Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM

Abstract

Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Comparison of four different thresholding methods with DDC on five spatial distributions (randomly distributed, small clusters, dense clusters and parallel filaments and intersecting filaments).
Fig. 3
Fig. 4: Application of DDC to experimentally measured spatial distributions of AKAP79 and AKAP150.
Fig. 5: Application of DDC to experimentally measured spatial distributions of dynein.
Fig. 6

Similar content being viewed by others

Data availability

The data in this paper are shown in the main figures and Extended Data figures. All raw data for each of the simulation systems (Figs. 1 and 2) are also included at https://github.com/XiaoLabJHU/DDC. Source data are provided with this paper. All other data are available upon request. The complete package of DDC (data, code, user guide) is available for download at https://github.com/XiaoLabJHU/DDC (there are no access restrictions).

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coltharp, C., Yang, X. & Xiao, J. Quantitative analysis of single-molecule superresolution images. Curr. Opin. Struct. Biol. 28, 112–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Baddeley, D. & Bewersdorf, J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem. 87, 965–989 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Sauer, M. & Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117, 7478–7509 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Endesfelder, U. et al. Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys. J. 105, 172–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, X. et al. Study of RNA polymerase II clustering inside live-cell nuclei using Bayesian nanoscopy. ACS Nano 10, 2447–2454 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Weng, X. & Xiao, J. Spatial organization of transcription in bacterial cells. Trends Genet. 30, 287–297 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Rossy, J., Owen, D. M., Williamson, D. J., Yang, Z. & Gaus, K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immunol. 14, 82–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ehmann, N. et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014).

  13. Garcia-Parajo, M. F., Cambi, A., Torreno-Pina, J. A., Thompson, N. & Jacobson, K. Nanoclustering as a dominant feature of plasma membrane organization. J. Cell Sci. 127, 4995–5005 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coltharp, C., Buss, J., Plumer, T. M. & Xiao, J. Defining the rate-limiting processes of bacterial cytokinesis. Proc. Natl Acad. Sci. USA 113, E1044–E1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Buss, J. et al. In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy. Mol. Microbiol. 89, 1099–1120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buss, J. et al. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet. 11, e1005128 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fu, G. et al. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS ONE 5, e12682 (2010).

    Article  PubMed  Google Scholar 

  18. Spühler, I. A., Conley, G. M., Scheffold, F. & Sprecher, S. G. Super resolution imaging of genetically labeled synapses in Drosophila brain tissue. Front. Cell. Neurosci. 10, 142 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bar-On, D. et al. Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J. Biol. Chem. 287, 27158–27167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, W., Li, G.-W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie, X., Cosma, M. P. & Lakadamyali, M. Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming. Curr. Opin. Genet. Dev. 46, 186–193 (2017).

    Article  Google Scholar 

  23. Spahn, C., Endesfelder, U. & Heilemann, M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J. Struct. Biol. 185, 243–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Lehmann, M. et al. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog. 7, e1002456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Annibale, P., Scarselli, M., Kodiyan, A. & Radenovic, A. Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J. Phys. Chem. Lett. 1, 1506–1510 (2010).

    Article  CAS  Google Scholar 

  26. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baumgart, F. et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods 13, 661–664 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coltharp, C., Kessler, R. P. & Xiao, J. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements. PLoS ONE 7, e51725 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Puchner, E. M., Walter, J. M., Kasper, R., Huang, B. & Lim, W. A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl Acad. Sci. USA 110, 16015–16020 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Hartwich, T. M. P., Subach, F. V., Cooley, L., Verkhusha, V. V. & Bewersdorf, J. Determination of two-photon photoactivation rates of fluorescent proteins. Phys. Chem. Chem. Phys. 15, 14868–14872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, S.-H., Shin, J. Y., Lee, A. & Bustamante, C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl Acad. Sci. USA 109, 17436–17441 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Rollins, G. C., Shin, J. Y., Bustamante, C. & Pressé, S. Stochastic approach to the molecular counting problem in superresolution microscopy. Proc. Natl Acad. Sci. USA 112, E110–E118 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Hummer, G., Fricke, F. & Heilemann, M. Model-independent counting of molecules in single-molecule localization microscopy. Mol. Biol. Cell 27, 3637–3644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nino, D., Rafiei, N., Wang, Y., Zilman, A. & Milstein, J. N. Molecular counting with localization microscopy: a Bayesian estimate based on fluorophore statistics. Biophys. J. 112, 1777–1785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Z. et al. Spectral identification of specific photophysics of Cy5 by means of ensemble and single molecule measurements. J. Phys. Chem. 110, 45–50 (2005).

    Article  Google Scholar 

  37. K L Yeow, E. et al. Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface. J. Phys. Chem. 110, 1726–1734 (2006).

    Article  Google Scholar 

  38. Widengren, J., Chmyrov, A., Eggeling, C., Löfdahl, P.-Å & Seidel, C. A. M. Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. J. Phys. Chem. 111, 429–440 (2007).

    Article  CAS  Google Scholar 

  39. Vogelsang, J. et al. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew. Chem. Int. Ed. 47, 5465–5469 (2008).

    Article  CAS  Google Scholar 

  40. Veatch, S. L. et al. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 7, e31457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spahn, C., Herrmannsdörfer, F., Kuner, T. & Heilemann, M. Temporal accumulation analysis provides simplified artifact-free analysis of membrane-protein nanoclusters. Nat. Methods 13, 963–964 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Mo, G. C. H. et al. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14, 427–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, J. & Shapiro, M. S. Mechanisms and dynamics of AKAP79/150-orchestrated multi-protein signalling complexes in brain and peripheral nerve. J. Physiol. 594, 31–37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, J., Carver, C. M., Choveau, F. S. & Shapiro, M. S. Clustering and functional coupling of diverse ion channels and signaling proteins revealed by super-resolution STORM microscopy in neurons. Neuron 92, 461–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cella Zanacchi, F., Manzo, C., Magrassi, R., Derr, N. D. & Lakadamyali, M. Quantifying protein copy number in super resolution using an imaging-invariant calibration. Biophys. J. 116, 2195–2203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wooten, M. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26, 732–743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl Acad. Sci. USA 102, 9511–9516 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Subach, F. V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malagon, F. RNase III is required for localization to the nucleoid of the 5′ pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli. RNA 19, 1200–1207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bohrer, C. H., Bettridge, K. & Xiao, J. Reduction of confinement error in single-molecule tracking in live bacterial cells using SPICER. Biophys. J. 112, 568–574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Das, R., Cairo, C. W. & Coombs, D. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS Comput. Biol. 5, e1000556 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006).

    Article  Google Scholar 

  53. Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

  55. Tran, V., Lim, C., Xie, J. & Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y., Maharana, S., Wang, M. D. & Shivashankar, G. V. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites. Sci. Rep. 4, 4477 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Goossen-Schmidt, N. C., Schnieder, M., Hüve, J. & Klingauf, J. Switching behaviour of dSTORM dyes in glycerol-containing buffer. Sci. Rep. 10, 13746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirvonen, L. M. & Cox, S. STORM without enzymatic oxygen scavenging for correlative atomic force and fluorescence superresolution microscopy. Methods Appl. Fluoresc. 6, 045002 (2018).

  60. Shivanandan, A., Unnikrishnan, J. & Radenovic, A. Accounting for limited detection efficiency and localization precision in cluster analysis in single molecule localization microscopy. PLoS ONE 10, e0118767 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee, S. H., Shin, J. Y., Lee, A. & Bustamante, C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl Acad. Sci. USA 109, 17436–17441 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Hensel, Z., Fang, X. & Xiao, J. Single-molecule imaging of gene regulation in vivo using cotranslational activation by cleavage (CoTrAC). J. Vis. Exp. e50042 https://doi.org/10.3791/50042 (2013).

  64. Skinner, S. O., Sepúlveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8, 1100–1113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Malagon, F. RNase III is required for localization to the nucleoid of the 5′ pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli. RNA 19, 1200–1207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hensel, Z., Weng, X., Lagda, A. C. & Xiao, J. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells. PLoS Biol. 11, e1001591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717–724 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. McKnight, S. L. & Miller Jr., O. L. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795–804 (1977).

    Article  CAS  PubMed  Google Scholar 

  69. Lyu, Z., Coltharp, C., Yang, X. & Xiao, J. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional superresolution imaging. Biopolymers 105, 725–734 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, X. et al. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nahidiazar, L., Agronskaia, A. V., Broertjes, J., van den Broek, B. & Jalink, K. Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS ONE 11, e0158884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

  73. Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

  74. Weng, X. et al. Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. Proc. Natl Acad. Sci. USA 116, 20115–20123 (2019).

  75. Flors, C., Ravarani, C. N. J. & Dryden, D. T. F. Super-resolution imaging of DNA labelled with intercalating dyes. Chemphyschem 10, 2201–2204 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Nahidiazar, L., Agronskaia, A. V., Broertjes, B., van den Broek, B. & Jalink, K. Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS ONE 11, e0158884 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (5T32GM007231, C.H.B.; F31GM115149-01A1, M.W.; R01 GM086447; and R01 DK073368 and R35CA197622, J.Z.) and the NSF (MCB1817551), a Johns Hopkins Discovery Award, a Hamilton Innovation Research Award (J.X.), NIGMS/NIH (R01GM112008, J.X. and X.C.; R35GM127075, X.C.; and R01GM133842, M.L.) and the Howard Hughes Medical Institute (55108512, X.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.H.B., conceptualization, discovery and development of theory, software, data collection, data analysis, writing (original draft, review and editing); X.Y., experimental data collection, data analysis, writing (review and editing), project guidance; S.T., experimental data collection, data analysis; X.W., experimental data collection, data analysis; B.T., experimental data collection, data analysis, writing (review and editing); R.M., development of the user guide, software, writing (review and editing); B.R., experimental data collection, data analysis; M.W., experimental data collection, writing (review and editing); X.C., project guidance, funding acquisition, writing (review); J.Z., project guidance, funding acquisition, writing (review); E.R., project guidance, writing (review); M.L., experimental conceptualization, funding acquisition, writing (review and editing); J.X., conceptualization, project guidance, writing (original draft), supervision, funding acquisition, project administration, writing (review and editing).

Corresponding author

Correspondence to Jie Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Nature Methods thanks Paolo Annibale, Sebastian Malkusch, and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Photokinetic Models.

The two kinetic models used to simulate blinking, (a) 2 dark state and (b) 1 dark state. The transition probabilities per frame are shown in the figure.

Source data

Extended Data Fig. 2 Converging of Pairwise distance distributions.

The pairwise distance distributions for both photo-kinetic models shown in Extended Data Figure 1 and 6 molecular assemblies. Note here that the axis is no longer log scale as in the main text and the true pairwise distance distribution is shown as black dots.

Source data

Extended Data Fig. 3 Matching the true pairwise distance distribution.

An illustration of the pairwise distance distributions at a certain frame difference, Δn, before and after being corrected with DDC. When the likelihood is maximized all of the pairwise distance distributions will match the true pairwise distance distribution. [The true pairwise distance distribution is shown as black dots.].

Source data

Extended Data Fig. 4 Toy model illustration for inner workings of DDC.

Toy model illustration for inner workings of DDC (See text within SI for in depth description): a, Simple toy model with 4 true localizations and 2 repeats (color coded), with the number showing the frame of each localization (can also be used to identify each localization for this example). b, The true pairwise distance distribution (PT (Δr)) and the distribution of distances between loci given that at least one is a repeat (PR1(ΔrΔn = 1)) for the localizations within (a) The number (and probability) for ‘small’ distances and ‘large’ distances for each distribution is above each bar, with an assigned variable (a, b, c, d) used in the calculation of the Likelihood (Lik). We also show the specific pairs of loci under the bars to illustrate how assigning a particular loci to a certain set influences the likelihood calculation. Note: for this specific example blinks only appear with Δn = 1, and hence we ignore the distributions with Δn > 1 (See text). c, Simplified illustration of how Alg. 1 and Alg. 2 work together and assign localizations as a true localization or repeat localization. Multiple steps of the MCMC are shown with different rows (1 to 3) (See Text). Alg. 1 essentially calculates the probability that a localization is a repeat (green bars), if this value is above .5 it is assigned to that set. Alg. 2 varies this calculation by a small amount each step, generating new sets d, The sets assigned in (c) lead to different likelihoods (due to the particular distribution the distance between each pair is assigned (changing (a,b,c,d), note how the specific distances between each pair change with each assigned set), when the distributions of the assigned sets match the correct distributions (those in (B)) Lik is maximized. (See text for further details).

Source data

Extended Data Fig. 5 Maximization of Likelihood Results in Correct Conformation of Localizations.

Maximization of Likelihood Results in Correct Conformation of Localizations: For 6 systems investigated within this work, we randomly varied the percentage of true localizations and calculated the log(Lik) and the image error for each conformation (See Text).

Source data

Extended Data Fig. 6 Overcounting and undercounting in individual pixels.

Overcounting and undercounting in individual pixels: Comparison of four different thresholding methods with DDC in counting the number of true localizations in individual pixels on five spatial distributions as depicted and simulated in main text Fig. 2. The y axis is the difference between the true count and the method-identified count expressed as Count-[True Count], with positive values indicating the degree of over-counting and negative values the degree of under-counting. The x-axis is the number of true counts in individual pixels. The pixel size was set to 50 nm. Note that only DDC shows consistent distributions of y values near zero at different true count values and across all five spatial patterns. [Each scatter point is colored to illustrate the estimated probability density - allowing one to visualize the regions of high density (red) and regions of low density (blue).].

Source data

Extended Data Fig. 7 AKAP scatter plots through time.

Scatter plots for a section of a cell with the localizations from AKAP79 with the color indicating the frame of the localization (Blue is early and Red is late) for the three different methodologies.

Source data

Extended Data Fig. 8 Computationally varying the label density.

a, The results of computationally varying the label density on some of the simulation systems. b, The results of computationally varying the label density on AKAP79 and AKA150. (Values greater than 1 indicate significant clustering.).

Source data

Extended Data Fig. 9 Experimental Concerns.

Image Error at different densities of localizations (a) and activation probability per frame (b). The raw data points are shown as gray points and the moving average is shown in black (Supporting Material). c, An intensity trajectory of a single mEos3.2 molecule with labels showing the definitions of Ton and Toff. d, The average Ton, Toff (per frame, frame rate 33Hz), and number of blinks for Alexa647 and mEos3.2 at different UV activation intensities (405 Power).

Source data

Extended Data Fig. 10 Varying Raw Image Error.

The raw Image Error (Not Normalized) for the uncorrected SMLM images for varying the density of the localizations and the activation energy.

Source data

Supplementary information

Supplementary Information

Supplementary Table 1, Discussion and Figs. 1–12.

Reporting Summary

Source data

Source Data Fig. 1

Data used to generate plots in Fig. 1.

Source Data Fig. 2

Data used to generate plots in Fig. 2.

Source Data Fig. 3

Data used to generate plots in Fig. 3.

Source Data Fig. 4

Data used to generate plots in Fig. 4.

Source Data Fig. 5

Data used to generate plots in Fig. 5.

Source Data Fig. 6

Data used to generate plots in Fig. 6.

Source Data Extended Data Fig. 1

Data used to generate plots in Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Data used to generate plots in Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Data used to generate plots in Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Data used to generate plots in Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Data used to generate plots in Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Data used to generate plots in Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Data used to generate plots in Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Data used to generate plots in Extended Data Fig. 8.

Source Data Extended Data Fig. 9

Data used to generate plots in Extended Data Fig. 9.

Source Data Extended Data Fig. 10

Data used to generate plots in Extended Data Fig. 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohrer, C.H., Yang, X., Thakur, S. et al. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 18, 669–677 (2021). https://doi.org/10.1038/s41592-021-01154-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01154-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing