Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NEUROSCIENCE

The DANNCE of the rats: a new toolkit for 3D tracking of animal behavior

A new approach tracks animal movements in 3D from multiple camera views using volumetric triangulation, reconciling occlusions and ambiguities present in any one camera view.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DANNCE estimates animal poses in 3D using all available camera views with volumetric triangulation.

References

  1. Dunn, T.W. et al. Nat. Methods https://doi.org/10.1038/s41592-021-01106-6 (2021).

  2. Iskakov, K., Burkov, E., Lempitsky, V. & Malkov, Y. Learnable triangulation of human pose. In Proc. IEEE/CVF Int. Conf. Computer Vision 7718–7727 (2019).

  3. Mathis, A. et al. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  Google Scholar 

  4. Pereira, T. D. et al. Nat. Methods 16, 117–125 (2019).

    Article  CAS  Google Scholar 

  5. Graving, J. M. et al. eLife 8, e47994 (2019).

    Article  CAS  Google Scholar 

  6. Zimmermann, C., Schneider, A., Alyahyay, M., Brox, T.S. & Diester, I. Preprint at bioRxiv https://doi.org/10.1101/2020.02.27.967620 (2020).

  7. Nath, T. et al. Nat. Protoc. 14, 2152–2176 (2019).

    Article  CAS  Google Scholar 

  8. Günel, S. et al. eLife 8, e48571 (2019).

    Article  Google Scholar 

  9. Karashchuk, P. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.05.26.117325 (2020).

  10. Bala, P. C. et al. Nat. Commun. 11, 1–12 (2020).

    Article  Google Scholar 

  11. Pereira, T. D. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.08.31.276246 (2020).

  12. Chen, Z. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.12.04.405159 (2020).

  13. Gosztolai, A. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.09.18.292680 (2020).

  14. Mehta, D. et al. ACM Trans. Graph. 36, 1–14 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingni W. Brunton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karashchuk, P., Tuthill, J.C. & Brunton, B.W. The DANNCE of the rats: a new toolkit for 3D tracking of animal behavior. Nat Methods 18, 460–462 (2021). https://doi.org/10.1038/s41592-021-01110-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01110-w

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics