Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Best practice standards for circular RNA research

Abstract

Circular RNAs (circRNAs) are formed in all domains of life and via different mechanisms. There has been an explosion in the number of circRNA papers in recent years; however, as a relatively young field, circRNA biology has an urgent need for common experimental standards for isolating, analyzing, expressing and depleting circRNAs. Here we propose a set of guidelines for circRNA studies based on the authors’ experience. This Perspective will specifically address the major class of circRNAs in Eukarya that are generated by a spliceosome-catalyzed back-splicing event. We hope that the implementation of best practice principles for circRNA research will help move the field forward and allow a better functional understanding of this fascinating group of RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of circular RNA biogenesis and function.
Fig. 2: Circular RNA detection, validation and quantification.
Fig. 3: Strategies for circular RNA depletion.
Fig. 4: Overexpression of circular RNA.

References

  1. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. & Kleinschmidt, A. K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Hsu, M. T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).

    CAS  PubMed  Article  Google Scholar 

  3. Zaug, A. J., Grabowski, P. J. & Cech, T. R. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage–ligation reaction. Nature 301, 578–583 (1983).

    CAS  PubMed  Article  Google Scholar 

  4. Kjems, J. & Garrett, R. A. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell 54, 693–703 (1988).

    CAS  PubMed  Article  Google Scholar 

  5. Capel, B. et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019–1030 (1993).

    CAS  PubMed  Article  Google Scholar 

  6. Nigro, J. M. et al. Scrambled exons. Cell 64, 607–613 (1991).

    CAS  PubMed  Article  Google Scholar 

  7. Cocquerelle, C., Mascrez, B., Hetuin, D. & Bailleul, B. Missplicing yields circular RNA molecules. FASEB J. 7, 155–160 (1993).

    CAS  PubMed  Article  Google Scholar 

  8. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013). This study reports that circRNA ciRS-7/CDR1as carries a large number of binding sites for miR7 and regulates availability of the miRNA.

    CAS  PubMed  Article  Google Scholar 

  9. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013). This study reports that circRNA ciRS-7/CDR1as carries a large number of binding sites for miR7 and regulates availability of the miRNA.

    CAS  PubMed  Article  Google Scholar 

  10. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012). This study reports widespread production of circular RNA isoforms from a range of human genes.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Patop, I. L., Wust, S. & Kadener, S. Past, present, and future of circRNAs. EMBO J. 38, e100836 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Szabo, L. & Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat. Rev. Genet. 17, 679–692 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    CAS  PubMed  Article  Google Scholar 

  14. Li, X., Yang, L. & Chen, L. L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018).

    CAS  PubMed  Article  Google Scholar 

  15. Kristensen, L. S., Jakobsen, T., Hager, H. & Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 19, 188–206 (2022).

  16. Dodbele, S., Mutlu, N. & Wilusz, J. E. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 22, e52072 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Tsitsipatis, D. & Gorospe, M. Practical guide for circular RNA analysis: steps, tips, and resources. Wiley Interdiscip. Rev. RNA 12, e1633 (2021).

    CAS  PubMed  Article  Google Scholar 

  18. Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    CAS  PubMed  Article  Google Scholar 

  20. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Barrett, S. P., Parker, K. R., Horn, C., Mata, M. & Salzman, J. ciRS-7 exonic sequence is embedded in a long noncoding RNA locus. PLoS Genet. 13, e1007114 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 357 https://doi.org/10.1126/science.aam8526 (2017). A circRNA knockout study in mouse shows the role of ciRS-7/CDR1as in brain development via its ability to bind miR-7.

  23. Seal, R. L. et al. A guide to naming human noncoding RNA genes. EMBO J. 39, e103777 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Glazar, P., Papavasileiou, P. & Rajewsky, N. circBase: a database for circular RNAs. RNA 20, 1666–1670 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Liu, M., Wang, Q., Shen, J., Yang, B. B. & Ding, X. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 16, 899–905 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  26. Dong, R., Ma, X. K., Li, G. W. & Yang, L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics 16, 226–233 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  27. Bachmayr-Heyda, A. et al. Correlation of circular RNA abundance with proliferation—exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 5, 8057 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019). A modified protocol for circRNA enrichment facilitates a better separation between circular and linear RNAs.

  30. Dahl, M. et al. Enzyme-free digital counting of endogenous circular RNA molecules in B cell malignancies. Lab. Invest. 98, 1657–1669 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Panda, A. C. et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 45, e116 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Rahimi, K., Veno, M. T., Dupont, D. M. & Kjems, J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat. Commun. 12, 4825 (2021). This study developed a long-read sequencing protocol that reveals the complexity and internal composition of large, multi-exon circRNAs.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Kristensen, L. S., Okholm, T. L. H., Veno, M. T. & Kjems, J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 15, 280–291 (2018).

    PubMed  Article  Google Scholar 

  34. Conn, V. & Conn, S. J. SplintQuant: a method for accurately quantifying circular RNA transcript abundance without reverse transcription bias. RNA 25, 1202–1210 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  37. Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021). This study developed a long-read sequencing protocol that reveals the complexity and internal composition of large, multi-exon circRNAs.

    CAS  PubMed  Article  Google Scholar 

  38. Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021). This study developed a long-read sequencing protocol that reveals the complexity and internal composition of large, multi-exon circRNAs.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Rahimi, K., Nielsen, A. F., Veno, M. T. & Kjems, J. Nanopore long-read sequencing of circRNAs. Methods 196, 23–29 (2021).

  40. Hansen, T. B. Improved circRNA identification by combining prediction algorithms. Front. Cell Dev. Biol. 6, 20 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  41. Cheng, J., Metge, F. & Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32, 1094–1096 (2016).

    CAS  PubMed  Article  Google Scholar 

  42. Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 19, 803–810 (2018).

    CAS  PubMed  Article  Google Scholar 

  43. Tapial, J. et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 27, 1759–1768 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Tang, C. et al. Template switching causes artificial junction formation and false identification of circular RNAs. Preprint at bioRxiv https://doi.org/10.1101/259556 (2018).

  45. Yu, C. Y., Liu, H. J., Hung, L. Y., Kuo, H. C. & Chuang, T. J. Is an observed non-co-linear RNA product spliced in trans, in cis or just in vitro? Nucleic Acids Res. 42, 9410–9423 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Chuang, T. J. et al. Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res. 46, 3671–3691 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26, 317–325 (2008).

    CAS  PubMed  Article  Google Scholar 

  48. Kristensen, L. S. Profiling of circRNAs using an enzyme-free digital counting method. Methods 196, 11–16 (2021).

  49. Bejugam, P. R., Das, A. & Panda, A. C. Seeing is believing: visualizing circular RNAs. Noncoding RNA 6, 45 (2020).

  50. Veno, M. T. et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16, 245 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Suenkel, C., Cavalli, D., Massalini, S., Calegari, F. & Rajewsky, N. A highly conserved circular RNA is required to keep neural cells in a progenitor state in the mammalian brain. Cell Rep. 30, 2170–2179 (2020).

    CAS  PubMed  Article  Google Scholar 

  53. D’Ambra, E. et al. Circ-Hdgfrp3 shuttles along neurites and is trapped in aggregates formed by ALS-associated mutant FUS. iScience 24, 103504 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Pamudurti, N. R. et al. An in vivo strategy for knockdown of circular RNAs. Cell Discov. 6, 52 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Marrosu, E., Ala, P., Muntoni, F. & Zhou, H. Gapmer antisense oligonucleotides suppress the mutant allele of COL6A3 and restore functional protein in ullrich muscular dystrophy. Mol. Ther. Nucleic Acids 8, 416–427 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Li, S. et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat. Methods 18, 51–59 (2021).

    PubMed  Article  CAS  Google Scholar 

  60. Zhang, Y. et al. Optimized RNA-targeting CRISPR–Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22, 41 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Zhang, Y. et al. The biogenesis of nascent circular RNAs. Cell Rep. 15, 611–624 (2016). This study established the role of flanking sequence elements in driving circRNA formation by back-splicing.

    CAS  PubMed  Article  Google Scholar 

  62. Zheng, Q. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun. 7, 11215 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Guarnerio, J. et al. Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res. 29, 628–640 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Petkovic, S. & Muller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43, 2454–2465 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Puttaraju, M. & Been, M. D. Group I permuted intron–exon sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238 (2017).

    Article  CAS  Google Scholar 

  69. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Liang, D. & Wilusz, J. E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014). This study showed that base pairing between inverted repeat sequences in introns flanking the circularizing exons can drive circRNA formation.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Starke, S. et al. Exon circularization requires canonical splice signals. Cell Rep. 10, 103–111 (2015).

    CAS  PubMed  Article  Google Scholar 

  73. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Meganck, R. M. et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol. Ther. Nucleic Acids 13, 89–98 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    CAS  PubMed  Article  Google Scholar 

  76. Liu, C. X. et al. Structure and degradation of circular RNAs Regulate PKR activation in innate immunity. Cell 177, 865–880 (2019).

    CAS  PubMed  Article  Google Scholar 

  77. Tsitsipatis, D. et al. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res. 49, 1631–1646 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Li, Q. et al. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30, 157–173 (2019).

    PubMed  Article  CAS  Google Scholar 

  79. Chen, N. et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19, 218 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Das, A., Sinha, T., Shyamal, S. & Panda, A. C. Emerging role of circular RNA–protein interactions. Noncoding RNA 7, 48 (2021).

  82. Schneider, T. et al. CircRNA–protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci. Rep. 6, 31313 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Preusser, C. et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J. Extracell. Vesicles 7, 1424473 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Okholm, T. L. H. et al. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med. 12, 112 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein–RNA interactions. Mol. Cell 69, 354–369 (2018).

    CAS  PubMed  Article  Google Scholar 

  86. Pandey, P. R. et al. circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Res. 48, 3789–3805 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Jarlstad Olesen, M. T. & Kristensen, L. S. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 65, 685–696 (2021).

  89. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. & Stoffel, M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54, 766–776 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Thomson, D. W. & Dinger, M. E. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272–283 (2016).

    CAS  PubMed  Article  Google Scholar 

  91. Kristensen, L. S. et al. Spatial expression analyses of the putative oncogene ciRS-7 in cancer reshape the microRNA sponge theory. Nat. Commun. 11, 4551 (2020). This study found that a presumably oncogenic circRNA is only expressed in stromal cells, not in cancer cells, thereby highlighting the limitations of bulk RNA-seq analysis for circRNA profiling of tissue.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Li, M. et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8, 5855–5869 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Wang, Y. & Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Pamudurti, N. R. et al. Translation of CircRNAs. Mol. Cell 66, 9–21 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Ho-Xuan, H. et al. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 48, 10368–10382 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Stagsted, L. V., Nielsen, K. M., Daugaard, I. & Hansen, T. B. Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci. Alliance 2, e201900398 (2019).

  98. Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260 (2019).

    PubMed  Article  CAS  Google Scholar 

  100. Hansen, T. B. Signal and noise in circRNA translation. Methods 196, 68–73 (2021).

  101. Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318 (2021).

    CAS  PubMed  Article  Google Scholar 

  102. Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 16, 148 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Verboom, K. et al. SMARTer single-cell total RNA sequencing. Nucleic Acids Res. 47, e93 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377 (2021).

  105. Bahry, E. et al. RS-FISH: precise, interactive and scalable smFISH spot detection using radial symmetry. Preprint at bioRxiv https://doi.org/10.1101/2021.03.09.434205 (2021).

  106. Denzler, R. et al. Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 64, 565–579 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Guo, J. U., Agarwal, V., Guo, H. & Bartel, D. P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. Ghini, F. et al. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 721890 (circRTrain). A.F.N. and J.K. are funded by the Danish National Research Foundation grant no. 135 (CellPAT). M.T.J.O. is funded by the Danish Cancer society grant R269-A15768. L.S.K. is funded by the Lundbeck Foundation (R307-2018-3433). I.B. acknowledges funding from ERC-2019-SyG 855923-ASTRA and from AIRC-Progetto IG 2019 ID no. 23053. A.B. is funded by the Deutsche Forschungsgemeinschaft via grants RTG 2355, SPP 1935 and RU5116. S.K. acknowledges funding from the National Institute of Health (R01GM124406 and R01AG057700).

Author information

Authors and Affiliations

Authors

Contributions

A.F.N., A.B., I.B., M.H., T.B.H., M.I., S.K., L.S.K., I.L., M.M., M.T.J.O., R.J.P., S.P., N.R., C.S. and J.K. all co-wrote the manuscript. A.F.N. coordinated the writing process for all co-authors.

Corresponding author

Correspondence to Jørgen Kjems.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Howard Chang, Jeremy Wilusz and Ling-Ling Chen for their contribution to the peer review of this work. Primary Handling Editor: Lei Tang, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nielsen, A.F., Bindereif, A., Bozzoni, I. et al. Best practice standards for circular RNA research. Nat Methods (2022). https://doi.org/10.1038/s41592-022-01487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41592-022-01487-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing