Abstract
Fluorescent nanothermometers can probe changes in local temperature in living cells and in vivo and reveal fundamental insights into biological properties. This field has attracted global efforts in developing both temperature-responsive materials and detection procedures to achieve sub-degree temperature resolution in biosystems. Recent generations of nanothermometers show superior performance to earlier ones and also offer multifunctionality, enabling state-of-the-art functional imaging with improved spatial, temporal and temperature resolutions for monitoring the metabolism of intracellular organelles and internal organs. Although progress in this field has been rapid, it has not been without controversy, as recent studies have shown possible biased sensing during fluorescence-based detection. Here, we introduce the design principles and advances in fluorescence nanothermometry, highlight application achievements, discuss scenarios that may lead to biased sensing, analyze the challenges ahead in terms of both fundamental issues and practical implementations, and point to new directions for improving this interdisciplinary field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Self-optimized single-nanowire photoluminescence thermometry
Light: Science & Applications Open Access 06 February 2023
-
Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry
Light: Science & Applications Open Access 27 July 2022
-
Substantial impact of 3-iodothyronamine (T1AM) on the regulations of fluorescent thermoprobe-measured cellular temperature and natriuretic peptide expression in cardiomyocytes
Scientific Reports Open Access 26 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Jaque, D. & Vetrone, F. Luminescence nanothermometry. Nanoscale 4, 4301–4326 (2012).
Brites, C. D. S. et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Nanotechnol. 11, 851–856 (2016).
Geitenbeek, R. G. et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal. 8, 2397–2401 (2018).
Mi, C., Zhou, J., Wang, F., Lin, G. & Jin, D. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability. Chem. Mater. 31, 9480–9487 (2019). This paper presents a ratiometric nanothermometer that exploits the phonon-assisted thermal enhancement of the emission of UCNPs, achieving the highest reported thermal sensitivity for lanthanide-based thermometers: 9.6% K−1 at 300 K.
Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).
Kiyonaka, S. et al. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10, 1232–1238 (2013).
Hattori, K. et al. ASK1 signalling regulates brown and beige adipocyte function. Nat. Commun. 7, 11158 (2016).
Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3, 705 (2012). This work demonstrates the use of fluorescence lifetime imaging microscopy to measure the heterogeneous temperature distribution within cells at diffraction-limited spatial resolutions.
Xu, M. et al. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 9, 2698 (2018).
Zhu, X. et al. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 7, 10437 (2016).
Zhu, X. et al. Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat. Commun. 9, 2176 (2018). This paper presents a multifunctional nanocomposite—combining UCNPs, photothermal agents and anticancer drugs—for hyperthermia therapy and thermally activated drug delivery with in situ temperature control in mice.
Zhou, H., Sharma, M., Berezin, O., Zuckerman, D. & Berezin, M. Y. Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17, 27–36 (2016).
Suzuki, M. & Plakhotnik, T. The challenge of intracellular temperature. Biophys. Rev. 12, 593–600 (2020).
Zhou, J. et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics 12, 154–158 (2018).
Zhou, J., Chizhik, A. I., Chu, S. & Jin, D. Single-particle spectroscopy for functional nanomaterials. Nature 579, 41–50 (2020).
Quintanilla, M. & Liz-Marzán, L. M. Guiding rules for selecting a nanothermometer. Nano Today 19, 126–145 (2018).
Chrétien, D. et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol. 16, e2003992 (2018). This paper reports on the large temperature differential between mitochondria of fully functional cells and their environment using MitoThermo Yellow as a temperature sensor.
Li, Q. et al. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 135, 14924–14927 (2013).
Kalytchuk, S. et al. Carbon dot nanothermometry: Intracellular photoluminescence lifetime thermal sensing. ACS Nano 11, 1432–1442 (2017).
Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967).
Maestro, L. M. et al. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 10, 5109–5115 (2010).
Maestro, L. M. et al. CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small 7, 1774–1778 (2011).
Vetrone, F. et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010).
