Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational design and implementation of a chemically inducible heterotrimerization system

Abstract

Chemically inducible dimerization (CID) uses a small molecule to induce binding of two different proteins. CID tools such as the FK506-binding protein–FKBP–rapamycin-binding– (FKBP–FRB)–rapamycin system have been widely used to probe molecular events inside and outside cells. While various CID tools are available, chemically inducible trimerization (CIT) does not exist, due to inherent challenges in designing a chemical that simultaneously binds three proteins with high affinity and specificity. Here, we developed CIT by rationally splitting FRB and FKBP. Cellular and structural datasets showed efficient trimerization of split pairs of FRB or FKBP with full-length FKBP or FRB, respectively, by rapamycin. CIT rapidly induced tri-organellar junctions and perturbed intended membrane lipids exclusively at select membrane contact sites. By conferring one additional condition to what is achievable with CID, CIT expands the types of manipulation in single live cells to address cell biology questions otherwise intractable and engineer cell functions for future synthetic biology applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rational CIT design and sFRB overexpression in cells.
Fig. 2: Characterization of FKBP recruitment extent and kinetics by sFRB after rapamycin addition.
Fig. 3: Crystal structure of the split and unsplit FKBP–rapamycin–FRB (T2098L) complexes.
Fig. 4: CIT-based recruitment of cytosolic protein to ER–PM and ER–mitochondria MCS.
Fig. 5: Tri-organellar junction formation by CIT.
Fig. 6: CIT induces local PI(4,5)P2 depletion at ER–PM MCS.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Fegan, A., White, B., Carlson, J. C. & Wagner, C. R. Chemically controlled protein assembly: techniques and applications. Chem. Rev. 110, 3315–3336 (2010).

    PubMed  CAS  Google Scholar 

  2. DeRose, R., Miyamoto, T. & Inoue, T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflug. Arch. 465, 409–417 (2013).

    CAS  Google Scholar 

  3. Spencer, D. M., Wandless, T. J., Schreiber, S. L. & Crabtree, G. R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    PubMed  CAS  Google Scholar 

  4. Komatsu, T. et al. Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat. Methods 7, 206–208 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Haruki, H., Nishikawa, J. & Laemmli, U. K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

    PubMed  CAS  Google Scholar 

  6. Putyrski, M. & Schultz, C. Protein translocation as a tool: the current rapamycin story. FEBS Lett. 586, 2097–2105 (2012).

    PubMed  CAS  Google Scholar 

  7. Miyamoto, T. et al. Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat. Chem. Biol. 8, 465–470 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Ma, D., Peng, S. & Xie, Z. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat. Commun. 7, 13056 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Lambright, D. G. et al. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    PubMed  CAS  Google Scholar 

  11. Higashi, T. & Miller, A. L. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol. Biol. Cell 28, 2023–2034 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Hennecke, J. & Wiley, D. C. T cell receptor-MHC interactions up close. Cell 104, 1–4 (2001).

    PubMed  CAS  Google Scholar 

  13. Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP·rapamycin·FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    PubMed  CAS  Google Scholar 

  14. Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. Structure of the FKBP12–rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    PubMed  CAS  Google Scholar 

  15. Stankunas, K. et al. Rescue of degradation-prone mutants of the FK506–rapamycin binding (FRB) protein with chemical ligands. Chem. Bio. Chem. 8, 1162–1169 (2007).

    PubMed  CAS  Google Scholar 

  16. Liberles, S. D., Diver, S. T., Austin, D. J. & Schreiber, S. L. Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen. Proc. Natl Acad. Sci. USA 94, 7825–7830 (1997).

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Bayle, J. H. et al. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem. Biol. 13, 99–107 (2006).

    PubMed  CAS  Google Scholar 

  18. Dagliyan, O. et al. Computational design of chemogenetic and optogenetic split proteins. Nat. Commun. 9, 4042 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Dagliyan, O. et al. Engineering extrinsic disorder to control protein activity in living cells. Science 354, 1441–1444 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Dagliyan, O., Dokholyan, N. V. & Hahn, K. M. Engineering proteins for allosteric control by light or ligands. Nat. Protoc. 14, 1863–1883 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Belshaw, P. J., Schoepfer, J. G., Liu, K. Q., Morrison, K. L. & Schreiber, S. L. Rational design of orthogonal receptor–ligand combinations. Angew. Chem. Int. Ed. Engl. 34, 2129–2132 (1995).

    CAS  Google Scholar 

  22. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J. Biol. Chem. 282, 29678–29690 (2007).

    PubMed  CAS  Google Scholar 

  23. Dickson, E. J. et al. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J. Cell Biol. 213, 33–48 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Phillips, M. J. & Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17, 69–82 (2016).

    PubMed  CAS  Google Scholar 

  25. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Prinz, W. A. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205, 759–769 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Luik, R. M., Wang, B., Prakriya, M., Wu, M. M. & Lewis, R. S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    PubMed  CAS  Google Scholar 

  30. Levine, T. & Loewen, C. Inter-organelle membrane contact sites: through a glass, darkly. Curr. Opin. Cell Biol. 18, 371–378 (2006).

    PubMed  CAS  Google Scholar 

  31. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contact sites define the position and timing of endosome fission. Cell 159, 1027–1041 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Helle, S. C. et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 1833, 2526–2541 (2013).

    PubMed  CAS  Google Scholar 

  34. Zewe, J. P., Wills, R. C., Sangappa, S., Goulden, B. D. & Hammond, G. R. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. eLife 7, e35588 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).

    PubMed  CAS  Google Scholar 

  36. Saheki, Y. & De Camilli, P. Endoplasmic reticulum-plasma membrane contact sites. Annu. Rev. Biochem. 86, 659–684 (2017).

    PubMed  CAS  Google Scholar 

  37. Chang, C. L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Idevall-Hagren, O., Dickson, E. J., Hille, B., Toomre, D. K. & De Camilli, P. Optogenetic control of phosphoinositide metabolism. Proc. Natl Acad. Sci. USA 109, E2316–E2323 (2012).

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Karginov, A. V., Ding, F., Kota, P., Dokholyan, N. V. & Hahn, K. M. Engineered allosteric activation of kinases in living cells. Nat. Biotechnol. 28, 743–747 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Suh, B. C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Heinig, M. & Frishman, D. STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32, W500–W502 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Colell, E. A., Iserte, J. A., Simonetti, F. L. & Marino-Buslje, C. MISTIC2: comprehensive server to study coevolution in protein families. Nucleic Acids Res. 46, W323–W328 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    PubMed  CAS  Google Scholar 

  44. Yin, S. Y., Ding, F. & Dokholyan, N. V. Eris: an automated estimator of protein stability. Nat. Methods 4, 466–467 (2007).

    PubMed  CAS  Google Scholar 

  45. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    CAS  Google Scholar 

  46. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D. Biol. Crystal. 67, 235–242 (2011).

    CAS  Google Scholar 

  47. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D. Biol. Crystal. 66, 22–25 (2010).

    CAS  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D. Biol. Crystal. 66, 486–501 (2010).

    CAS  Google Scholar 

  49. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D. Biol. Crystal. 53, 240–255 (1997).

    CAS  Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D. Biol. Crystal. 66, 213–221 (2010).

    CAS  Google Scholar 

  51. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Bertozzi and S. Thompson for help with plasmid generation. We thank R. DeRose, X.Y. Zhou and Y. Nihongaki for proofreading the manuscript. We thank H. Niwa (RIKEN), N. Sakai (RIKEN) and the staff at the BL26B2 beamline (Proposal No. 20190047) of SPring-8 (Harima, Japan) and the X06DA beamline (Proposal No. 20171001) of the Swiss Light Source, Paul Scherrer Institut (Villigen, Switzerland) for their help in X-ray diffraction data collection. We acknowledge support from the National Institutes for Health (grant nos. 5R01GM123130 to T.I., and 5R01GM123247 and 1R35 GM134864 to N.V.D.), the Passan Foundation to N.V.D., the DoD DARPA (grant no. HR0011-16-C-0139 to T.I.), and the PRESTO program of the Japan Science and Technology Agency to T.U. (grant no. JPMJPR12A3) and T.I. (grant no. JPMJPR12A5) and a Grant-in-Aid for Scientific Research (B) to T.U. (grant no. 16H05089) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

H.D.W. and H.N. conceived the study with input from T.I. H.D.W. carried out cell experiments and conducted image analysis with help from A.K.A. M.K. purified and crystalized split proteins, and determined protein structure by X-ray crystallography. O.D. conducted rational split site analysis. T.I., H.N., T.U. and N.V.D. supervised the project. H.D.W. wrote the manuscript in consultation with T.I. and with input from M.K., T.U., O.D. and N.V.D.

Corresponding authors

Correspondence to Takashi Umehara or Takanari Inoue.

Ethics declarations

Competing interests

There is an ongoing disclosure associated with the CIT tools.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Negative controls for cytosolic FKBP recruitment to ER-PM MCS.

a, Assessing contributions of each CIT component in CFP-FKBP recruitment to ER-PM MCS; left, middle and center panels correspond to constructs lacking ER, PM, and cytosolic CIT components. b, Quantifying trimerization between the 3 signals pre- and post- 100 nM rapamycin. Check marks specify each combination of two wavelengths used in calculating pairwise Fisher’s transformation of Pearson’s correlation coefficients. Data are presented as mean values +/− SD. Two-tailed Student’s t-test assuming equal variance was used to compare correlations pre- and post-rapamycin. Fom left to right: n = 38, 27, and 32 cells; 3 independent experiments each. Scalebar, 10 μm. (***/****; p < 0.001/0.0001).

Source data

Extended Data Fig. 2 sFKBP-based CIT recruitment of cytosolic FRB to ER-PM MCS.

(a, b) Recruitment of mCh-FRB to ER-PM junctions by ER and PM targeted sFKBP1N and sFKBP1C, pre- and 1 h post- 100 nM rapamycin addition. FRB-mCh recruitment can be (a) undetectable or (b) prominent. (c) Quantifying trimerization between the 3 signals pre- and post-rapamycin. Check marks specify each combination of two wavelengths used in calculating pairwise Fisher’s transformation of Pearson’s correlation coefficients. Data are presented as mean values +/- SD. Two-tailed Student’s t-test assuming equal variance was used to compare correlations pre- and post-rapamycin. From left to right: n = 24 cells; 3 independent experiments each. Scalebar, 10 μm. (****; p < 0.0001).

Source data

Extended Data Fig. 3 Negative controls for cytosolic FKBP recruitment to ER-mitochondria MCS.

a, Assessing contributions of each CIT component in CFP-FKBP recruitment to ER-mitochondria MCS; left, middle and center panels correspond to constructs lacking ER, mitochondria, and cytosolic CIT components. b, Quantifying trimerization between the 3 signals pre- and post- 100 nM rapamycin. Check marks specify each combination of two wavelengths used in calculating pairwise Fisher’s transformation of Pearson’s correlation coefficients. Data are presented as mean values +/− SD. Two-tailed Student’s t-test assuming equal variance was used to compare correlations pre- and 12 mins post-rapamycin. From left to right: n = 32, 26, and 24 cells; 3 independent experiments each. Scalebar, 10 μm. (****; p < 0.0001).

Source data

Extended Data Fig. 4 Negative controls for CIT-induced ER-mitochondria-PM tri-organellar membrane contact sites (MCS).

a, Assessing contributions of each CIT component in tri-organellar MCS formation; left, middle and center panels correspond to constructs lacking ER, mitochondria, and PM CIT components. b, Quantifying trimerization between the 3 signals pre- and post- 100 nM rapamycin. Check marks specify each combination of two wavelengths used in calculating pairwise Fisher’s transformation of Pearson’s correlation coefficients. Data are presented as mean values +/- SD. Two-tailed Student’s t-test assuming equal variance was used to compare correlations pre- and 15 mins post-rapamycin. From left to right: n = 24, 32 and 28 cells; 3 independent experiments each. Scalebar, 10 μm. (****; p < 0.0001).

Source data

Extended Data Fig. 5 PIP2 biosensor intensity at ER-PM junction sites over time.

Intensities of mRuby–PH-PLCδ PIP2 biosensor of user defined regions of interest inside and outside ER-PM MCS at 1, 2, 3, 4 and 10 min after 100 nM rapamycin. Significance analyzed with two-tailed paired Students t-tests assuming equal variance. From left to right: n = 28, 25 and 28 cells; 4 independent experiments each. (*/***/****; p < 0.05/0.001/0.0001).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–7

Reporting Summary

Supplementary Video 1

Timelapse epifluorescence images of Cos-7 cells showing recruitment of cytosolic FKBP (magenta) to ER–PM junction sites with CIT on rapamycin addition. ER in cyan, PM in yellow. Constructs expressed: sFRB1N–CFP–Cb5/Tom20–YFP–sFRB1C/mCh–FKBP. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 2

Timelapse epifluorescence images of Cos-7 cells showing recruitment of cytosolic FRB (magenta) to ER–PM junction sites with CIT on rapamycin addition. ER in cyan, PM in yellow. Constructs expressed: CFP–FKBP1C-Cb5/Lyn–YFP–sFKBP1N/FRB–mCh. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 3

Timelapse epifluorescence images of Cos-7 cells showing recruitment of cytosolic FKBP (magenta) to ER–mitochondria junction sites with CIT on rapamycin addition. ER in cyan, mitochondria in yellow. Constructs expressed: mCh–sFRB1C–Cb5/Lyn–YFP–sFRB1N/CFP–FKBP. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 4

Timelapse epifluorescence images of Cos-7 cells showing tri-organellar junction formation between ER, PM and mitochondria on rapamycin addition. Mitochondria in magenta, ER in yellow, PM in cyan. Constructs expressed: YFP–sFRB1N–Cb5/Tom20–mCh–FKBP/Lyn–CFP–sFRB1C. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 5

Timelapse epifluorescence images of Cos-7 cells showing recruitment of INP54P (cyan) to ER–PM junctions resulting in reduced signal intensity of PH–PLCδ (gray). ER in magenta, PM in yellow. Constructs expressed: CFP–FKBP–INP54P(331)/iRFP–sFRB1C–Cb5/Lyn–Clover–sFRB1N/mRuby–PH–PLCδ. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 6

Timelapse epifluorescence images of Cos-7 cells showing recruitment of INP54P D281A (cyan) to ER–PM junctions resulting in no change in signal intensity of PH–PLCδ (gray). ER in magenta, PM in yellow. Constructs expressed: CFP–FKBP–INP54P D281A/iRFP–sFRB1C–Cb5/Lyn–Clover–sFRB1N/mRuby–PH–PLCδ. Time in mm:ss; scale bar, 10 μm.

Supplementary Video 7

Timelapse epifluorescence images of Cos-7 cells showing recruitment of FKBP (cyan) to ER–PM junctions resulting in no change in signal intensity of PH–PLCδ (gray). ER in magenta, PM in yellow. Constructs expressed: CFP–FKBP/iRFP–sFRB1C–Cb5/Lyn–Clover–sFRB1N/mRuby–PH–PLCδ. Time in mm:ss; scale bar, 10 μm.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H.D., Kikuchi, M., Dagliyan, O. et al. Rational design and implementation of a chemically inducible heterotrimerization system. Nat Methods 17, 928–936 (2020). https://doi.org/10.1038/s41592-020-0913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0913-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research