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Automated synapse-level reconstruction of 
neural circuits in the larval zebrafish brain
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Dense reconstruction of synaptic connectivity requires high-resolution 
electron microscopy images of entire brains and tools to efficiently trace 
neuronal wires across the volume. To generate such a resource, we sectioned 
and imaged a larval zebrafish brain by serial block-face electron microscopy 
at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with 
the flood-filling network algorithm, automated the detection of chemical 
synapses and validated the results by comparisons to transmission electron 
microscopic images and light-microscopic reconstructions. Neurons and 
their connections are stored in the form of a queryable and expandable 
digital address book. We reconstructed a network of 208 neurons involved 
in visual motion processing, most of them located in the pretectum, 
which had been functionally characterized in the same specimen by 
two-photon calcium imaging. Moreover, we mapped all 407 presynaptic 
and postsynaptic partners of two superficial interneurons in the tectum. 
The resource developed here serves as a foundation for synaptic-resolution 
circuit analyses in the zebrafish nervous system.

Information processing in the central nervous system is carried out by 
interconnected neurons. Synapses, the key sites of communication in 
this network, can only be identified and assigned to a specific pair of 
neurons with electron microscopy (EM). The first attempt to recon-
struct the nervous system wiring of an organism, the nematode worm 
Caenorhabditis elegans1, created a connectivity map that was essential 
for the study of neural circuits2. In the meantime, EM reconstructions 
of the brain have been generated for invertebrate species, including 
larval3 and adult Drosophila melanogaster4,5 and the annelid Platynereis 
dumerilii6. Until now, whole-brain datasets of comparable resolution 
have not been made available for a vertebrate.

Tying function to structure at synaptic resolution may involve 
recording of neuronal activity, for example, by two-photon (2P) cal-
cium imaging, followed by reconstruction of the underlying cellular 
connectivity with volume EM (vEM)7–11.

The larval zebrafish (Danio rerio) is uniquely suited to this 
approach11,12. Work in the zebrafish olfactory bulb has revealed fun-
damental principles of odor processing11,13. At 5 days postfertilization 
(dpf), the larval brain is comparable in size to that of adult Drosophila: 
700 µm from rostral (tip of the olfactory bulb) to caudal (commissura 
infima of Haller), maximally 450 µm wide (at the level of the midbrain) 
and maximally 320 µm from dorsal to ventral surface14 (Fig. 1a,b). 
Brain-wide catalogs of thousands of single-neuron morphologies and 
area-to-area (mesoscale) wiring diagrams have been generated for 
zebrafish larvae15. These data offer a plausibility check on vEM tracings, 
especially of long-range projections.

While the benefits of a connectomic approach have become 
widely accepted, the tools and resources needed are only available 
to a small set of laboratories and/or do not have the required resolution 
for synapse-scale reconstructions16. Storage, handling and sharing 

Received: 19 November 2021

Accepted: 22 August 2022

Published online: 24 October 2022

 Check for updates

1Max Planck Institute for Biological Intelligence, Martinsried, Germany. 2Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany. 
3Center for Frontier Research, National Institute of Genetics, Mishima, Japan. 4Google Research, Zürich, Switzerland. 5Department of Biomedical 
Sciences, University of Padova, Padova, Italy. 6Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. 7Paul Scherrer Institute (PSI), 
Villigen, Switzerland. 8Present address: ariadne.ai ag, Buchrain, Switzerland. 9Present address: Department of Neurology, Faculty of Medicine and 
University Hospital Cologne, University of Cologne, Cologne, Germany.  e-mail: herwig.baier@bi.mpg.de

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01621-0
http://orcid.org/0000-0002-7821-6755
http://orcid.org/0000-0002-3480-2744
http://orcid.org/0000-0003-0150-6647
http://orcid.org/0000-0003-1265-3028
http://orcid.org/0000-0002-2547-8700
http://orcid.org/0000-0002-7268-0469
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01621-0&domain=pdf
mailto:herwig.baier@bi.mpg.de


Nature Methods | Volume 19 | November 2022 | 1357–1366  1358

Resource https://doi.org/10.1038/s41592-022-01621-0

map of synaptic connections. We also introduce a digital address 
book of neurons and synapses, linked to the spatial coordinates of 
the volume. To demonstrate broad use of the computational pipeline, 
we mapped all 407 input and output cells for two tectal superficial 
interneurons (SINs), which led to the identification of an intercon-
nected SIN network. The resource presented here, together with 
the computational framework, promises to offer detailed biological 
insights into zebrafish neural circuits.

Results
Functional imaging of motion-processing neurons
Using 2P microscopy, we recorded neuronal activity from a cuboid of 
the larval zebrafish brain. This cuboid contains motion-processing 
neurons and includes the pretectum and adjacent parts of the tectum, 
tegmentum and thalamus. Pretectal areas are involved in the processing 
of optic flow23–31. The fish larva expressed the genetically encoded Ca2+ 
indicator GCaMP5G in most neurons and was exposed to a succession 

of large amounts of data require expensive hardware and software, 
posing large challenges for individual laboratories. Also, manual 
reconstructions of connectivity are labor-intensive and costly. Thus, 
with the exception of the olfactory bulb work mentioned above11,13, 
EM-based circuit analysis in zebrafish has been limited to few cells in 
specific areas of the nervous system10,17–21. One of our aims is to make 
connectomic data and computational tools available to the entire 
zebrafish community.

Here we provide access to an EM dataset covering the entire 
zebrafish brain (5 dpf), except for the retinae, allowing the identifica-
tion of chemical synapses and tracing in all directions. We acquired 
images with serial block-face scanning EM (SBEM) at 14 × 14 × 25 nm3 
voxel size. We reconstructed and proofread several hundred visual 
motion-processing neurons previously identified in the same speci-
men by in vivo 2P calcium imaging. Cells and wires were segmented by 
flood-filling networks (FFNs)22. We applied a synapse detection algo-
rithm to the entire volume and automatically generated a brain-wide 
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Fig. 1 | Pretectal 2P calcium imaging and whole-brain larval SBEM dataset 
acquisition. a, Illustrative larval zebrafish head at 5 dpf, brain highlighted in red. 
b, Wire-frame representation of a 5 dpf zebrafish brain, slice stack represents 
location of the 2P calcium imaged volume centered on the pretectum. c,d, X-ray 
image (c) of sample used to calculate horizontally stacked tile pattern (d), shown 

here overlaid on a low-resolution vEM overview image. e, High-resolution vEM 
imaged brain slice stitched from individual tiles shown in d. f, The resulting high-
resolution volume. g, Synaptic contact in pretectum, as highlighted in e. Scale 
bars, 50 µm (d–f), 500 nm (g).
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of eight drifting grating stimuli, designed to cover all combinations of 
horizontal optic flow25.

Individual motion-sensitive neurons responded differently from 
one, or a combination, of the eight motion phases. In a single brain, we 
typically observe 200 to 300 neurons whose activity is well-predicted 
by one of the 255 theoretically possible response profiles25. The indi-
vidual fish we chose for vEM imaging had a total of 216 functionally 
annotated motion-sensitive cells, each falling into one of the 11 most 
frequently observed response types (4–30 cells per type).

X-ray tomography-targeted SBEM imaging
The acquisition time needed to image a given volume rises sharply as 
the resolution is increased. The structures we need to reliably identify 
in our image stack are neurites (as thin as 50 nm), synaptic vesicles 
(around 40 nm in diameter) and postsynaptic densities (25–50 nm 
thick) (Extended Data Fig. 1). These lengths therefore give a lower bound 
for acceptable resolution. We chose a section thickness of 25 nm and a 
pixel size of 14 × 14 nm2. This scale allows us to resolve even the thinnest 
wires and detect features of chemical synapses.

To minimize acquisition time, we optimized two steps. First, 
we developed X-ray guided adaptive tiling, where we used a 
micro-computed tomography (micro-CT) scan of the embedded 
sample registered to the SBEM microtome stage coordinate system 
to automatically target SBEM imaging to only the brain, avoiding 
the surrounding embedding material and other parts of the head  
(Fig. 1c–g). Second, we used piezo scanning along the slow axis, remov-
ing field of view (FOV) limitations along that axis and reducing the 
number of motor moves required to tile each section. The combination 
of X-ray targeting and piezo scanning reduced the total acquisition time 
from an estimated 160 to 66 days.

Tracing of ‘optic-flow’ neurons and their connectivity
To establish the correspondence between functionally identified cells 
and cells in the vEM dataset, we aligned a high-resolution 2P z-stack, 
taken after the functional recordings, to the vEM stack coordinates 
(Fig. 2a–d) by block-wise affine registration. We iteratively selected 
correspondence points, proceeding from large-scale structures (ventri-
cles and blood vessels) to finer ones (for example, individual somata).

For 208 of the 216 cells characterized by function, we could unam-
biguously identify the corresponding somata in the vEM dataset. We 
manually skeletonized these neurons (Fig. 2e–h and Extended Data  
Figs. 2 and 3) using the CORE annotation procedure13. This yielded 
a total neurite path length of 280.8 mm, of which 139.5 mm were 
dendrites and 141.3 mm axons (1,350.0 ± 556.7, 670.8 ± 222.4 and 
679.2 ± 422.7 mean ± s.d. µm per cell, respectively). Subsequently, we 
identified synapses between the reconstructed cells, yielding a total of 
1,079 synaptic contacts among these 208 neurons (Fig. 2i,j).

Many of the axons and dendrites of our reconstructed neurons 
contacted an area of pretectal neuropil, which we provisionally named 
the medial pretectal neuropil (mPN, corresponding to the region 
of high synapse density in Fig. 2j; also Extended Data Figs. 2 and 3). 
Twenty-five of our 208 optic-flow responsive neurons had dendrites in 
ipsilateral retinorecipient neuropil areas32 (AF5, AF6) and/or mPN and, 
through the posterior or postoptic commissures, projected axons to 
the contralateral mPN and/or AF6 (Fig. 2i). Another common cell type 
(33 out of 208 cells) had dendrites in AF5, AF6 or mPN, but the axon 
coursed ventrally and caudally into the ipsilateral ventral hindbrain. 
As an internal control to assess reproducibility of reconstructions in 
this vEM dataset, we quantified path length, branchpoint density and 
axonal synapse density for these two cell types in both hemispheres 
separately (Extended Data Fig. 3). No interhemisphere comparisons 
were statistically significantly different (P values ranged from 0.18 
to 1.00 and are shown for each comparison in Extended Data Fig. 3; 
independent two-sample t-tests with Holm–Bonferroni correction). We 
will publish a detailed analysis of the pretectal connectivity elsewhere.

Finally, we registered the Max Planck Zebrafish Brain Atlas (mapze-
brain, http://mapzebrain.org) to our vEM dataset. The mapzebrain atlas 
offers annotated masks of 112 areas in a reference larval brain (‘standard 
brain’). We performed the mapping based on the distribution of soma 
and neuropil areas in both datasets (Fig. 3a,b). This brought the EM and 
light microscopy (LM) coordinate systems into register (Fig. 3c) with a 
deviation of maximally 20 µm (Extended Data Fig. 4).

Automated segmentation and human proofreading
We trained three different three-dimensional (3D) CNNs to perform 
semantic segmentation of the EM volume. Model 1 classified voxels 
into neuropil, somata or a class that includes both blood vessels and 
ventricles. Model 2 classified voxels into ‘neuropil’ or ‘not-neuropil’. 
Model 3 performed a classification into ‘nucleus’ or ‘not-nucleus’. We 
then applied a size filter of 1,000 voxels, yielding 121,956 putative nuclei.

We used FFN22 to first create a base segmentation, minimizing 
merge errors and then agglomerated it to reduce split errors, while 
keeping merge errors at an acceptable level (Fig. 4a,b). There is a 
trade-off between having fewer merge errors but more splits versus 
having fewer splits but more merge errors22. Since split errors are 
easier to resolve in subsequent proofreading steps than merge errors, 
we have given preference to obtaining low numbers of merge errors 
throughout training.

We trained the FFNs using both manually painted segments and 
segments generated by proofreading the output of a previously trained 
FFN. We evaluated the performance of network weight snapshots 
(‘checkpoints’) saved during training by calculating edge accuracies 
and merge rates from densely skeletonized subvolumes and from point 
pairs lying in different but adjacent neurites in the tectum, pretectum 
and tegmentum. After generating the base segmentation in this fash-
ion, we used FFN resegmentation to compute scores between pairs of 
adjacent segments22, while enforcing separation of the automatically 
detected cell nuclei and corresponding somata (Extended Data Fig. 5).

We stored the resulting agglomeration graph as a proposal seg-
mentation on a custom backend server and extended the Knossos 3D 
annotation tool33 (https://knossos.app) to provide a live proofread-
ing environment, in which edits are immediately visible by all users. 
Users start the proofreading procedure by selecting a location within a 
neuron of interest. Knossos then loads the supervoxel at that location, 
along with all of the supervoxels that are directly and indirectly con-
nected in the agglomeration graph. The resulting cell, or fragment of a 
cell, is shown both in a 3D view as well as in slice views overlaid over the 
raw data. Split and merge errors are corrected interactively by adding 
or removing connections between supervoxels. In a sample of tectal 
neurons (n = 18), the correction of merge and split errors required on 
average 2.8 and 98.5 interactions (mouse clicks) per cell, respectively 
(see Fig. 4c for an illustration of splits).

To estimate the efficiency gain of segmentation proofreading over 
manual skeletonization, we proofread a random selection of pretectal 
cells, which had previously been traced manually (n = 8). While manual 
tracing on average proceeded at 0.13 ± 0.04 (mean ± s.d.) mm h−1 and 
proofreading proceeded at 1.11 ± 0.25 mm h−1 (average speed-up factor: 
9.16 ± 3.16), manual skeletonization requires multiple independent 
redundant tracings to achieve good reconstruction quality13,33. Since 
we used three to five redundant manual annotators per cell, and since 
merge errors are easier to commit while skeletonizing, the net manual 
tracing speed was 0.03 ± 0.01 mm h−1, with an average speed-up factor 
of 60.3 ± 47.9-fold. This corresponded to a total manual skeletonization 
time for those cells of 57.9 ± 36.5 hours per cell, compared to a proof-
reading time of 1.09 ± 0.37 hours per cell. A tutorial guiding the user 
through all steps of the procedure is available at http://mapzebrain.org.

Synaptic partners of tectal SINs
To benchmark the proofreading workflow, we first traced one neu-
ron, randomly selected among the SINs in the tectum, together with 
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Fig. 2 | Mapping and EM-based reconstruction of functionally characterized 
pretectal neurons. a, Single plane of GCaMP5G fluorescence registered to  
SBEM dataset. b–d, Zoomed view of data in a, showing GCaMP5G (b) and 
scanning EM image (c) individually and as overlay (d). e–i, Panels show tracings 
seeded from soma centers (n = 208) (e), with functional response types classified 
and named as in ref. 25, neurons skeletonized from those seeds (f), axons  
(g), dendrites (h) and two individual example neurons (i), for all of the 
functionally characterized, EM-reconstructed cells, colored by functional 

response type. Blue and red spheres in i indicate incoming and outgoing synapse 
locations, respectively. j, All synapse locations with traced (blue) and untraced 
(black) postsynaptic partners. MoNL, MoNR, MoTL and MoTR refer to monocular 
nasalward (N) or temporalward (T), left eye (L) or right eye (R). FEL, FER, BEL,  
BER refers to forward- (F) or backward- (B) selective, excited by left (L) or right (R) 
eye. FELR refers to forward-selective, excited by left and right eye. FSP and BSP 
refer to forward (F) or backward (B) specific. Scale bars, 50 µm (a), 5 µm (b–d) 
and 100 µm (e–j).
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all its presynaptic and postsynaptic partners (SIN1; Fig. 5). SINs are 
a diverse class of tectal cells that are broadly involved in processing 
visual stimuli34–40. The resulting reconstruction revealed the typical 
SIN morphology: one extensive, monostratified arborization in the 
stratum fibrosum et griseum superficiale (layer SFGS3/4, Fig. 5a). We 
proofread a random selection of other SINs and compared them to all 
of the LM reconstructions of SINs available in the mapzebrain atlas 
(Extended Data Fig. 6). Inspection of their neurite path lengths showed 
a close match, although EM reconstructions resulted in higher details 
for fine branches and thus in overall longer neurite lengths (EM SINs 
1,240.5 ± 332.5 µm; LM SINs 914.6 ± 359.2 µm; mean ± s.d. n = 6).

We searched for presynaptic and postsynaptic sites along all 
the branches of SIN1 (Fig. 5a). Overall we identified 340 synapses 
(inputs: 155, outputs: 185). Some SIN neurites had a mixed axonal and 
dendritic character, with presynaptic and postsynaptic sites often in 
close proximity (Fig. 5a,b). Starting at these sites, we traced all syn-
aptic partners (Fig. 5c–g). Proofreading took on average 9 min until a 
partner cell type was unambiguously identified. We backtraced axons 
from retinal ganglion cells (RGCs), whose somata reside in the retina, 
into the optic tract to determine whether they originated from the 
same or different RGCs. We identified 75 presynaptic neurons, each 
forming between 1 and 13 synapses with this particular SIN. These 
include 41 RGCs, 30 periventricular interneurons (PVINs), two SINs 
and two cells in the dorsal thalamus (Fig. 5d,e and Supplementary 
Video 1). A single RGC axon often made multiple (up to 13) synaptic 
contacts, both locally and on distant dendrites. The 133 postsynap-
tic cells included 68 PVINs, 46 periventricular projection neurons 
(PVPNs), four cells with cell bodies in deeper neuropil layers and three 
other SINs (Fig. 5f,g and Supplementary Video 2). We also observed 
axo-axonic synapses onto axons of ten RGCs. We found tectal partner 
cells in the vicinity of the SIN’s arborization, indicating that the SIN 
network retains retinotopic information (Fig. 5c–g). Presynaptic 
cells rarely overlapped with postsynaptic cells (three PVINs were 
both presynaptic and postsynaptic to the SIN), suggesting an overall 
feedforward circuit organization.

Next we traced all partner cells of another SIN (SIN2) (orange in 
Fig. 5f–h). SIN2 arborized in the same tectal sublamina and had a similar 
morphology to SIN1. Input synapses came from RGCs (92), PVINs (45), 
hindbrain (five), pretectum (three) and other SINs (three, among them 
SIN1). Of the 47 postsynaptic cells, we identified 18 PVINs, 17 PVPNs, five 
SINs, two neuropil layers and again axo-axonic synapses onto four RGC 
axons. Although SIN1 and SIN2 were located in close proximity to each 

other, with their arbors largely overlapping, they only shared about 15% 
of input and 21% of output partners. In summary, this effort delivered 
a network of SINs and all of their synaptic partners.

A digital address book for all neurons and their connections
Next we automated the detection of synaptic features. For this task, we 
used the SyConn v.2 pipeline41,42. We first used a deep neural network 
to map synaptic clefts and vesicle clouds (Fig. 6a,b). To validate the 
quality of synapse annotation, we used ground-truth test data from 
different parts of the brain, yielding object-wise precision-recall scores 
close to 1 for synaptic vesicle clouds (tectum 0.98 and 0.96, pretectum 
0.98 and 0.96, thalamus 0.91 and 0.98, and ventral hindbrain 0.90 and 
0.98 precision and recall, respectively) and synaptic clefts (tectum 0.93 
and 0.93, pretectum 0.96 and 0.96, thalamus 0.88 and 0.98, and ventral 
hindbrain 0.90 and 0.96, respectively). Notably, the volume fraction 
occupied by synaptic vesicle clouds varied among different neuropil 
regions. We measured the proportion of synaptic vesicle clouds in the 
ten retinorecipient arborization fields, including the tectum32 (AFs, 
Fig. 6c,d) and found that the density of synapses was highest in the 
thalamic neuropil regions AF3 and AF4.

We quantified synaptic contact area sizes on a sample of 100 syn-
apses each in the thalamus, optic tectum, ventral hindbrain and AF6, 
finding a median area of 0.12, 0.10, 0.18 and 0.11 µm2, respectively 
(corresponding to median contact lengths over all sections of 243, 
220, 280 and 257 nm; Extended Data Fig. 7 and Supplementary Videos 
3–5). These values in the larva are lower than those reported for adult 
zebrafish43. We found axonal contact onto the Mauthner cells’ ventral 
dendrites that were ultrastructurally distinct from chemical synapses, 
with an intense darkening of the axonal and dendritic membranes inter-
rupted by stretches at which the two membranes visually appeared as 
if fused into a single membrane (Supplementary Video 6). Since this 
region of the Mauthner cell receives numerous electrical synapses44, 
some electrical synapses may be identifiable in our dataset.

Validation of SyConn-based automated synapse detection
SyConn recognized all synapses that a human expert (D.F.) had found 
in the SINs investigated above, and vice versa, but substantially faster. 
The SyConn graphical interface allows users to interactively move 
from cell to cell, tracing a chain of synaptic connections. Using such 
computer-assisted circuit analysis, we discovered that, in a network 
of 11 proofread SINs (Fig. 5g,h), synaptic connectivity is unidirectional 
without apparent recurrency.

a b c

Fig. 3 | Registration of LM atlas dataset and vEM stack. a, elavl3:lynTag-RFP 
(red) and elavl3:H2B-GCaMP6s (false-colored in blue) fluorescence stacks, 
registered into a common coordinate system. Dorsal view. b, Soma (blue) 
and neuropil (red) prediction on low-resolution overview vEM data used as 

registration target, overlaid over raw data. c. Overlay of elavl3:H2B-GCaMP6s 
(blue) and pou4f3:mGFP (yellow) registered into the vEM brain coordinate system 
and shown over full resolution vEM data. Scale bars, 100 µm.

http://www.nature.com/naturemethods


Nature Methods | Volume 19 | November 2022 | 1357–1366  1362

Resource https://doi.org/10.1038/s41592-022-01621-0

Next, we compared the number of automatically identified 
synapses for specific cell types from our dataset with previously 
published results from light-microscopic analyses45,46. Both for pre-
synaptic sites on RGC axons (0.16 ± 0.02 and 0.13 ± 0.02 mean ± s.e.m. 
Synaptophysin-labeled puncta per µm neurite path length for pretectal 
and tectal arborizations, respectively45), and for postsynaptic sites on 
pyramidal cells in the stratum marginale of the tectum (0.4 ± 0.19 s.e.m. 
PSD95-labeled puncta per micrometer of neurite path length46), we 
obtained similar densities from our vEM dataset (0.22 ± 0.03 and 
0.17 ± 0.01 s.e.m. for pretectal and tectal RGC arborizations, respec-
tively, and 0.32 ± 0.03 s.e.m. for pyramidal cells; Extended Data Fig. 6).

Finally, to examine whether we might have missed some chemi-
cal synaptic contacts in this dataset, we acquired a transmission EM 
image of tectal neuropil from a larval zebrafish brain sample prepared 
identically to the one used for SBEM at a pixel size of 4.1 by 4.1 nm. We 
then measured the chemical synaptic contact lengths for a sample of 
100 synapses (Extended Data Fig. 8). The good agreement with the size 
distribution of tectal synapses in the SBEM dataset (Extended Data 
Figs. 7 and 8) suggests that a large fraction of synapses can indeed be 

identified. In summary, the synaptic resolution of our dataset com-
bined with our automatic SyConn pipeline allows detection, annotation 
and quantification of chemical synapses with high confidence.

Discussion
Here we have described a dataset that contains an EM volume of the 
larval zebrafish brain, augmented by automatically generated maps of 
121,000 nuclei, by synaptic contact locations and by a proposal seg-
mentation of neurites. The resolution is suitable for synapse-scale 
reconstruction. The EM volume of roughly 0.058 mm3 is represented 
by 12.5 teravoxels (almost 29,000 sections, each 25 nm thick, imaged 
at 14 × 14 nm2 pixel size). The computational tools we developed 
enable direct extraction of wiring information from the dataset from  
these data.

We paid attention to the usability of this resource by the commu-
nity: (1) segmented and proofread data are being made accessible at 
http://mapzebrain.org and will be continually updated. (2) Open-source 
software tools (Knossos and SyConn) allow the user to navigate and 
query the dataset, as well as to contribute their own tracing data to 

b

c

a

Fig. 4 | Automated neurite segmentation. a, Dorsal view of the vEM dataset with 
a multicolored overlay of the base segmentation. b, Close-up examples (one out 
of at least ten) of the segmentation in, from top left to bottom right, the tectal 
neuropil (highlighted in a), rostral hypothalamus, intermediate and inferior 
ventral medulla oblongata. c, Examples of semiautomatically reconstructed 
neurons. Numbers of corrected merge and split errors are given in parentheses. 

From left to right: dorsal thalamic projection neuron (mergers, 1; splits, 62), 
tectal PVIN (1, 124), inferior raphe neuron (14, 52), inferior dorsal medulla 
oblongata neuron (0, 23) and pretectal interneuron (0, 8). Different colors 
indicate neuron fragments merged manually. Scale bars, 50 µm (a), 2 µm (b) and 
10 µm (c).
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Fig. 5 | Reconstruction of a SIN and its partners. a, Dorsal view of the selected 
SIN1. Input (blue) and output (green) synapses are indicated. b, Annotated 
(upper panel) and raw data (lower panel) for closely neighboring input (blue) and 
output (green arrowhead) synapses on a SIN’s neurite (red). Arrow in a indicates 
synapse location. c, Dorsal view of left tectum showing cell body locations of all 
input (purple) and output (cyan) neurons in the anterior tectum. d, Frontal view 
showing the SIN (red) and its presynaptic partners (Supplementary Video 1).  
Arrowheads indicate RGC input synapses onto SIN cell body. Surface of tectal 
hemisphere is shown in gray. e, Dorsal view of SIN (red) and its input RGC axons 

in the SFGS layer. Close-ups on the right show that SIN neurites (arrowheads) 
closely follow the network of RGC axon bundles. f, The SIN (red) and its 
postsynaptic partners (PVINs not shown for clarity, see Supplementary Video 2 
for all postsynaptic cells). The second SIN2 for which we mapped all partners is 
marked by an arrow. g, Dorsal view showing a network of interconnected SINs.  
h, Wiring diagram for proofread SINs. Colors match cells shown in g (SINs 7–11  
are not visualized for clarity). Synapse numbers are indicated next to  
arrowheads. Scale bars, 35 µm (a), 1 µm (b) and 85 µm (c). A: anterior,  
L: lateral, D: dorsal.
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generating a brain-wide connectome. (3) vEM volume and coordinates 
of the LM atlas of the zebrafish brain15 have been coregistered, offering 
access to additional data modalities for circuit analysis, such as gene 
and transgene expression, single-cell morphologies and neuroana-
tomical annotations47. Together, these features should lower the entry 
barrier to connectomic analyses in this system.

Our initial use of this resource has already offered a glimpse into 
the wealth of biology that awaits discovery. First, we could match 208 
cells in the EM volume to functionally characterized neurons in the 
optic-flow processing pretectum27. An in-depth analysis of the wiring 
diagram of these cells is underway (F.S., W.D., H.B., F.K. in preparation). 
Second, we revealed the heretofore elusive connectivity of SINs, a 
largely inhibitory and diverse class of tectal neurons in the tectum, 
which have been likened to retinal amacrine cells36 and our results 
confirmed the proposed mechanism of feedforward filtering of visual 
inputs by the SINs37,39.

In summary, the new dataset is immediately accessible for circuit 
interrogations not attainable by LM methods or electrophysiology. 
Additional demands on this resource are likely to drive further improve-
ments of the computational pipeline and accelerate discoveries. For 
example, inhibitory and excitatory synapses differ in the shapes of 
presynaptic vesicles and the thickness of postsynaptic densities48,49. 
Once labeled training data are available, the computational pipeline 
might be extended to automatically classify synapses by type of trans-
mission50. Both electrical connections as well as modulators play impor-
tant roles in the activity of neural circuits2, and explaining their role in 
the activity of circuits reconstructed from our SBEM dataset will have 
to be left to subsequent experiments. Combinations of high-resolution 
EM imaging with LM-based maps of antibody staining patterns in the 
same sample are likely to prove useful in generating vEM datasets aug-
mented with information on modulator identity in the future51. Another 

direction worth pursuing in the zebrafish system is development and 
growth. While the present dataset encompasses a larval brain, even 
the hundredfold larger brains of the adult zebrafish remain amenable 
for whole-brain EM reconstructions. We expect that technological 
advances52 will make generating connectomes in zebrafish, including 
in mutants and disease models, a routine task in the future.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01621-0.
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Methods
Animal husbandry
All animal procedures conformed to the guidelines of the Max 
Planck Society and the Regierung Oberbayern (protocol number 
55.2-1-54-2532-101-12).

2P Ca2+ imaging
We performed Ca2+ imaging in Tg(elavl3:GCaMP5G)a4598 zebrafish 
larvae expressing GCaMP5G in almost all neurons at 5 dpf. A few hours 
before imaging, we fed the larvae paramecia and used only those that 
consumed paramecia for subsequent imaging. Before imaging, we 
paralyzed larvae by injecting α-bungarotoxin intraspinally (2 mg ml−1 
alpha-bungarotoxin (Invitrogen, B1601), FastRed 10% v/v, 1× Danieau’s 
solution). We used a movable objective microscope (Sutter Instru-
ments) with a Ti:sapphire (Ti:Sa) laser (Chameleon Ultra II, Coherent) 
to record GCaMP signals (920 nm; roughly 10 mW after the objective) 
with a ×20 objective (Olympus, numerical aperture 1.0) and used Scan-
Image software53 for image acquisition. We presented visual stimuli to 
the fish using a custom-built red LED arena (four flat panels covering 
360° around the fish; no grating presentation in 30° in front of the fish 
corresponding to the binocular field). The visual stimulus consisted 
of vertically oriented gratings moving horizontally in eight phases 
(gratings in motion for 6 s at spatial frequency of 0.033 cycles per 
degree and temporal frequency of 2 cycles per s, interspersed with 4 s 
stationary gratings). Four of the eight phases were monocular, and 
four were binocular: (1) left nasalward, (2) left temporalward, (3) right 
temporalward, (4) right nasalward, (5) backward, (6) forward, (7) clock-
wise and (8) counterclockwise. The sequence of eight phases repeated 
three times. We recorded a volume centered around the pretectum with 
roughly 15 z-planes separated by 5 µm. The videos in each z-plane had a 
size of 512 × 512 pixels (pixel size of 0.385 µm) at a frame rate of 1.74 Hz.

Analysis of 2P Ca2+-imaging data
We processed GCaMP5G signals with a custom-made routine written 
in MATLAB25. Briefly, we focused on 11 most frequent response types 
in the pretectum and generated a map of correlated pixels for each 
corresponding regressor. From these regressor maps, we drew regions 
of interest to detect correlated cells. We cross-checked each of the 
identified cells with all the regressor maps for overlap. If the same cell 
was detected in multiple regressor maps, we assigned it the regressor 
that gave the highest correlation coefficient value.

EM sample preparation
After 2P microscopy, we anesthetized the animal in 0.016% tricaine in 
Ringer solution modified for extracellular space preservation (63 mM 
NaCl, 63 mM cesium gluconate, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM 
NaH2PO4, 25 mM glucose, 2 mM CaCl2 and 1 mM MgCl2)17, based on the 
principle of extracellular space preservation by cell-impermeable sol-
utes54. We removed the eyes with a piece of lasso-shaped tungsten wire 
and removed the skin covering the brain dorsally by first making a small 
incision caudal and dorsal of the brain using the electrochemically 
etched tip of a tungsten wire and then, through this incision, inserting 
the tungsten wire tip under the skin and carefully pulling upward and 
rostrally, pulling away the skin without touching the brain. We carefully 
removed any remaining skin flaps with forceps. Finally, we chemically 
fixed the larva with 2% glutaraldehyde and stained it with the reduced 
osmium/thiocarbohydrazide/osmium stain, aqueous uranyl acetate 
and lead aspartate8.

To make the sample sufficiently conductive to allow imaging even 
the superficial, plastic-adjacent areas of the brain, we dispersed Carbon 
Black (2.5% w/v, Ketjenblack, AkzoNobel) in the epoxy55.

SBEM data acquisition
We embedded the sample using a custom-designed mold and holder 
that held the sample in a reproducible position and orientation 

(Extended Data Fig. 9). We then performed X-ray micro-CT imaging 
of the sample embedded onto the custom holder at 4 µm voxel edge 
length (SCANCO Medical AG). To generate the EM tile mosaic, we 
manually segmented the brain tissue in the micro-CT dataset and fit a 
transformation from the micro-CT coordinate system into that of the 
SBEM microtome stage motors. By performing dynamic, precomputed 
X-ray targeted tiling, only 58% of the cuboid bounding box of the brain 
was scanned.

We performed SBEM acquisition on a Zeiss Ultra Plus scanning 
electron microscope equipped with a Fibics scan generator. Piezo scan-
ning was used, that is the SBEM stage was smoothly moved along the 
long axis of the scan, while the electron beam scanned the short axis. 
This resulted in a tile pattern consisting of elongated images (ranging 
from 4,615 to 25,000 pixels in length, with an average of 16,206 pixels) 
stacked horizontally, covering the entire brain with the exception of 
the retinae (Fig. 1d,e). The ability to extend the FOV to cover the entire 
brain along one axis reduced the number of FOV positioning moves 
from 1.3 × 106 to 235,581, saving 46 days in ringdown time, similar to 
the method described previously56. In addition to the piezo-scanned 
image tiles, a single, low-resolution (200 × 200 nm2) overview image 
was captured per slice with usual electron beam scanning. The micro-
scope was operated by scripted control of the Zeiss SmartSEM v.5 and 
Fibics ATLAS v.4 software.

We used a GV10x downstream asher (ibss Group, Inc.) to clear the 
detector diode every 2–3 days. To ensure that no sections were lost due 
to potential thermic shifts in sample position caused by the asher, we 
retracted and reapproached the sample every time the downstream 
asher was activated.

To map the individual image tiles into a single, consistent 3D space, 
we used the Aligner package57 (https://github.com/billkarsh/Align-
ment_Projects), which optimizes an affine transformation for each 
image tile. To allow for greater flexibility in the alignment, we cut the 
individual image tiles into shorter pieces of 500 pixels, with 44 pixels 
overlap, in length along the piezo-scanned (y) axis before registration.

Alignment of vEM and 2P image stacks
To unambiguously match corresponding neurons between the EM and 
2P stacks, we devised the sequential transformation steps as follows. 
First, we manually identified unique landmark points that were visible 
in both stacks, such as blood vessel branch points, which we subse-
quently used for calculating transformations using the BigWarp plugin 
in Fiji58. We identified a total of 1,623 corresponding points representing 
individual somata in the region where the imaged optic-flow respon-
sive cells were located. We divided the pretectal region into smaller 
regions (‘blocks’) of size 42 × 28 × 2 pixels and the transformation for 
each block was calculated separately, based on corresponding points 
located in a surround of that block. Such local affine transformations 
were calculated for and applied to 3,426 individual blocks on the left 
side and 3,676 blocks on the right side of the brain.

Manual neuron reconstruction and synapse identification
Professional annotators of the neuron reconstruction service ariadne.
ai ag (https://www.ariadne.ai) manually reconstructed the neurons 
and annotated the synapses. Starting from seed points in somata, the 
annotators reconstructed the skeleton of the neurons by following 
their neurites within the 3D EM volume using the open-source neuron 
reconstruction tools Knossos33 (https://knossos.app) and PyKNOS-
SOS13 (https://github.com/adwanner/PyKNOSSOS). The annotators 
manually identified and tagged neurite branch points to revisit and 
extend them at a later point. We generated consensus skeletons from 
3–5 independent reconstructions13. The annotators labeled synapses 
manually using PyKNOSSOS in ‘flight’ mode13, where the EM data are 
displayed in a virtual reslice perpendicular to the local direction of the 
neurite. They followed the skeletonized axon of every neuron along 
precalculated paths and annotated all output synapses as described 
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previously11. In brief, a synapse was inferred when (1) axonal and den-
dritic neurite membrane surfaces were parallel and directly apposed, 
(2) a vesicle cloud was seen in the axon with vesicles in close proximity 
to the axonal membrane opposite of the dendrite and (3) a thickening 
or darkening, potentially very faint, of the postsynaptic neurite mem-
brane was observed. In addition, the annotators assigned a subjective 
confidence level to each synapse. Two independent human annotators 
performed synapse annotation. If the postsynaptic partner was among 
the reconstructed cells, this was labeled as such. If a synapse location 
was found by only one of the two independent annotators, a third 
expert annotator (F.S.) made the final decision.

We measured neurite diameters in the set of skeletonized cells by 
randomly sampling 200 locations from axons and dendrites each, and 
keeping fragments of the skeleton within a radius of 750 nm around 
these locations. The fragments were loaded into PyKNOSSOS and 
displayed in ‘flight’ mode, allowing a local measurement of the neurite 
diameter.

Morphological characterization of pretectal neurons
We compared the targeting of anatomical areas between simple and 
complex pretectal cells by counting for every cell the number of branch 
points intersecting one of the region annotations from the light-level 
atlas registered to our EM dataset. We used branch points instead of 
all skeleton points to not count parts of the axons and dendrites that 
only pass through a region. We normalized the branch point counts to 
the total number of branch points in each category.

Synapse size measurement
We measured synapse sizes in our SBEM dataset by taking a random 
sample of 100 synaptic contact locations automatically detected in 
each one of AF6, optic tectum, thalamus and ventral hindbrain, as 
defined by the mapzebrain region annotations mapped to the SBEM 
dataset. We manually reviewed these 400 locations to make sure that 
they precisely represented exactly one synaptic contact and corrected 
them if necessary. We then calculated contact areas from surface 
meshes of those contact annotations generated by the zmesh python 
library (https://github.com/seung-lab/zmesh). To enable a comparison 
to data derived from single two-dimensional (2D) sections, we sliced 
the 3D contact area objects along each one of the three cardinal direc-
tions, spaced by the resolution of the dataset and measured the length 
of the 2D profile exposed in each section.

For high-resolution synapse size measurement, we used a single 
35-nm slice of a sample prepared identically to the one used for our 
SBEM dataset, which we imaged on a JEOL JEM-1230 transmission elec-
tron microscope, equipped with a Gatan Orius SC1000 digital camera, 
at 12,000-fold magnification (pixel size 4.1 × 4.1 nm2) at 80 kV. We meas-
ured synaptic contact lengths by sampling 1.5 × 1.5 µm2 subregions of 
the tectal neuropil randomly and annotating all intersecting synaptic 
contacts, until 100 synapses had been measured.

Registration to standard brain
We trained a 2D U-Net59 to distinguish soma and neuropil regions in the 
vEM dataset (Fig. 3b). In parallel, we obtained a soma and neuropil map 
in the standard brain coordinate system by thresholding and summing 
the elavl3:H2B-GCaMP6s (for cell nuclei) and the elavl3:lynTag-RFP (for 
neuropil) reference brain channels (Fig. 3a). This allowed us to calculate 
a diffeomorphic transformation to map these two datasets using the 
dipy60 (https://dipy.org/) registration toolkit, which compensates 
for the complex deformations that the sample underwent during EM 
preparation.

Tissue classification
Tissue classification models 1 and 2 used the architecture and training 
hyperparameters described in previous work22. Model 1 operated on 
28 × 28 × 25 nm3 data and was trained on manually annotated labels 

of neuropil (35 megavoxels, MVx), soma (13 MVx) and a class con-
taining blood vessels and ventricles (4 MVx). Model 2 operated on 
56 × 56 × 100 nm3 data and was trained on manually annotated labels 
of neuropil (114 MVx) and nonneuropil (33 MVx). The annotations 
for both networks were made independently. Model 3 operated on 
56 × 56 × 100 nm3 data and was trained on binary labels of nucleus 
(20 MVx) versus not-nucleus (15 MVx). The network architecture was a 
stack of 16 3D valid-mode convolutions with 32 feature maps, ReLU acti-
vation and additive skip connections around every two convolutions, 
with the exception of the first two. The output of the convolution stack 
was processed by a point-wise convolution with two feature maps rep-
resenting the class logits. We trained this network using cross-entropy 
loss with asynchronous stochastic gradient descent at a learning rate 
of 10−3, batch size of 16 and eight NVIDIA V100 workers. Examples were 
sampled with equal frequency from every class during training.

We binarized the results of model 3, set any voxels predicted as 
‘nonneuropil’ or ‘soma’ by model 1 or 2 to 0, and computed the 3D con-
nected components of the results to form an initial soma segmentation. 
We then applied morphological erosion with radius of 5 to reduce false 
mergers, and recomputed the 3D connected components. Objects with 
a volume of more than 1,000 pixels (corresponding to the volume of a 
sphere with a radius of around 700 nm) were retained as automatically 
detected soma candidates.

We detected defocused regions by filtering the in-plane 
CLAHE-normalized images with a Gaussian with sigma of 1, followed 
by a discrete Laplacian filter. For every voxel, we computed the standard 
deviation of the filtered image within a 21 × 21 region centered at that 
voxel. We downsampled the results 128× in-plane with area-averaging, 
and labeled voxels with values <57 as defocused.

Neurite segmentation
We trained FFNs using three types of ground truth: (1) manually painted 
segments (three MVx spread over three subvolumes), (2) manually cor-
rected automated segmentation (15 MVx) and (3) manually agglomer-
ated neurites from a previous automated segmentation (59 neurites 
containing 206 MVx). The segmentations used for manual agglomera-
tion and merge error proofreading were created with an earlier FFN 
model trained only with the manually painted ground truth.

During network training, we sampled from the three types of 
ground truth at relative frequencies of 0.85, 0.05 and 0.1. Within a 
given type of ground truth, training examples were selected as previ-
ously described22.

We used all network weight snapshots (‘checkpoints’) saved during 
training to segment three 5 × 5 × 6.5 µm3 subvolumes for which dense 
skeleton tracings were previously traced by human annotators. These 
skeleton tracings allowed us to compute the average edge accuracy22 
for every network checkpoint. We selected the seven checkpoints with 
the highest accuracies, and used them to segment the complete volume 
with forward and reverse seed ordering. During segmentation, we used 
on-the-fly realignment with a maximum translation limit of 10 px to 
correct for local alignment problems in the EM imagery, as well as FFN 
FOV movement restriction when postrealignment section-to-section 
offset exceeded 4 px. We also restricted the FFN FOV center from mov-
ing to any voxel predicted to belong to a blood vessel, ventricle or 
not-neuropil by at least one of the tissue classification models, or when 
estimated to have insufficient focus. We computed the oversegmenta-
tion consensus between the forward and reverse seed orderings22 for 
every checkpoint and used a set of 217 manually annotated point pairs 
within the tectum, pretectum and tegmentum to screen the seven 
resulting segmentations for merge errors. The points were located so 
that each element of the pair lay within a different but adjacent neurite. 
For every segmentation, we computed the number of point pairs for 
which the corresponding voxels were labeled with two distinct nonzero 
segment IDs. To form the base segmentation we then selected the two 
segmentations that together correctly labeled the highest number 
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of these point pairs, computed their oversegmentation consensus 
and postprocessed it by removing unlabeled voxels in the interior of 
segments, as well as merging segments completely contained within 
other segments61.

Semiautomatic neuron reconstruction (proofreading)
The Knossos-based proofreading tool makes available a live proof-
reading environment in which edits contributed by different users 
are immediately available to all users. It interacts with a custom back-
end server, which manages the agglomeration graph. Knossos can (1) 
request a list of objects that are part of the same agglomeration graph 
connected component, (2) add a connection, (3) remove a connec-
tion between two objects in the agglomeration graph and (4) request 
the surface mesh representations for a set of objects. For efficiency, 
the backend server holds the agglomeration graph in random access 
memory. Any edit to the agglomeration graph is directly performed 
in memory, but also written to an on-disk append-only edit log. The 
edit log is replayed on top of the original automatically generated 
proposal agglomeration every time the server is reloaded. This design 
allows highly efficient operations: in our usage so far, edge insertions 
required 4, 20 and 42 ms (first percentile, median, 99th percentile, 
respectively, with 13,461 insertions), edge deletions required 1, 18 and 
39 ms (1,875 deletions) and obtaining the connected component to 
which a supervoxel belonged by depth-first search required 0, 12 and 
111 ms (40,311 requests).

We performed a stress-test of the backend server by replaying real 
user activity from log files with increasing parallelization, from a single 
client machine connected to the backend server by a 1 gigabit ethernet 
connection (Extended Data Fig. 10).

To identify all synaptic partners of SINs in the tectum, we first 
manually annotated all incoming and outgoing synapses along the 
SIN neurites. Starting from these synapses, we then traced the partner 
cells, until the cell body or, for RGCs, the axon in the optic tract were 
unambiguously identified. In case of tectal cells, presence of an axon 
leaving the tectum was used as the criterion to distinguish PVPNs 
from PVINs.

Automated synapse detection by machine learning
In collaboration with ariadne.ai ag, we trained a 3D multiclass 
U-Net59,62 to predict the locations of synaptic vesicle clouds and syn-
aptic clefts over the entire volume. To ensure optimal prediction 
quality, we performed multiple rounds of prediction on test regions, 
followed by the addition of ground truth targeted to mistakes found 
in these regions. In total, 313.26 MVx of ground truth were used to 
train the final network. We quantified the quality of the automatic 
synapse detection by comparing to randomly selected, manually 
annotated test volumes in the thalamus, tectum, pretectum and 
ventral hindbrain. A total of ten test volumes, each 3.5 × 3.5 × 3.5 µm3 
in size, were created, containing a total of 1,375 synaptic clefts and 971 
vesicle clouds. To quantify vesicle cloud density in different RGC AFs, 
we mapped the mapzebrain AF region annotations to the EM data and 
manually refined them to exclude somata from neuropil regions and 
calculate the density of voxels predicted to be part of vesicle clouds 
within these regions.

Mapping of automatic synapse detection to neurite 
segmentation
We used SyConn2 (ref. 42) to process the automatic synaptic cleft, syn-
aptic vesicle cloud and neurite segmentations and generate a synaptic 
connectome. The respective processing parameters and a source code 
snapshot can be found under https://gitlab.mpcdf.mpg.de/pschuber/
SyConn/-/tree/chunk_mask.

We then used synapses mapped to proofread cells to automatically 
extract SIN connectivity, and to compare synapse densities on pyrami-
dal tectal interneurons and RGCs to data available in the literature.

Statistics and reproducibility
Box plot center lines represent medians, box limits upper and lower 
quartiles, whiskers 1.5× the interquartile range. Error bars in bar plots 
represent s.e.m. If not stated otherwise, wherever representative exam-
ple micrographs are shown, results are derived from a minimum of ten 
samples. Significance of difference of means was tested with Welch’s 
t-test and Holm–Bonferroni multiple testing correction to a signifi-
cance level of P < 0.05.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The dataset generated during this study, as well as the Max Planck 
Zebrafish Brain Atlas, are available at http://mapzebrain.org along with 
detailed instructions for use of the agglomeration graph proofreading 
tool and download of the associated data.

Code availability
The Knossos proofreading tool is available from https://github.com/
knossos-project/knossos/tree/bmpr, licensed under the GPL v.2. The 
agglomeration proofreading backend server is available from https://
github.com/ariadne-ai/agglomeration_proofreading, licensed under 
the AGPL v.2.
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Extended Data Fig. 1 | Neurite diameter distribution. Neurite diameter 
distribution for pretectal cells (cumulative density function, cdf), measured 

perpendicular to the main neurite axis in axons and dendrites, at 200 randomly 
sampled locations in each.
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Extended Data Fig. 2 | Between-hemisphere comparison of reconstructed 
pretectal cell morphology. Fraction of skeleton branch points, taken over 
all cells, present in different anatomical areas for dendrites of simple (MoNL, 
MoNR, MoTL and MoTR) and complex (FEL, FER, BEL, BER, FELR, FSP and BSP) 
cells (complex left: 38, right: 36; simple left: 94, right: 40) in the left (L) and 
right (R) hemisphere separately (a) and in both hemispheres (b). c-d. Like a-b, 

for the axons. AF5, AF6: Retinal arborization fields 5 and 6, TeO: optic tectum, 
mPN: medial pretectal neuropil, nMLF: neuropil of the nucleus of the medial 
longitudinal fasciculus, vHb: ventral hindbrain neuropil. (i) and (c) indicate 
ipsilateral and contralateral, respectively. AF and nMLF annotations are based on 
LM atlas masks registered to the EM data.

http://www.nature.com/naturemethods


Nature Methods

Resource https://doi.org/10.1038/s41592-022-01621-0

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Bilaterally symmetric reconstructions of two 
morphologically defined pretectal cell types. Individual example of a 
commissural pretectal interneuron (a) and all neurons of this type with 
somata on the right (b) and left (c) side of the brain. d-f. Like a-c, for ipsilateral 
descending pretectal projection neurons. g-i. Branchpoint densities (g), neurite 
path lengths (h) and axonal synapse densities (i) for commissural pretectal 
interneurons (blue, n = 18 and 7 cells on the left and right side, respectively) and 

ipsilateral descending pretectal projection neurons (red, n = 15 and 18 cells on 
the left and right side, respectively), plotted separately for axons and dendrites 
and for the two brain hemispheres. AF5, AF6: Retinal arborization fields 5 and 
6, mPN: medial pretectal neuropil region, vHb: ventral hindbrain neuropil. AF 
annotations are based on LM atlas masks registered to the EM data. Box plot 
center lines represent medians, box limits upper and lower quartiles, whiskers 
1.5x the interquartile range. Scale bar: 100 µm.
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Extended Data Fig. 4 | LM-to-EM registration match precision. Examples 
for the accuracy of registrations. a-c: Retinal ganglion cell axons (n = 7), which 
have been traced in the EM dataset and which project both to the tectal stratum 
opticum (SO) and the arborization field 7 (AF7), localize exclusively inside the 

registered mapzebrain regions. d-e: The registered mask for the Mauthner 
neurons, which was generated in the mapzebrain atlas (red, black arrowheads), 
deviates by ~20 µm from the location of the Mauthner cells in the EM dataset 
(blue, white arrowheads). Second Mauthner cell is shown in magenta in e.
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Extended Data Fig. 5 | Splitting of merged somata with nuclei segmentation. a. Initial segmentation with prolific soma-soma mergers, b. Nucleus segmentation, c. 
Initial segmentation split with nucleus segmentation in (b).
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Extended Data Fig. 6 | Synapse density and neurite path length comparisons 
between LM and EM. a-b. Comparison of reconstructed SINs from our EM 
dataset (a) and from our LM mapzebrain atlas (b). The number of input and 
output synapses is shown below each cell in (a) and the neurite path length 

in µm in (a) and (b). Scale bar: 30 µm. c. Quantification of synapse densities 
for presynaptic sites of RGCs in the pretectal AF8 and tectal AF10, and for 
postsynaptic sites of tectal pyramidal neurons (PyrN) in the stratum marginale 
(SM). Number of cells (n) is provided in each bar. Error bars are SEM.

http://www.nature.com/naturemethods


Nature Methods

Resource https://doi.org/10.1038/s41592-022-01621-0

Extended Data Fig. 7 | Size of synaptic contacts. a. Distribution of synaptic 
contact areas in different brain areas (n = 100 in each area). b. For the same 
synaptic contacts as in a, distribution of contact lengths as exposed in each 
intersecting slice. c. Examples of small synaptic contacts (20th to 30th percentile 

by area). Contact area in µm² indicated at the top, brain area at the bottom. 
d, e. Like c, for intermediate (45th to 55th percentile) and large (70th to 80th 
percentile) synapses, respectively. Scale bars: 250 nm. AF6: Retinal arborization 
field 6, TeO: optic tectum, vHb: ventral hindbrain, Th: thalamus.
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Extended Data Fig. 8 | Comparison of synaptic contact lengths in TEM image 
of optic tectum. a. Overview of 35 nm section of a 5 dpf larval zebrafish prepared 
identically to the sample used for SBEM. b. Close-up tile mosaic in optic tectum 
neuropil. Arrowhead points at synapse in (c). c. Example synapse. Dotted line 

illustrates synaptic contact length measurement. d. Distribution of contact 
lengths (n = 100, randomly sampled) in this TEM image (dotted line) compared 
to the distribution obtained from the optic tectum in the SBEM dataset (as in 
Extended Data Fig. 7b). Scale bars: a. 50 µm, b. 10 µm, c. 100 nm.
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Extended Data Fig. 9 | Custom sample holder for reproducible larval zebrafish positioning. a. Aluminum stub for fish embedding, b. Carbon black epoxy, 
including fish, cast on the sample holder, c. Schematic cross-section.
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Extended Data Fig. 10 | Simulation of proofreading server performance 
under different concurrent user loads. a. Response time to request of meshes 
for cells (either complete or currently undergoing proofreading) and (b) to 
the request of agglomeration graph connected component containing a given 

supervoxel, depending on the number of concurrently active simulated users. 
Box plot center lines represent medians, box limits upper and lower quartiles, 
whiskers 1.5x the interquartile range.

http://www.nature.com/naturemethods







	Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain
	Results
	Functional imaging of motion-processing neurons
	X-ray tomography-targeted SBEM imaging
	Tracing of ‘optic-flow’ neurons and their connectivity
	Automated segmentation and human proofreading
	Synaptic partners of tectal SINs
	A digital address book for all neurons and their connections
	Validation of SyConn-based automated synapse detection

	Discussion
	Online content
	Fig. 1 Pretectal 2P calcium imaging and whole-brain larval SBEM dataset acquisition.
	Fig. 2 Mapping and EM-based reconstruction of functionally characterized pretectal neurons.
	Fig. 3 Registration of LM atlas dataset and vEM stack.
	Fig. 4 Automated neurite segmentation.
	Fig. 5 Reconstruction of a SIN and its partners.
	Fig. 6 Automatic detection of synaptic contacts.
	Extended Data Fig. 1 Neurite diameter distribution.
	Extended Data Fig. 2 Between-hemisphere comparison of reconstructed pretectal cell morphology.
	Extended Data Fig. 3 Bilaterally symmetric reconstructions of two morphologically defined pretectal cell types.
	Extended Data Fig. 4 LM-to-EM registration match precision.
	Extended Data Fig. 5 Splitting of merged somata with nuclei segmentation.
	Extended Data Fig. 6 Synapse density and neurite path length comparisons between LM and EM.
	Extended Data Fig. 7 Size of synaptic contacts.
	Extended Data Fig. 8 Comparison of synaptic contact lengths in TEM image of optic tectum.
	Extended Data Fig. 9 Custom sample holder for reproducible larval zebrafish positioning.
	Extended Data Fig. 10 Simulation of proofreading server performance under different concurrent user loads.