Balabhadra, S. et al. Boosting the sensitivity of Nd3+-based luminescent nanothermometers. Nanoscale 7, 17261–17267 (2015).
Senapati, S. & Nanda, K. K. Red emitting Eu:ZnO nanorods for highly sensitive fluorescence intensity ratio based optical thermometry. J. Mater. Chem. C. Mater. Opt. Electron. Devices 5, 1074–1082 (2017).
Donner, J. S., Thompson, S. A., Kreuzer, M. P., Baffou, G. & Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12, 2107–2111 (2012).
Zondervan, R., Kulzer, F., van der Meer, H., Disselhorst, J. A. J. M. & Orrit, M. Laser-driven microsecond temperature cycles analyzed by fluorescence polarization microscopy. Biophys. J. 90, 2958–2969 (2006).
Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013).
Tsai, P.-C. et al. Measuring nanoscale thermostability of cell membranes with single gold-diamond nanohybrids. Angew. Chem. Int. Ed. Engl. 56, 3025–3030 (2017).
Plakhotnik, T., Doherty, M. W., Cole, J. H., Chapman, R. & Manson, N. B. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV– center in nanodiamond. Nano Lett. 14, 4989–4996 (2014).
Choi, S., Agafonov, V. N., Davydov, V. A. & Plakhotnik, T. Ultrasensitive all-optical thermometry using nanodiamonds with a high concentration of silicon-vacancy centers and multiparametric data analysis. ACS Photonics 6, 1387–1392 (2019).
Fan, J.-W. et al. Germanium-vacancy color center in diamond as a temperature sensor. ACS Photonics 5, 765–770 (2018).
Alkahtani, M. et al. Tin-vacancy in diamonds for luminescent thermometry. Appl. Phys. Lett. 112, 241902 (2018).
Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5, 602–606 (2010).
Nakano, M. et al. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. PLoS One 12, e0172344 (2017).
Savchuk, O. A., Silvestre, O. F., Adão, R. M. R. & Nieder, J. B. GFP fluorescence peak fraction analysis based nanothermometer for the assessment of exothermal mitochondria activity in live cells. Sci. Rep. 9, 7535 (2019).
Kriszt, R. et al. Optical visualisation of thermogenesis in stimulated single-cell brown adipocytes. Sci. Rep. 7, 1383 (2017).
Xie, T.-R., Liu, C.-F. & Kang, J.-S. Dye-based mito-thermometry and its application in thermogenesis of brown adipocytes. Biophys. Rep. 3, 85–91 (2017).
Jenkins, J., Borisov, S. M., Papkovsky, D. B. & Dmitriev, R. I. Sulforhodamine nanothermometer for multiparametric fluorescence lifetime imaging microscopy. Anal. Chem. 88, 10566–10572 (2016).
Arai, S., Lee, S. C., Zhai, D., Suzuki, M. & Chang, Y. T. A molecular fluorescent probe for targeted visualization of temperature at the endoplasmic reticulum. Sci. Rep. 4, 6701 (2014).
Gota, C., Okabe, K., Funatsu, T., Harada, Y. & Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 131, 2766–2767 (2009).
Tsuji, T., Yoshida, S., Yoshida, A. & Uchiyama, S. Cationic fluorescent polymeric thermometers with the ability to enter yeast and mammalian cells for practical intracellular temperature measurements. Anal. Chem. 85, 9815–9823 (2013).
Tsuji, T., Ikado, K., Koizumi, H., Uchiyama, S. & Kajimoto, K. Difference in intracellular temperature rise between matured and precursor brown adipocytes in response to uncoupler and β-adrenergic agonist stimuli. Sci. Rep. 7, 12889 (2017).
Kimura, H. et al. The thermogenic actions of natriuretic peptide in brown adipocytes: the direct measurement of the intracellular temperature using a fluorescent thermoprobe. Sci. Rep. 7, 12978 (2017).
Oyama, K. et al. Walking nanothermometers: spatiotemporal temperature measurement of transported acidic organelles in single living cells. Lab Chip 12, 1591–1593 (2012).
Takei, Y. et al. A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells. ACS Nano 8, 198–206 (2014).
Yang, J.-M., Yang, H. & Lin, L. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5, 5067–5071 (2011).
Tanimoto, R. et al. Detection of temperature difference in neuronal cells. Sci. Rep. 6, 22071 (2016).
Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).
Simpson, D. A. et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017).
Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. A critique of methods for temperature imaging in single cells. Nat. Methods 11, 899–901 (2014).
Uchiyama, S., Gota, C., Tsuji, T. & Inada, N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem. Commun. (Camb.) 53, 10976–10992 (2017).
Okabe, K., Sakaguchi, R., Shi, B. & Kiyonaka, S. Intracellular thermometry with fluorescent sensors for thermal biology. Pflug. Arch. 470, 717–731 (2018).
Kiyonaka, S. et al. Validating subcellular thermal changes revealed by fluorescent thermosensors. Nat. Methods 12, 801–802 (2015).
Bastos, A. R. N. et al. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Mater. 29, 1905474 (2019).
Suzuki, M., Zeeb, V., Arai, S., Oyama, K. & Ishiwata, S. The 105 gap issue between calculation and measurement in single-cell thermometry. Nat. Methods 12, 802–803 (2015).
Baffou, G., Rigneault, H., Marguet, D. & Jullien, L. Reply to: “Validating subcellular thermal changes revealed by fluorescent thermosensors” and “The 105 gap issue between calculation and measurement in single-cell thermometry”. Nat. Methods 12, 803 (2015).
Wang, C. et al. Determining intracellular temperature at single-cell level by a novel thermocouple method. Cell Res. 21, 1517–1519 (2011).
Rajagopal, M. C. et al. Transient heat release during induced mitochondrial proton uncoupling. Commun. Biol. 2, 279 (2019).
Inomata, N., Toda, M., Sato, M., Ishijima, A. & Ono, T. Pico calorimeter for detection of heat produced in an individual brown fat cell. Appl. Phys. Lett. 100, 154104 (2012).
Inomata, N., Inaoka, R., Okabe, K., Funatsu, T. & Ono, T. Short-term temperature change detections and frequency signals in single cultured cells using a microfabricated thermistor. Sens. Biosensing Res. 27, 100309 (2020).
Hu, S. et al. Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 140, 13680–13686 (2018).
Sugimura, T., Kajimoto, S. & Nakabayashi, T. Label-free imaging of intracellular temperature by using the O−H stretching Raman band of water. Angew. Chem. Int. Ed. Engl. 59, 7755–7760 (2020).
Yuexuan, Y. & Daocheng, W. Research shortcomings of fluorescent nanothermometers in biological and medical fields. Nanomed. (Lond.) 15, 735–738 (2020).
Shen, Y. et al. Ag2S nanoheaters with multiparameter sensing for reliable thermal feedback during in vivo tumor therapy. Adv. Funct. Mater. (in the press).
Donner, J. S. et al. Imaging of plasmonic heating in a living organism. ACS Nano 7, 8666–8672 (2013).
Deepankumar, K. et al. Temperature sensing using red fluorescent protein. Biotechnol. Bioprocess Eng. ; BBE 20, 67–72 (2015).
Arai, S. et al. Micro-thermography in millimeter-scale animals by using orally-dosed fluorescent nanoparticle thermosensors. Analyst 140, 7534–7539 (2015).
Ferdinandus et al. Facilely fabricated luminescent nanoparticle thermosensor for real-time microthermography in living animals. ACS Sens. 1, 1222–1227 (2016).
Carrasco, E. et al. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25, 615–626 (2015).
Jaque, D. et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014).
Gustafson, T. P., Cao, Q., Wang, S. T. & Berezin, M. Y. Design of irreversible optical nanothermometers for thermal ablations. Chem. Commun. (Camb.) 49, 680–682 (2013).
Ximendes, E. C. et al. Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers. Nano Lett. 16, 1695–1703 (2016).
Ximendes, E. C. et al. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater. 27, 1702249 (2017).
Ximendes, E. C. et al. In vivo ischemia detection by luminescent nanothermometers. Adv. Healthc. Mater. 6, 1601195 (2017).
Santos, H. D. A. et al. In vivo early tumor detection and diagnosis by infrared luminescence transient nanothermometry. Adv. Funct. Mater. 28, 1803924 (2018).
del Rosal, B. et al. In vivo contactless brain nanothermometry. Adv. Funct. Mater. 28, 1806088 (2018).
Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16, 634–644 (2016).
Senden, T., Rabouw, F. T. & Meijerink, A. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals. ACS Nano 9, 1801–1808 (2015).
Shen, Y., Lifante, J., Fernández, N., Jaque, D. & Ximendes, E. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14, 4122–4133 (2020). This work shows the impact of tissue absorption and scattering in the spectral features of nanothermometers, indicating how those can lead to erroneous temperature readouts.
Akers, W. J. et al. Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. ACS Nano 5, 173–182 (2011).
Rodríguez-Sevilla, P. et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv. Mater. 28, 2421–2426 (2016).
Chan, M. S. et al. Stepwise ligand-induced self-assembly for facile fabrication of nanodiamond-gold nanoparticle dimers via noncovalent biotin-streptavidin interactions. Nano Lett. 19, 2020–2026 (2019).
Piñol, R. et al. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. ACS Nano 9, 3134–3142 (2015).
Suo, H., Zhao, X., Zhang, Z. & Guo, C. 808 nm light-triggered thermometer-heater upconverting platform based on Nd3+-sensitized yolk-shell GdOF@SiO2. ACS Appl. Mater. Interfaces 9, 43438–43448 (2017).
Marciniak, L., Pilch, A., Arabasz, S., Jin, D. & Bednarkiewicz, A. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. Nanoscale 9, 8288–8297 (2017).
Roder, P. B., Smith, B. E., Zhou, X., Crane, M. J. & Pauzauskie, P. J. Laser refrigeration of hydrothermal nanocrystals in physiological media. Proc. Natl Acad. Sci. USA 112, 15024–15029 (2015).
Rahman, A. T. M. A. & Barker, P. F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals. Nat. Photonics 11, 634–638 (2017).
Li, Z. et al. Simultaneous local heating/thermometry based on plasmonic magnetochromic nanoheaters. Small 14, e1800868 (2018).
Rodríguez-Sevilla, P., Arita, Y., Liu, X., Jaque, D. & Dholakia, K. The temperature of an optically trapped, rotating microparticle. ACS Photonics 5, 3772–3778 (2018).
Qiu, X. et al. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 11, 4 (2020). This paper presents a QD-UCNP nanocomposite emitting in the near infrared for lifetime-based in vivo thermometry.
Lane, N. Hot mitochondria? PLoS Biol. 16, e2005113 (2018).
Arai, S. et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem. Commun. (Camb.) 51, 8044–8047 (2015).
Homma, M., Takei, Y., Murata, A., Inoue, T. & Takeoka, S. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells. Chem. Commun. (Camb.) 51, 6194–6197 (2015).
Zhang, X., Sun, Q., Huang, Z., Huang, L. & Xiao, Y. Immobilizable fluorescent probes for monitoring the mitochondria microenvironment: a next step from the classic. J. Mater. Chem. B Mater. Biol. Med. 7, 2749–2758 (2019).
Huang, Z., Li, N., Zhang, X., Wang, C. & Xiao, Y. Fixable molecular thermometer for real-time visualization and quantification of mitochondrial temperature. Anal. Chem. 90, 13953–13959 (2018).
Jakobs, S., Stephan, T., Ilgen, P. & Brüser, C. Light microscopy of mitochondria at the nanoscale. Annu. Rev. Biophys. 49, 289–308 (2020).
Huang, X. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451–459 (2018).
Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 9, 12419 (2019).
Yang, X. et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 11, 3699 (2020).
Wang, C. et al. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. Proc. Natl Acad. Sci. USA 116, 15817–15822 (2019).
Santos, H. D. A. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat. Commun. 11, 2933 (2020).
Zhou, J., Huang, B., Yan, Z. & Bünzli, J. G. Emerging role of machine learning in light-matter interaction. Light Sci. Appl. 8, 84 (2019).
Liu, L. et al. Wideband fluorescence-based thermometry by neural network recognition: Photothermal application with 10 ns time resolution. J. Appl. Phys. 118, 184906 (2015).
Munro, T., Liu, L., Glorieux, C. & Ban, H. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction. J. Appl. Phys. 119, 214903 (2016).
Xiao, Y., Wan, C., Shahsafi, A., Salman, J. & Kats, M. A. Depth thermography: noninvasive 3D temperature profiling using infrared thermal emission. ACS Photonics 7, 853–860 (2020).
Yang, X.-F., Chang, J. H. & Rothman, S. M. Intracerebral temperature alterations associated with focal seizures. Epilepsy Res. 52, 97–105 (2002).
Hayashi, T., Fukuda, N., Uchiyama, S. & Inada, N. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines. PLoS One 10, e0117677 (2015).
Qiao, J. et al. Ratiometric fluorescent polymeric thermometer for thermogenesis investigation in living cells. Anal. Chem. 87, 10535–10541 (2015).
Qiao, J. et al. Simultaneous monitoring of mitochondrial temperature and ATP fluctuation using fluorescent probes in living cells. Anal. Chem. 90, 12553–12558 (2018).
del Rosal, B. et al. Infrared-emitting QDs for thermal therapy with real-time subcutaneous temperature feedback. Adv. Funct. Mater. 26, 6060–6068 (2016).
Kato, H. et al. ER-resident sensor PERK is essential for mitochondrial thermogenesis in brown adipose tissue. Life Sci. Alliance 3, e201900576 (2020).
Hoshi, Y. et al. Ischemic brain injury leads to brain edema via hyperthermia-induced TRPV4 activation. J. Neurosci. 38, 5700–5709 (2018).
Rexius-Hall, M. L., Uchiyama, S., Eddington, D. & Rehman, J. Glycolysis is required for rapid adipocyte thermogenesis induced by cold stress. FASEB J. 31 (Suppl. 1), 886.14 (2017).
Choi, J. et al. Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc. Natl Acad. Sci. USA 117, 14636–14641 (2020).
Acknowledgements
The authors acknowledge financial support from the Australian Research Council (ARC) Discovery Early Career Researcher Award Scheme (J. Z., DE180100669; B. R., DE200100985), the Chancellor’s Postdoctoral Fellowship Scheme at the University of Technology Sydney (J. Z.) and RMIT University (B. R.), the Ministerio de Economı́a y Competitividad-MINECO (MAT2016-75362-C3-1-R), the Ministerio de Ciencia e Innovacion of Spain (PID2019-106211RB-I00) and the Comunidad de Madrid (B2017/BMD-3867 RENIM-CM) co-financed by European Structural and Investment Fund, the European Commission Horizon 2020 project NanoTBTech and the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research B, 17H03075).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, J., del Rosal, B., Jaque, D. et al. Advances and challenges for fluorescence nanothermometry. Nat Methods 17, 967–980 (2020). https://doi.org/10.1038/s41592-020-0957-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-020-0957-y
This article is cited by
-
Quantum sensors for biomedical applications
Nature Reviews Physics (2023)
-
Self-optimized single-nanowire photoluminescence thermometry
Light: Science & Applications (2023)
-
Lanthanide-based ratiometric luminescence nanothermometry
Nano Research (2023)
-
An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices
Light: Science & Applications (2022)
-
Operando optical fiber monitoring of nanoscale and fast temperature changes during photo-electrocatalytic reactions
Light: Science & Applications (2022)