

  15. Hardwick, S. A. et al. Nat. Biotechnol. 40, 1082–1092 (2022).

    Article  CAS  Google Scholar 

  16. Xin, D., Hu, L. & Kong, X. PLoS One 3, e2377 (2008).

    Article  Google Scholar 

  17. Cramer, P., Pesce, C. G., Baralle, F. E. & Kornblihtt, A. R. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  18. Black, D. L. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  Google Scholar 

  19. Portin, P. & Wilkins, A. Genetics 205, 1353–1364 (2017).

    Article  CAS  Google Scholar 

  20. Lagarde, J. et al. Nat. Genet. 49, 1731–1740 (2017).

    Article  CAS  Google Scholar 

  21. Sorek, R., Ast, G. & Graur, D. Genome Res. 12, 1060–1067 (2002).

    Article  CAS  Google Scholar 

  22. Au, K. F. et al. Proc. Natl. Acad. Sci. USA 110, E4821–E4830 (2013).

    Article  CAS  Google Scholar 

  23. Durruthy-Durruthy, J. et al. Nat. Genet. 48, 44–52 (2016).

    Article  CAS  Google Scholar 

  24. Nurk, S. et al. Science 376, 44–53 (2022).

    Article  CAS  Google Scholar 

  25. Imaizumi, K., Ideno, H., Sato, T., Morimoto, S. & Okano, H. eNeuro https://doi.org/10.1523/ENEURO.0061-22.2022 (2022).

  26. Melamed, Z. et al. Nat. Neurosci. 22, 180–190 (2019).

    Article  CAS  Google Scholar 

  27. Ma, X. R. et al. Nature 603, 124–130 (2022).

    Article  CAS  Google Scholar 

  28. Brown, A.-L. et al. Nature 603, 131–137 (2022).

    Article  CAS  Google Scholar 

  29. Bowles, K. R. et al. Acta Neuropathol. 143, 225–243 (2022).

    Article  CAS  Google Scholar 

  30. Eid, J. et al. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  31. Wenger, A. M. et al. Nat. Biotechnol. 37, 1155–1162 (2019).

    Article  CAS  Google Scholar 

  32. Koren, S. et al. Nat. Biotechnol. 30, 693–700 (2012).

    Article  CAS  Google Scholar 

  33. Au, K. F., Underwood, J. G., Lee, L. & Wong, W. H. PLoS One 7, e46679 (2012).

    Article  CAS  Google Scholar 

  34. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. Nat. Biotechnol. 31, 1009–1014 (2013).

    Article  CAS  Google Scholar 

  35. Sereika, M. et al. Nat. Methods 19, 823–826 (2022).

    Article  CAS  Google Scholar 

  36. Leger, A. et al. Nat. Commun. 12, 7198 (2021).

    Article  CAS  Google Scholar 

  37. Garalde, D. R. et al. Nat. Methods 15, 201–206 (2018).

    Article  CAS  Google Scholar 

  38. Karlsson, K. & Linnarsson, S. BMC Genomics 18, 126 (2017).

    Article  Google Scholar 

  39. Byrne, A. et al. Nat. Commun. 8, 16027 (2017).

    Article  CAS  Google Scholar 

  40. Volden, R. et al. Proc. Natl. Acad. Sci. USA 115, 9726–9731 (2018).

    Article  CAS  Google Scholar 

  41. Joglekar, A. et al. Nat. Commun. 12, 463 (2021).

    Article  CAS  Google Scholar 

  42. Lebrigand, K. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.08.24.252296 (2022).

  43. Aw, J. G. A. et al. Nat. Biotechnol. 39, 336–346 (2021).

    Article  CAS  Google Scholar 

  44. Ke, S. et al. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  Google Scholar 

  45. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).

    Article  CAS  Google Scholar 

  46. Miller, R. M. et al. Genome Biol. 23, 69 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.U.T. is supported by NIGMS grant 1R01GM135247-01, Brain Initiative grant 1RF1MH121267-01, NIDA grant U01 DA053625-01 and the Feil Family Foundation. C.F. is supported by NSF GRFP No. NSF 2139291. N.B. is supported by NIDA T32 grant 5T32DA039080-0. S.P. is supported by NIGMS grant 1R01GM135247-03S1. Opinions, findings, conclusions or recommendations herein are those of the authors and do not necessarily reflect the views of NSF or NIH.

Author information

Authors and Affiliations

Authors

Contributions

C.F., J.H., J.J. and H.U.T. wrote the manuscript. W.H., N.B., S.P., Y.I. and A.J. revised the manuscript.

Corresponding author

Correspondence to Hagen U. Tilgner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foord, C., Hsu, J., Jarroux, J. et al. The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing. Nat Methods 20, 20–24 (2023). https://doi.org/10.1038/s41592-022-01715-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-022-01715-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing