Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment

Abstract

Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. Here we report on the spatial single nuclear metabolomics (SEAM) method, a flexible platform combining high-spatial-resolution imaging mass spectrometry and a set of computational algorithms that can display multiscale and multicolor tissue tomography together with identification and clustering of single nuclei by their in situ metabolic fingerprints. We first applied SEAM to a range of wild-type mouse tissues, then delineated a consistent pattern of metabolic zonation in mouse liver. We further studied the spatial metabolic profile in the human fibrotic liver. We discovered subpopulations of hepatocytes with special metabolic features associated with their proximity to the fibrotic niche, and validated this finding by spatial transcriptomics with Geo-seq. These demonstrations highlighted SEAM’s ability to explore the spatial metabolic profile and tissue histology at the single-cell level, leading to a deeper understanding of tissue metabolic organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SEAM captures spatial metabolic heterogeneity at single nucleus resolution.
Fig. 2: Algorithm design and performance.
Fig. 3: SEAM detects zonation-like metabolic pattern in wild-type mouse liver.
Fig. 4: SEAM identifies hepatocyte subtypes with differential metabolic states associated with spatial localization.
Fig. 5: Spatial transcriptome-validated metabolism-associated gene expression alteration in heterogeneous hepatocyte subtypes identified by SEAM.

Similar content being viewed by others

Data availability

Raw SIMS data for mouse liver, stomach, pancreas, kidney (Figs. 13), and human liver R1 (Fig. 4) are available at Github (https://github.com/yuanzhiyuan/SEAM/tree/master/SEAM/data/raw_tar). The rest of the raw SIMS data and processed SIMS data are available at figshare (https://doi.org/10.6084/m9.figshare.12622883.v1, https://doi.org/10.6084/m9.figshare.12622841.v1, https://doi.org/10.6084/m9.figshare.12622838.v1 and https://doi.org/10.6084/m9.figshare.12622922.v1). Geo-seq (Fig. 5) raw sequencing data and processed data have been deposited to NCBI GEO with accession number GSE153463. The MIBI–TOF19 data can be downloaded from https://mibi-share.ionpath.com. Single-cell metabolic regulome profiling43 data can be downloaded from https://doi.org/10.5281/zenodo.3951613. The seqFISH44 data can be downloaded from https://github.com/CaiGroup/seqFISH-PLUS.

Code availability

An open-source Python and MATLAB implementation of SEAM is available at Zenodo (https://doi.org/10.5281/zenodo.5025068).

References

  1. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Riquelme, P. A., Drapeau, E. & Doetsch, F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. Trans. R. Soc. B 363, 123–137 (2008).

    Article  Google Scholar 

  3. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, J. W. & Li, L. H. Stem cell niche: microenvironment and beyond. J. Biol. Chem. 283, 9499–9503 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Shukla, S. D. & Lim, R. W. Epigenetic effects of ethanol on the liver and gastrointestinal system. Alcohol Res. 35, 47 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Benly, P. Role of histamine in acute inflammation. J. Pharm. Sci. Res. 7, 373–376 (2015).

    CAS  Google Scholar 

  7. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Pareek, V., Tian, H., Winograd, N. & Benkovic, S. J. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368, 0036–8075 (2020).

    Article  CAS  Google Scholar 

  9. Kennedy, D. E. et al. Novel specialized cell state and spatial compartments within the germinal center. Nat. Immunol. 21, 660–670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat. Med. 7, 493–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sun, C. et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl Acad. Sci. USA 116, 52–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Hare, D. J. et al. Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem. Anal. Chem. 84, 3990–3997 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Sjövall, P., Lausmaa, J. & Johansson, B. Mass spectrometric imaging of lipids in brain tissue. Anal. Chem. 76, 4271–4278 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Niehaus, M., Soltwisch, J., Belov, M. E. & Dreisewerd, K. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. Nat. Methods 16, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yin, R. et al. High spatial resolution imaging of mouse pancreatic islets using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 90, 6548–6555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Passarelli, M. K. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keren, L. et al. MIBI–TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. https://doi.org/10.1126/sciadv.aax5851 (2019).

  22. Robertson, A. R. The CIE 1976 color-difference formulae. Color Res. Appl. 2, 0361–2317 (1977).

    Article  Google Scholar 

  23. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  27. Fonville, J. M. et al. Hyperspectral visualization of mass spectrometry imaging data. Anal. Chem. 85, 1415–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Abdelmoula, W. M. et al. Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data. Proc. Natl Acad. Sci. USA 113, 12244–12249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smets, T. et al. Evaluation of distance metrics and spatial autocorrelation in uniform manifold approximation and projection applied to mass spectrometry imaging data. Anal. Chem. 91, 5706–5714 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. J. et al. Multiplexed in situ imaging mass cytometry analysis of the human endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 769–783 e764 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koller, D. & Friedman, N. Probabilistic Graphical Models: Principles and Techniques (MIT Press, 2009).

  32. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Hinton, G. in Neural Networks: Tricks of the Trade (eds Montavon, G., Orr, G. B. & Müller, K. R.) (Springer, 2010).

  34. Le Roux, N. & Bengio, Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 20, 1631–1649 (2008).

    Article  PubMed  Google Scholar 

  35. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. 35, 1798–1828 (2013).

    Article  Google Scholar 

  36. Boykov, Y., Veksler, O. & Zabih, R. Markov random fields with efficient approximations. In Proc. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 648–655 https://doi.org/10.1109/Cvpr.1998.698673 (IEEE, 1998).

  37. Boykov, Y., Veksler, O. & Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. 23, 1222–1239 (2001).

    Article  Google Scholar 

  38. Doersch, C., Gupta, A. & Efros, A. A. Unsupervised visual representation learning by context prediction. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) 1422–1430 (IEEE, 2015).

  39. Noroozi, M. & Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In Proc. Computer Vision: ECCV 2016, Vol. 6 9910, 69–84 (2016).

  40. Noroozi, M., Pirsiavash, H. & Favaro, P. Representation learning by learning to count. In Proc. 2017 IEEE International Conference on Computer Vision (ICCV) 5899–5907 https://doi.org/10.1109/Iccv.2017.628 (IEEE, 2017).

  41. Wang, B., Zhu, J. J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414–416 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Ramdas, A., Trillos, N. G. & Cuturi, M. On Wasserstein two-sample testing and related families of nonparametric tests. Entropy 19, https://doi.org/10.3390/e19020047 (2017).

  43. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0651-8 (2020).

  44. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-019-0134-x (2019).

  46. Sano, K. et al. Distributional variation of P-450 immunoreactive hepatocytes in human-liver disorders. Hum. Pathol. 20, 1015–1020 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Brosch, M. et al. Epigenomic map of human liver reveals principles of zonated morphogenic and metabolic control. Nat. Commun. 9, 4150 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shetty, S., Lalor, P. F. & Adams, D. H. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat. Rev. Gastro Hepat. 15, 555–567 (2018).

    Article  CAS  Google Scholar 

  49. Strauss, O., Phillips, A., Ruggiero, K., Bartlett, A. & Dunbar, P. R. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Rep. 7, 44356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature https://doi.org/10.1038/s41586-019-1631-3 (2019).

  52. Wu, X., Jiang, R., Zhang, M. Q. & Li, S. Network-based global inference of human disease genes. Mol. Syst. Biol. 4, 189 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pillai, S. M. & Meredith, D. SLC36A4 (hPAT4) is a high affinity amino acid transporter when expressed in Xenopus laevis oocytes. J. Biol. Chem. 286, 2455–2460 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Féral, C. C. et al. CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. J. Cell Biol. 178, 1540–8140 (2007).

    Article  CAS  Google Scholar 

  55. Wang, S. et al. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reimer, R. J. SLC17: a functionally diverse family of organic anion transporters. Mol. Aspects Med. 34, 350–359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kempson, S. A., Zhou, Y. & Danbolt, N. C. The betaine/GABA transporter and betaine: roles in brain, kidney and liver. Front. Physiol. 5, 159 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wagner, C. A., Lang, F. & Bröer, S. Function and structure of heterodimeric amino acid transporters. Am. J. Physiol.-Cell Physiol. 281, C1077–C1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. May, C. J., Canavan, H. E. & Castner, D. G. Quantitative X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry characterization of the components in DNA. Anal. Chem. 76, 1114–1122 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Debois, D., Bralet, M.-P., Le Naour, F., Brunelle, A. & Laprévote, O. In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal. Chem. 81, 2823–2831 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Seyer, A. et al. Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion. PLoS ONE8, e58224 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brulet, M. et al. Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J. Lipid Res. 51, 3034–3045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Magnusson, Y. K., Friberg, P., Sjövall, P., Malm, J. & Chen, Y. TOF-SIMS analysis of lipid accumulation in the skeletal muscle of ob/ob mice. Obesity 16, 2745–2753 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Magnusson, Y. et al. Lipid imaging of human skeletal muscle using TOF-SIMS with bismuth cluster ion as a primary ion source. Clinical Physiol. Funct. Imag. 28, 202–209 (2008).

    Article  CAS  Google Scholar 

  65. Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laponogov, I., Sadawi, N., Galea, D., Mirnezami, R. & Veselkov, K. A. ChemDistiller: an engine for metabolite annotation in mass spectrometry. Bioinformatics 34, 2096–2102 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0740-8 (2020).

  68. Palmer, A. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14, 57–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, J. et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12, 566–580 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  72. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, https://doi.org/10.1186/s13059-014-0550-8 (2014).

  77. Yu, G. C., Wang, L. G., Han, Y. Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y. Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Panjwani, D. K. & Healey, G. Markov random-field models for unsupervised segmentation of textured color images. IEEE Trans. Pattern Anal. 17, 939–954 (1995).

    Article  Google Scholar 

  80. Hammersley, J. M. & Clifford, P. Markov Fields on Finite Graphs and Lattices (Unpublished manuscript 46, 1971).

  81. Clifford, P. in Disorder in Physical Systems: A Volume in Honour of John M. Hammersley (eds Grimmett, G. R. & Welsh, D. J. A.) (Oxford Univ. Press, 1990).

  82. Besag, J. Spatial interaction and statistical-analysis of lattice systems. J. R. Stat. Soc. B. Met. 36, 192–236 (1974).

    Google Scholar 

  83. Panjwani, D. K. & Healey, G. Markov random-field model for unsupervised segmentation of textured color images. IEEE T. Pattern Anal. 17, 1128–1128 (1995).

    Article  Google Scholar 

  84. Kato, Z. & Pong, T. C. A Markov random field image segmentation model for color textured images. Image Vision Comput. 24, 1103–1114 (2006).

    Article  Google Scholar 

  85. Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. Preprint at arXiv https://arxiv.org/abs/1503.02531 (2015).

  86. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell https://doi.org/10.1016/j.cell.2020.07.005 (2020).

  87. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0392-8 (2020).

  88. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Imaging Core Facility, Technology Center for Protein Sciences, Tsinghua University for assistance with using the LMD7000. We also thank Y. Chen from the Imaging Core Facility for her detailed instructions on the LMD7000. We thank the Center of Laboratory Animal Resources, Tsinghua University for maintenance of mice and providing the CM1900 Cryostat. We thank H. Li for computing resource support. We thank H. Zhang for help with ethics material preparation. We thank Y. Li, Z. Ye, R. Qi and all other members of our laboratory for valuable comments and discussions. We thank M. Qian for helpful advice on algorithm development. This work was supported by the National Basic Research Program of China (2018YFA0801402, 2017YFA0505503 (Y.C.)), National Nature Science Foundation of China (81890994, 31871343 (Y.C.), 21974078, 21727813 (X.Z.), 62050152 (M.S.), 81630103, 62061160369 (S.L.)), CAMS Innovation Fund for Medical Sciences (2020-RC310-009 (Y.C.)) and foundation of BNRist (BNR2019TD01020 (S.L.)). M.Q.Z. is supported by the Cecil H. and Ida Green Distinguished Chair.

Author information

Authors and Affiliations

Authors

Contributions

Y.C., M.Q.Z. and X.Z. conceived and designed the project. L.C. designed the IMS experiment and generated the IMS data. Q.Z. processed the mouse and human samples assisted by W.S., and generated immunohistochemistry and hematoxylin–eosin staining imaging data. Q.Z. and L.C. designed and conducted the cell culture and BrdU staining experiments. Q.Z. designed and conducted the modified Geo-seq experiment. Z.Y. developed and implemented the algorithms under the guidance of M.Q.Z. and Y.C., and was assisted by Q.Z. Z.Y. analyzed the SIMS data and Q.Z. analyzed the spatial transcriptome data. Y.Z. and S.Y. provided the clinical samples. L.P. and S.Q. guided the histological annotation. S.L. and M.S. gave suggestions on the application of the method. J.F. and H.Z. helped with the metabolite annotation. Z.Y., Q.Z. and L.C. completed the figures and writing of the paper with the guidance of Y.C., X.Z. and M.Q.Z.

Corresponding authors

Correspondence to Yang Chen, Xinrong Zhang or Michael Q. Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Methods thanks Benjamin Balluff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Arunima Singh was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–55 and Tables 1–10 (complete Supplementary Tables 2 and 5 are provided as another excel workbook).

Reporting Summary

Supplementary Tables

Supplementary Tables 2 and 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Zhou, Q., Cai, L. et al. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat Methods 18, 1223–1232 (2021). https://doi.org/10.1038/s41592-021-01276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01276-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research