Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.



Tardigrades are everywhere. They’re tiny — usually under a millimeter long — and they’re mostly transparent, so they’re easy to miss. But you probably walk by them every day. We’ve been grooming them as emerging models for studying how body forms evolve and how biological materials can survive extreme conditions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Evolutionary relationships among the ecdysozoan phyla.
Fig. 2: The tardigrade Hypsibius exemplaris.


  1. Rebecchi, L., Boschetti, C. & Nelson, D. R. Hydrobiologia 847, 2779–2799 (2020).

    Article  Google Scholar 

  2. Hibshman, J. D., Clegg, J. S. & Goldstein, B. Front. Physiol. 11, 592016 (2020).

    Article  Google Scholar 

  3. Aguinaldo, A. M. et al. Nature 387, 489–493 (1997).

    CAS  Article  Google Scholar 

  4. Goldstein, B. in Emerging Model Systems in Developmental Biology (eds. Goldstein, B. & Srivastava, M.) 173–198 (Academic, 2022).

  5. McNuff, R. Cold Spring Harb. Protoc. (2018).

  6. Blaxter, M., Elsworth, B. & Daub, J. Proc. R. Soc. Lond. B 271(Suppl. 4), S189–S192 (2004).

    CAS  Google Scholar 

  7. Goldstein, B. Cold Spring Harb. Protoc. (2018).

  8. GĄsiorek, P., Stec, D., Morek, W. & Michalczyk, Ł. Zootaxa 4415, 45–75 (2018).

    Article  Google Scholar 

  9. Degma, P., Bertolani, R. & Guidetti, R. Actual Checklist of Tardigrada Species (2021).

  10. Smith, F. W. et al. Curr. Biol. 26, 224–229 (2016).

    CAS  Article  Google Scholar 

  11. Hashimoto, T. et al. Nat. Commun. 7, 12808 (2016).

    CAS  Article  Google Scholar 

  12. Boothby, T. C. et al. Mol. Cell 65, 975–984.e5 (2017).

    CAS  Article  Google Scholar 

  13. Crilly, C. J., Brom, J. A., Warmuth, O., Esterly, H. J. & Pielak, G. J. Protein Sci. 31, 396–406 (2022).

    CAS  Article  Google Scholar 

  14. Hesgrove, C. & Boothby, T. C. Cell Commun. Signal. 18, 178 (2020).

    CAS  Article  Google Scholar 

  15. Arakawa, K. Annu. Rev. Anim. Biosci. 10, 17–37 (2022).

    Article  Google Scholar 

  16. Tenlen, J. R., McCaskill, S. & Goldstein, B. Dev. Genes Evol. 223, 171–181 (2013).

    CAS  Article  Google Scholar 

  17. Kumagai, H., Kondo, K. & Kunieda, T. Biochem. Biophys. Res. Commun. (2022).

  18. Goldstein, B. & Srivastava, M. (eds.) Emerging Model Systems in Developmental Biology (Academic, 2022).

  19. Laumer, C. E. et al. Proc. R. Soc. Lond. B 286, 20190831 (2019).

    CAS  Google Scholar 

Download references


I thank current and former members of my lab, and colleagues, for their work and their intellectual contributions, and the National Science Foundation including current NSF grant IOS 2028860 for long-term support for our research on tardigrades.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bob Goldstein.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldstein, B. Tardigrades. Nat Methods 19, 904–905 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing