Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:


How regulatory sequences learn cell representations

New computational method uses convolutional neural networks for cis-regulatory sequence analysis to analyze and cluster scATAC-seq data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Separate and combined analysis of regulatory sequences and scATAC-seq data.


  1. Avsec, Ž. et al. Nat. Genet. 53, 354–366 (2021).

    Article  CAS  Google Scholar 

  2. Janssens, J. et al. Nature 601, 630–636 (2022).

    Article  CAS  Google Scholar 

  3. Cusanovich, D. A. et al. Cell 174, 1309–1324.e18 (2018).

    Article  CAS  Google Scholar 

  4. Kelley, D. R., Snoek, J. & Rinn, J. L. Genome Res. 26, 990–999 (2016).

    Article  CAS  Google Scholar 

  5. de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. Nat. Genet. 54, 613–624 (2022).

    Article  Google Scholar 

  6. Avsec, Ž. et al. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  Google Scholar 

  7. Shrikumar, A., Greenside, P. & Kundaje, A. Preprint at (2019).

  8. Wasserman, W. W. & Sandelin, A. Nat. Rev. Genet. 5, 276–287 (2004).

    Article  CAS  Google Scholar 

  9. Minnoye, L. et al. Nat. Rev. Methods Primer 1, 10 (2021).

    Article  CAS  Google Scholar 

  10. Lareau, C. A. et al. Nat. Biotechnol. 37, 916–924 (2019).

    Article  CAS  Google Scholar 

  11. Yuan, H. & Kelly, D. R. Nat. Methods (2022).

  12. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  Google Scholar 

  13. Bravo González-Blas, C. et al. Nat. Methods 16, 397–400 (2019).

    Article  Google Scholar 

  14. Xiong, L. et al. Nat. Commun. 10, 4576 (2019).

    Article  Google Scholar 

  15. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. Nat. Methods 14, 975–978 (2017).

    Article  CAS  Google Scholar 

Download references


I am grateful to Niklas Kempynck, Nikolai Hecker, Gabriele Partel, Ibrahim Ihsan Taskiran, Carmen Bravo González-Blas, Harold O. F. Snyers d'Attenhoven, and Ioannis Sarropoulous for critical comments and advice on the text and to Duygu Koldere Vilain for her help with the figure design.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stein Aerts.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, S. How regulatory sequences learn cell representations. Nat Methods 19, 1041–1043 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics