Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics

A Publisher Correction to this article was published on 22 June 2022

This article has been updated

The release of the first telomere-to-telomere (T2T) human genome sequence marks a milestone for human genomics research and holds promise of complete genomes for evolutionary genomic studies. Here we describe the advances that this new human genome assembly represents and explore the potential insights that the complete genome sequence could bring to evolutionary genomics. We also discuss the potential challenges to be faced in applying this new sequencing strategy to a broad spectrum of extant species.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A complete telomere-to-telomere (T2T) human genome sequence potentiates new investigations in comparative genomics and population genetics.

Change history

References

  1. Nurk, S. et al. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lander, E. S. et al. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Venter, J. C. et al. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aganezov, S. et al. Science 376, eabl3533 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Altemose, N. et al. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Gershman, A. et al. Science 376, eabj5089 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoyt, S. J. et al. Science 376, eabk3112 (2022).

  9. Vollger, M. R. et al. Science 376, eabj6965 (2022).

  10. Logsdon, G. A. et al. Nature 593, 101–107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao, Y. et al. Nature 594, 77–81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H. Bioinformatics 30, 2843–2851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi, J., Chen, Y., Copenhaver, G. P. & Ma, H. Proc. Natl Acad. Sci. USA 111, 10007–10012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rhie, A. et al. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lawniczak, M. K. et al. Proc. Natl Acad. Sci. USA 119, e2115639118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wolffe, A. P. & Matzke, M. A. Science 286, 481–486 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. O’Neill, R. J., Eldridge, M. D. & Metcalfe, C. J. J. Hered. 95, 375–381 (2004).

    Article  PubMed  Google Scholar 

  18. Bodega, B. & Orlando, V. Curr. Opin. Cell Biol. 31, 67–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Kidwell, M. G. & Lisch, D. R. Evolution 55, 1–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kashi, Y. & King, D. G. Trends Genet. 22, 253–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Soltis, P. S., Marchant, D. B., Van de Peer, Y. & Soltis, D. E. Curr. Opin. Genet. Dev. 35, 119–125 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Xia, B. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.09.14.460388 (2021).

  23. Smith, G. P. Science 191, 528–535 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Rieseberg, L. H. Trends Ecol. Evol. 16, 351–358 (2001).

    Article  PubMed  Google Scholar 

  25. Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Cytogenet. Genome Res. 120, 351–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Fuller, Z. L., Koury, S. A., Phadnis, N. & Schaeffer, S. W. Mol. Ecol. 28, 1283–1301 (2019).

    Article  PubMed  Google Scholar 

  27. Ventura, M., Archidiacono, N. & Rocchi, M. Genome Res. 11, 595–599 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carbone, L. et al. Nature 513, 195–201 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vollger, M. R. et al. Nat. Methods 16, 88–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Jarvis, E. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.03.06.483034 (2022).

  31. Yang, C. et al. Nature 594, 227–233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Y. et al. Nature 592, 756–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, S. et al. Nat. Genet. 46, 253–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z. et al. J. Genet. Genomics 49, 109–119 (2022).

    Article  PubMed  Google Scholar 

  35. Armstrong, J. et al. Nature 587, 246–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, F. et al. Nat. Genet. 48, 740–746 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Meyer, A. et al. Nature 590, 284–289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, K. et al. Cell 184, 1362–1376.e1318 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Pellicer, J., Hidalgo, O., Dodsworth, S. & Leitch, I. J. Genes (Basel) 9, 88 (2018).

    Article  CAS  Google Scholar 

  40. Navarro Gonzalez, J. et al. Nucleic Acids Res. 49(D1), D1046–D1057 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Miga, K. H. & Wang, T. Annu. Rev. Genomics Hum. Genet. 22, 81–102 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li, H. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren, J. & Chaisson, M. J. P. PLOS Comput. Biol. 17, e1009078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng, S. et al. Nature 587, 252–257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boomsma, J. J. et al. Myrmecol. News 25, 61–66 (2017).

    Google Scholar 

  46. Lewin, H. A. et al. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jebb, D. et al. Nature 583, 578–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, D.-D. et al. Zool. Res. 43, 147–149 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stiller, J. & Zhang, G. Diversity (Basel) 11, 115 (2019).

    Article  CAS  Google Scholar 

  50. Formenti, G. et al. Trends Ecol. Evol. 37, 197 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable comments from Glennis A. Logsdon (University of Washington School of Medicine). This work was supported by International Partnership Program of Chinese Academy of Sciences (no. 152453KYSB20170002) and a Villum Investigator Grant (no. 25900) from the Villum Foundation to G.Z.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and G.Z. conceived the project. Y.M. and G.Z. contributed to the writing.

Corresponding authors

Correspondence to Yafei Mao or Guojie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Zhang, G. A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nat Methods 19, 635–638 (2022). https://doi.org/10.1038/s41592-022-01512-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-022-01512-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing