Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of phosphorylation on thermal stability of proteins

Matters Arising to this article was published on 17 June 2021

The Original Article was published on 05 August 2019

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global impact of phosphorylation on thermal stability of proteins.

Data availability

Mass spectrometry proteomic data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD015993.

Code availability

All code to reproduce the analysis and figures is available at https://github.com/nkurzaw/phosphoTPP.

References

  1. 1.

    Needham, E. J., Parker, B. L., Burykin, T., James, D. E. & Humphrey, S. J. Illuminating the dark phosphoproteome. Sci. Signal. 12, eaau8645 (2019).

  2. 2.

    Huang, J. X. et al. High throughput discovery of functional protein modifications by Hotspot Thermal Profiling. Nat. Methods 16, 894–901 (2019).

  3. 3.

    Mateus, A. et al. Thermal proteome profiling for interrogating protein interactions. Mol. Syst. Biol. 16, e9232 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  Google Scholar 

  5. 5.

    Noble, W. S. How does multiple testing correction work? Nat. Biotechnol. 27, 1135–1137 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Smith, I. R. et al. Identification of phosphosites that alter protein thermal stability. Nat. Methods https://doi.org/10.1038/s41592-021-01178-4 (in press).

  7. 7.

    Savitski, M. M. et al. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. J. Proteome Res. 12, 3586–3598 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359, 1170–1177 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Becher, I. et al. Pervasive protein thermal stability variation during the cell cycle. Cell 173, 1495–1507 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Ochoa, D. et al. The functional landscape of the human phosphoproteome. Nat. Biotechnol. 38, 365–373 (2019).

  11. 11.

    Ingley, E. Functions of the Lyn tyrosine kinase in health and disease. Cell Commun. Signal. 10, 21 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Gruenbaum, Y. & Foisner, R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84, 131–164 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Heald, R. & McKeon, F. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61, 579–589 (1990).

    CAS  Article  Google Scholar 

  14. 14.

    Pfeiffer, J. R., McAvoy, B. L., Fecteau, R. E., Deleault, K. M. & Brooks, S. A. CARHSP1 is required for effective tumor necrosis factor α mRNA stabilization and localizes to processing bodies and exosomes. Mol. Cell. Biol. 31, 277–286 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Hou, H. et al. Structure–functional analyses of CRHSP-24 plasticity and dynamics in oxidative stress response. J. Biol. Chem. 286, 9623–9635 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Reinhard, F. B. et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods 12, 1129–1131 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Potel, C. M., Lin, M. H., Heck, A. J. R. & Lemeer, S. Defeating major contaminants in Fe3+-immobilized metal ion affinity chromatography (IMAC) phosphopeptide enrichment. Mol. Cell. Proteomics 17, 1028–1034 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Article  Google Scholar 

  20. 20.

    Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 14, 68–85 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Mathieson, T. isobarQuant. Github https://github.com/protcode/isob (2015).

  22. 22.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose–response analysis using R. PLoS ONE 10, e0146021 (2015).

    Article  Google Scholar 

  25. 25.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the European Molecular Biology Laboratory. C.M.P. and A.M. were supported by a fellowship from the EMBL Interdisciplinary Postdoctoral (EI3POD) Programme under Marie Skłodowska-Curie Actions COFUND (grant number 664726). N.K. was supported by a fellowship from the EMBL International PhD Programme.

Author information

Affiliations

Authors

Contributions

C.M.P., I.B. and A.M. performed experimental work. N.K. performed data analysis. A.M. and M.M.S. supervised the work. All authors contributed to interpreting data and writing the manuscript.

Corresponding authors

Correspondence to André Mateus or Mikhail M. Savitski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–11 and Table 1

Reporting Summary

Supplementary Data 1

Phosphopeptide fold changes at each temperature in each replicate (gene_name, gene name; protein_id, UniProt ID; sequence, peptide sequence; mod_sequence, modified peptide sequence; phospho_site_STY, number of modified amino acids in the peptide sequence; rel_fc_TMT_REP_TEMP, relative fold changes to 37 °C (TMT, TMT label; REP, replicate; TEMP, temperature).

Supplementary Data 2

Unmodified peptide fold changes at each temperature in each replicate (gene_name, gene name; protein_id, UniProt ID; sequence, peptide sequence; modifications, peptide modifications; rel_fc_TMT_REP_TEMP, relative fold changes to 37 °C (TMT, TMT label; REP, replicate; TEMP, temperature).

Supplementary Data 3

Comparison of melting behavior of phosphopeptides and unmodified peptides (gene_name, gene name; Gene_pSite, phosphosite position within protein; mod_sequence, modified peptide sequence; Tm_mean_phospho, average melting temperature of phosphopeptide; Tm_mean_unmodified, average melting temperature of unmodified protein; mean_delta_meltPoint, average difference of melting temperature of phosphopeptide and unmodified protein; significant, significantly different melting temperature of phosphopeptide compared to unmodified protein; functional_score, predicted functional importance of phosphosite position by aggregating multiple parameters for each phosphosite using machine learning and ranges from 0 to 1, with a higher value representing a higher probability that the phosphosite has functional relevance; Tm_phospho_REP, melting temperature of phosphopeptide (REP, replicate); Tm_unmodified_REP, melting temperature of unmodified protein; delta_meltPoint_REP, difference of melting temperature of phosphopeptide and unmodified protein; p_adj_REP, P value adjusted for multiple-testing correction; phospho_median_fc_TEMP, median relative fold changes to 37 °C of phosphopeptide (TEMP, temperature); unmodified_median_fc_TEMP, median relative fold changes to 37 °C of unmodified protein.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Potel, C.M., Kurzawa, N., Becher, I. et al. Impact of phosphorylation on thermal stability of proteins. Nat Methods 18, 757–759 (2021). https://doi.org/10.1038/s41592-021-01177-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing