Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BIOINFORMATICS

A wider field of view to predict expression

A gene sequence-to-expression machine learning model achieves improved accuracy by incorporating information about potential long-range interactions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Prediction of gene expression by Enformer.

References

  1. 1.

    Avsec, Z. et al. Nat. Methods https://doi.org/10.1038/s41592-021-01252-x (2021).

    Article  Google Scholar 

  2. 2.

    Kelley, D. R. et al. Genome Res. 28, 739–750 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Ouyang, Z., Zhou, Q. & Wong, W. H. Proc. Natl Acad. Sci. USA 106, 21521–21526 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Karlić, R. et al. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).

    Article  Google Scholar 

  5. 5.

    Kelley, D. R., Snoek, J. & Rinn, J. L. Genome Res. 26, 990–999 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Zhou, J. et al. Nat. Genet. 50, 1171–1179 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Waswani, A. et al. in Advances in Neural Information Processing Systems 30 (NIPS2017) 6000–6010 (2017).

  8. 8.

    Gasperini, M., Tome, J. M. & Shendure, J. Nat. Rev. Genet. 21, 292–310 (2020).

    CAS  Article  Google Scholar 

  9. 9.

    Fudenberg, G., Kelley, D. R. & Pollard, K. S. Nat. Methods 17, 1111–1117 (2020).

    Article  Google Scholar 

  10. 10.

    Schreiber, J.M., Lu, Y.Y. & Noble, W.S. in ICML Workshop on Computational Biology (2020).

Download references

Acknowledgements

This work was supported by NIH award U01 HG009395.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Stafford Noble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y.Y., Noble, W.S. A wider field of view to predict expression. Nat Methods 18, 1155–1156 (2021). https://doi.org/10.1038/s41592-021-01259-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing