Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-throughput and single-cell T cell receptor sequencing technologies

Abstract

T cells express T cell receptors (TCRs) composed of somatically recombined TCRα and TCRβ chains, which mediate recognition of major histocompatibility complex (MHC)–antigen complexes and drive the antigen-specific adaptive immune response to pathogens and cancer. The TCR repertoire in each individual is highly diverse, which allows for recognition of a wide array of foreign antigens, but also presents a challenge in analyzing this response using conventional methods. Recent studies have developed high-throughput sequencing technologies to identify TCR sequences, analyze their antigen specificities using experimental and computational tools, and pair TCRs with transcriptional and epigenetic cell state phenotypes in single cells. In this Review, we highlight these technological advances and describe how they have been applied to discover fundamental insights into T cell-mediated immunity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterization of T cell dynamics using multiomic TCR sequencing approaches.
Fig. 2: Overview of single-cell TCR sequencing approaches.
Fig. 3: Schematic of paired scRNA-seq and TCR sequencing methods.
Fig. 4: Overview of single-cell methods for linking TCR sequence to antigen specificity.

References

  1. 1.

    Davis, M. M. & Bjorkman, P. J. The T cell receptor genes and T cell recognition. Nature 334, 395–402 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Nikolich-Žugich, J., Slifka, M. K. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 4, 123–132 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Bradley, P. & Thomas, P. G. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu. Rev. Immunol. 37, 547–570 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Arstila, T. P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Tanno, H. et al. Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proc. Natl Acad. Sci. USA 117, 532–540 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    La Gruta, N. L., Gras, S., Daley, S. R., Thomas, P. G. & Rossjohn, J. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 18, 467–478 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci. Transl. Med. 6, 238ra70 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014). This study describes the capture of paired TCRαβ and targeted gene expression in single cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Boudinot, P. et al. New perspectives for large-scale repertoire analysis of immune receptors. Mol. Immunol. 45, 2437–2445 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Benichou, J., Ben-Hamo, R., Louzoun, Y. & Efroni, S. Rep-Seq: uncovering the immunological repertoire through next-generation sequencing. Immunology 135, 183–191 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Six, A. et al. The past, present, and future of immune repertoire biology—the rise of next-generation repertoire analysis. Front. Immunol. 4, 413 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Cochet, M., Pannetier, C., Regnault, A., Leclercn, C. & Immunitairesa, R. Molecular detection and in vivo analysis of the specific T cell response to a protein antigen. Eur. J. Immunol. 22, 2639–2647 (1992).

  17. 17.

    Pannetier, C. et al. The sizes of the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl Acad. Sci. USA 90, 4319–4323 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Casrouge, A. et al. Size estimate of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164, 5782–5787 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Diu, A. et al. Fine specificity of monoclonal antibodies directed at human T cell receptor variable regions: comparison with oligonucleotide‐driven amplification for evaluation of Vβ expression. Eur. J. Immunol. 23, 1422–1429 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Faint, J. M. et al. Quantitative flow cytometry for the analysis of T cell receptor Vβ chain expression. J. Immunol. Methods 225, 53–60 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Fozza, C. et al. Study of the T-cell receptor repertoire by CDR3 spectratyping. J. Immunol. Methods 440, 1–11 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Robins, H. S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Robins, H. S. et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2, 47 (2010). This study, along with Robins et al.22 and Wang et al.24, describes pioneering high-throughput TCR sequencing techniques and their use in interrogating TCR repertoire diversity.

    Article  CAS  Google Scholar 

  24. 24.

    Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA 107, 1518–1523 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1100 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Anonymous. Rapid amplification of 5′ complementary DNA ends (5′ RACE). Nat. Methods 2, 629–630 (2005).

  28. 28.

    Freeman, J. D., Warren, R. L., Webb, J. R., Nelson, B. H. & Holt, R. A. Profiling the T-cell receptor β-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Mamedov, I. Z. et al. Quantitative tracking of T cell clones after haematopoietic stem cell transplantation. EMBO Mol. Med. 3, 201–207 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Murugan, A., Mora, T., Walczak, A. M. & Callan, C. G. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc. Natl Acad. Sci. USA 109, 16161–16166 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Nguyen, P. et al. Identification of errors introduced during high throughput sequencing of the T cell receptor repertoire. BMC Genomics 12, 106 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Shugay, M. et al. Towards error-free profiling of immune repertoires. Nat. Methods 11, 653–655 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Liu, X. et al. Systematic comparative evaluation of methods for investigating the TCRβ repertoire. PLoS ONE 11, e0152464 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Woodsworth, D. J., Castellarin, M. & Holt, R. A. Sequence analysis of T-cell repertoires in health and disease. Genome Med. 5, 98 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    De Simone, M., Rossetti, G. & Pagani, M. Single cell T cell receptor sequencing: techniques and future challenges. Front. Immunol. 9, 1638 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Carlson, C. S. et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 4, 2680 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37.

    Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: a SMARTTM approach for full-length cDNA library construction. Biotechniques 30, 892–897 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2012).

    CAS  Article  Google Scholar 

  39. 39.

    Egorov, E. S. et al. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J. Immunol. 194, 6155–6163 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Barennes, P. et al. Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nat. Biotechnol. 39, 236–245 (2020). This study systematically compares a collection of multiplex PCR and 5′ RACE TCR sequencing protocols and provides practical guidelines for choosing an appropriate method on the basis of observations regarding technical biases between methods.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. 41.

    Bolotin, D. A. et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur. J. Immunol. 42, 3073–3083 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Bolotin, D. A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat. Methods 10, 813–814 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Dupic, T., Marcou, Q., Walczak, A. M. & Mora, T. Genesis of the αβ T-cell receptor. PLoS Comput. Biol. 15, e1006874 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Howie, B. et al. High-throughput pairing of T cell receptor α and β sequences. Sci. Transl. Med. 7, 301ra131 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    Lee, E. S., Thomas, P. G., Mold, J. E. & Yates, A. J. Identifying T cell receptors from high-throughput sequencing: dealing with promiscuity in TCRα and TCRβ pairing. PLoS Comput. Biol. 13, e1005313 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Turchaninova, M. A. et al. Pairing of T-cell receptor chains via emulsion PCR. Eur. J. Immunol. 43, 2507–2515 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Munson, D. J. et al. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT–PCR. Proc. Natl Acad. Sci. USA 113, 8272–8277 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Mcdaniel, J. R., DeKosky, B. J., Tanno, H., Ellington, A. D. & Georgiou, G. Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nat. Protoc. 11, 429–442 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Tanno, H. et al. A facile technology for the high-throughput sequencing of the paired VH:VL and TCRβ:TCRα repertoires. Sci. Adv. 6, 17 (2020).

    Article  CAS  Google Scholar 

  53. 53.

    Seitz, S. et al. Reconstitution of paired T cell receptor α- and β-chains from microdissected single cells of human inflammatory tissues. Proc. Natl Acad. Sci. USA 103, 12057–12062 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Julius, M. H., Masuda, T. & Herzenberg, L. A. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc. Natl Acad. Sci. USA 69, 1934–1938 (1972).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Rinke, C. et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat. Protoc. 9, 1038–1048 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Dash, P. et al. Paired analysis of TCRα and TCRβ chains at the single-cell level in mice. J. Clin. Invest. 121, 288–295 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Wang, G. C., Dash, P., McCullers, J. A., Doherty, P. C. & Thomas, P. G. T cell receptor αβ diversity inversely correlates with pathogen-specific antibody levels in human cytomegalovirus infection. Sci. Transl. Med. 4, 128ra42 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dash, P., Wang, G. C. & Thomas, P. G. Single-cell analysis of T-cell receptor αβ repertoire. Methods Mol. Biol. 1343, 181–197 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18, 345–361 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091–1107 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Yuan, J. & Sims, P. A. An automated microwell platform for large-scale single cell RNA-seq. Sci. Rep. 6, 33883 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Redmond, D., Poran, A. & Elemento, O. Single-cell TCRseq: paired recovery of entire T-cell α and β chain transcripts in T-cell receptors from single-cell RNAseq. Genome Med. 8, 80 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13, 329–332 (2016). This work describes and uses a key TCR reconstruction algorithm, TraCeR, to trace CD4+ T cell differentiation trajectories in Salmonella infection.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Eltahla, A. A. et al. Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells. Immunol. Cell Biol. 94, 604–611 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Rizzetto, S. et al. B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics 34, 2846–2847 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Afik, S. et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state. Nucleic Acids Res. 45, e148 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Chen, S.-Y., Liu, C.-J., Zhang, Q. & Guo, A.-Y. An ultrasensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data. Bioinformatics 36, 4255–4262 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Tu, A. A. et al. TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures. Nat. Immunol. 20, 1692–1699 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Singh, M. et al. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988 (2018). This study describes the use of 5′ single-cell droplet microfluidics to simultaneously capture TCR and gene expression.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Satpathy, A. T. et al. Transcript-indexed ATAC-seq for precision immune profiling. Nat. Med. 24, 580–590 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Durruthy-Durruthy, R. & Ray, M. Using Fluidigm C1 to generate single-cell full-length cDNA libraries for mRNA sequencing. Methods Mol. Biol. 1706, 199–221 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Román, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Ranasinghe, S. et al. Antiviral CD8+ T cells restricted by human leukocyte antigen class II exist during natural HIV infection and exhibit clonal expansion. Immunity 45, 917–930 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Rizzetto, S. et al. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells. Sci. Rep. 7, 12781 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Gounaris, E. et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 69, 5490–5497 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Yost, K. E., Chang, H. Y. & Satpathy, A. T. Recruiting T cells in cancer immunotherapy. Science 372, 130–131 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Golubovskaya, V. & Wu, L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers 8, 36 (2016).

    CAS  PubMed Central  Article  Google Scholar 

  90. 90.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Bolden, J. E., Peart, M. J. & Johnstone, R. W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods https://doi.org/10.1038/s41592-020-0867-z (2020).

  94. 94.

    Klinger, M. et al. Multiplex identification of antigen-specific T cell receptors using a combination of immune assays and immune receptor sequencing. PLoS ONE 10, e0141561 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Bentzen, A. K. et al. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide–MHC complexes. Nat. Biotechnol. 36, 1191–1196 (2018).

    CAS  Article  Google Scholar 

  96. 96.

    Zhang, S. Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 36, 1156–1159 (2018). This study, along with Ng et al.98, describes the use of DNA-barcoded pMHC tetramers to link TCR sequence and antigen specificity in single cells.

    CAS  Article  Google Scholar 

  97. 97.

    Peng, S. et al. Sensitive detection and analysis of neoantigen-specific T cell populations from tumors and blood. Cell Rep. 28, 2728–2738 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Ng, A. H. C. et al. MATE-Seq: microfluidic antigen–TCR engagement sequencing. Lab Chip 19, 3011–3021 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Newell, E. W. et al. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31, 623–629 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Newell, E. W. & Davis, M. M. Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 32, 149–157 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Davis, M. M., Altman, J. D. & Newell, E. W. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nat. Rev. Immunol. 11, 551–558 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide–MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Schneidman-Duhovny, D. et al. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS ONE 13, e0206654 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Gielis, S. et al. Detection of enriched T cell epitope specificity in full T cell receptor sequence repertoires. Front. Immunol. 10, 2820 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    De Neuter, N. et al. On the feasibility of mining CD8+ T cell receptor patterns underlying immunogenic peptide recognition. Immunogenetics 70, 159–168 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  107. 107.

    Fischer, D. S., Wu, Y., Schubert, B. & Theis, F. J. Predicting antigen specificity of single T cells based on TCR CDR3 regions. Mol. Syst. Biol. 16, e9416 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E. & Friedman, N. McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33, 2924–2929 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Shugay, M. et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 46, D419–D427 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110.

    Bagaev, D. V. et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–D1062 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Breden, F. et al. Reproducibility and reuse of adaptive immune receptor repertoire data. Front. Immunol. 8, 1418 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Rubelt, F. et al. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data. Nat. Immunol. 18, 1274–1278 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Vander Heiden, J. A. et al. AIRR community standardized representations for annotated immune repertoires. Front. Immunol. 9, 2206 (2018).

    Article  CAS  Google Scholar 

  117. 117.

    Christley, S. et al. The ADC API: a web API for the programmatic query of the AIRR Data Commons. Front. Big Data 3, 22 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Nguyen, A., Khoo, W. H., Moran, I., Croucher, P. I. & Phan, T. G. Single cell RNA sequencing of rare immune cell populations. Front. Immunol. 9, 1553 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  120. 120.

    Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  121. 121.

    Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212–216 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Kester, L. & van Oudenaarden, A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23, 166–179 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–639 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 630–635 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants K08CA230188 (A.T.S.) and 5T32AI007290 (J.A.P.), the Parker Institute for Cancer Immunotherapy, a Technology Impact Award from the Cancer Research Institute and a Career Award for Medical Scientists from the Burroughs Wellcome Fund (A.T.S.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ansuman T. Satpathy.

Ethics declarations

Competing interests

A.T.S. is a founder of Immunai and Cartography Biosciences and receives research funding from 10x Genomics, Arsenal Biosciences and Allogene Therapeutics.

Additional information

Peer review information Nature Methods thanks Benny Chain, Encarnita Mariotti-Ferrandiz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Madhura Mukhopadhyay was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pai, J.A., Satpathy, A.T. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods (2021). https://doi.org/10.1038/s41592-021-01201-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing