A gene sequence-to-expression machine learning model achieves improved accuracy by incorporating information about potential long-range interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to Journal
Get full journal access for 1 year
114,72 €
only 9,56 € per issue
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.

References
Avsec, Z. et al. Nat. Methods https://doi.org/10.1038/s41592-021-01252-x (2021).
Kelley, D. R. et al. Genome Res. 28, 739–750 (2018).
Ouyang, Z., Zhou, Q. & Wong, W. H. Proc. Natl Acad. Sci. USA 106, 21521–21526 (2009).
Karlić, R. et al. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).
Kelley, D. R., Snoek, J. & Rinn, J. L. Genome Res. 26, 990–999 (2016).
Zhou, J. et al. Nat. Genet. 50, 1171–1179 (2018).
Waswani, A. et al. in Advances in Neural Information Processing Systems 30 (NIPS2017) 6000–6010 (2017).
Gasperini, M., Tome, J. M. & Shendure, J. Nat. Rev. Genet. 21, 292–310 (2020).
Fudenberg, G., Kelley, D. R. & Pollard, K. S. Nat. Methods 17, 1111–1117 (2020).
Schreiber, J.M., Lu, Y.Y. & Noble, W.S. in ICML Workshop on Computational Biology (2020).
Acknowledgements
This work was supported by NIH award U01 HG009395.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Lu, Y.Y., Noble, W.S. A wider field of view to predict expression. Nat Methods 18, 1155–1156 (2021). https://doi.org/10.1038/s41592-021-01259-4
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-021-01259-4