Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep learning and protein structure modeling

Deep learning has transformed protein structure modeling. Here we relate AlphaFold and RoseTTAFold to classical physically based approaches to protein structure prediction, and discuss the many areas of structural biology that are likely to be affected by further advances in deep learning.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: RoseTTAFold accurately predicts structures of de-novo-designed proteins from their amino acid sequences.

References

  1. Park, H. et al. J. Chem. Theory Comput. 12, 6201–6212 (2016).

    CAS  Article  Google Scholar 

  2. MacKerell, A. D. et al. J. Phys. Chem. B 102, 3586–3616 (1998).

    CAS  Article  Google Scholar 

  3. Ponder, J. W. & Case, D. A. Adv. Protein Chem. 66, 27–85 (2003).

    CAS  Article  Google Scholar 

  4. O’Meara, M. J. et al. J. Chem. Theory Comput. 11, 609–622 (2015).

    Article  Google Scholar 

  5. Leaver-Fay, A. et al. Methods Enzymol. 487, 545–574 (2011).

    CAS  Article  Google Scholar 

  6. Baek, M. et al. Science 373, 871–876 (2021).

    CAS  Article  Google Scholar 

  7. Jumper, J. et al. Nature 596, 583–589 (2021).

    CAS  Article  Google Scholar 

  8. Jendrusch, M., Korbel, J. O. & Sadiq, S. K. Preprint at bioRxiv https://doi.org/10.1101/2021.10.11.463937 (2021).

  9. Moffat, L., Greener, J. G. & Jones, D. T. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).

  10. Burke, D. F. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.11.08.467664 (2021).

  11. Humphreys, I. R. et al. Science 374, eabm4805 (2021).

    CAS  Article  Google Scholar 

  12. Evans, R. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  13. Wang, J. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.11.10.468128 (2021).

  14. Anishchenko, I. et al. Nature https://doi.org/10.1038/s41586-021-04184-w (2021).

  15. Tischer, D. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.11.29.402743 (2020).

  16. Silva, D.-A. et al. Nature 565, 186–191 (2019).

    CAS  Article  Google Scholar 

  17. Walls, A. C. et al. Cell 183, 1367–1382.e17 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Microsoft (M.B., D.B.), Open Philanthropy and HHMI (D.B.) and the Washington Research Foundation (M.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baek, M., Baker, D. Deep learning and protein structure modeling. Nat Methods 19, 13–14 (2022). https://doi.org/10.1038/s41592-021-01360-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01360-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing