Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Macromolecular modeling and design in Rosetta: recent methods and frameworks

Abstract

The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Capabilities of the Rosetta macromolecular modeling suite.
Fig. 2: Main elements of Rosetta are scoring and sampling.
Fig. 3: Rosetta can successfully address diverse biological questions.
Fig. 4: User interfaces to the codebase.
Fig. 5: Main external documentation page.

Similar content being viewed by others

Code availability.

Rosetta is licensed and distributed through https://www.rosettacommons.org. Licenses for academic, non-profit and government laboratories are free of charge; there is a license fee for industry users.

References

  1. Schrödinger. Biologics design. https://www.schrodinger.com/science-articles/biologics-design (2020).

  2. Chemical Computing Group. Molecular Operating Environment (MOE) | MOEsaic | PSILO. https://www.chemcomp.com/Products.htm (2020).

  3. Dassault Systèmes. BIOVIA, Discovery Studio Modeling Environment, release 2017. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/ (2016).

  4. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Vu, O., Mendenhall, J., Altarawy, D. & Meiler, J. BCL:Mol2D-a robust atom environment descriptor for QSAR modeling and lead optimization. J. Comput. Aided Mol. Des. 33, 477–486 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Webb, B. et al. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 27, 245–258 (2018).

    CAS  PubMed  Google Scholar 

  7. O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS  PubMed  Google Scholar 

  10. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Google Scholar 

  11. Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Senior, A. W. et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 87, 1141–1148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    CAS  PubMed  Google Scholar 

  14. Zheng, W. et al. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins 87, 1149–1164 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, J. & Wang, S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 87, 1069–1081 (2019).

    CAS  PubMed  Google Scholar 

  16. Fiser, A. & Sali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).

    CAS  PubMed  Google Scholar 

  17. Bienert, S. et al. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 45 D1, D313–D319 (2017).

    Google Scholar 

  18. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

    PubMed  Google Scholar 

  20. Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Padhorny, D. et al. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Proc. Natl Acad. Sci. USA 113, E4286–E4293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. BioSolveIT GmbH. FlexX version 4.1. http://www.biosolveit.de/FlexX (2019).

  24. Tubert-Brohman, I., Sherman, W., Repasky, M. & Beuming, T. Improved docking of polypeptides with Glide. J. Chem. Inf. Model. 53, 1689–1699 (2013).

    CAS  PubMed  Google Scholar 

  25. Sorenson, J. M. & Head-Gordon, T. Matching simulation and experiment: a new simplified model for simulating protein folding. J. Comput. Biol. 7, 469–481 (2000).

    CAS  PubMed  Google Scholar 

  26. Koehler Leman, J. et al. Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Comput. Biol. 16, e1007507 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, H. et al. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J. Chem. Theory Comput. 12, 6201–6212 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6, e20161 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bender, B. J. et al. Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry https://doi.org/10.1021/acs.biochem.6b00444 (2016).

  34. Simoncini, D. et al. Guaranteed discrete energy optimization on large protein design problems. J. Chem. Theory Comput. 11, 5980–5989 (2015).

    CAS  PubMed  Google Scholar 

  35. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol. 523, 109–143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, W. L., Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS  Google Scholar 

  37. Radzicka, A. & Wolfenden, R. Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27, 1664–1670 (1988).

    CAS  Google Scholar 

  38. O’Meara, M. J. et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 11, 609–622 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci. 23, 47–55 (2014).

    CAS  PubMed  Google Scholar 

  40. Park, H., Lee, H. & Seok, C. High-resolution protein-protein docking by global optimization: recent advances and future challenges. Curr. Opin. Struct. Biol. 35, 24–31 (2015).

    CAS  PubMed  Google Scholar 

  41. Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830–838 (2011).

    CAS  PubMed  Google Scholar 

  42. Mills, J. H. et al. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J. Am. Chem. Soc. 135, 13393–13399 (2013).

    CAS  PubMed  Google Scholar 

  43. Kappel, K. et al. Blind tests of RNA-protein binding affinity prediction. Proc. Natl Acad. Sci. USA 116, 8336–8341 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hosseinzadeh, P. et al. Comprehensive computational design of ordered peptide macrocycles. Science 358, 1461–1466 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Leaver-Fay, A., Butterfoss, G. L., Snoeyink, J. & Kuhlman, B. Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 28, 1336–1341 (2007).

    CAS  PubMed  Google Scholar 

  47. Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Z. et al. Programmable design of orthogonal protein heterodimers. Nature 565, 106–111 (2019).

    CAS  PubMed  Google Scholar 

  50. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid sampling of hydrogen bond networks for computational protein design. J. Chem. Theory Comput. 14, 2751–2760 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pavlovicz, R.E., Park, H. & DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking. Preprint at bioRxiv https://doi.org/10.1101/618603 (2019).

  52. Bhowmick, A., Sharma, S. C., Honma, H. & Head-Gordon, T. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70. Phys. Chem. Chem. Phys. 18, 19386–19396 (2016).

    CAS  PubMed  Google Scholar 

  53. König, R. & Dandekar, T. Solvent entropy-driven searching for protein modeling examined and tested in simplified models. Protein Eng. 14, 329–335 (2001).

    PubMed  Google Scholar 

  54. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)—round XIII. Proteins https://doi.org/10.1002/prot.25823 (2019).

  55. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    CAS  PubMed  Google Scholar 

  56. Robetta. http://new.robetta.org/ (2020).

  57. Park, H., Kim, D. E., Ovchinnikov, S., Baker, D. & DiMaio, F. Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Proteins 86(Suppl. 1), 283–291 (2018).

    CAS  PubMed  Google Scholar 

  58. Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl Acad. Sci. USA 110, 15674–15679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, H., Ovchinnikov, S., Kim, D. E., DiMaio, F. & Baker, D. Protein homology model refinement by large-scale energy optimization. Proc. Natl Acad. Sci. USA 115, 3054–3059 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 405, 607–618 (2011).

    CAS  PubMed  Google Scholar 

  62. Friedland, G. D., Linares, A. J., Smith, C. A. & Kortemme, T. A simple model of backbone flexibility improves modeling of side-chain conformational variability. J. Mol. Biol. 380, 757–774 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kapp, G. T. et al. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair. Proc. Natl Acad. Sci. USA 109, 5277–5282 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Stein, A. & Kortemme, T. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One 8, e63090 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, M. S. & Head-Gordon, T. Improved energy selection of nativelike protein loops from loop decoys. J. Chem. Theory Comput. 4, 515–521 (2008).

    CAS  PubMed  Google Scholar 

  66. Rohl, C. A., Strauss, C. E. M., Chivian, D. & Baker, D. Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55, 656–677 (2004).

    CAS  PubMed  Google Scholar 

  67. Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503–519 (2007).

    CAS  PubMed  Google Scholar 

  68. Canutescu, A. A. & Dunbrack, R. L. Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mandell, D. J. & Kortemme, T. Backbone flexibility in computational protein design. Curr. Opin. Biotechnol. 20, 420–428 (2009).

    CAS  PubMed  Google Scholar 

  71. Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible backbone protein-protein docking for challenging targets. Bioinformatics 34, 3461–3469 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Roy Burman, S. S., Yovanno, R. A. & Gray, J. J. Flexible backbone assembly and refinement of symmetrical homomeric complexes. Structure 27, 1041–1051.e8 (2019).

    CAS  PubMed  Google Scholar 

  73. DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & André, I. Modeling symmetric macromolecular structures in Rosetta3. PLoS One 6, e20450 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Meiler, J. & Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

    CAS  PubMed  Google Scholar 

  75. Fu, D. Y. & Meiler, J. Predictive power of different types of experimental restraints in small molecule docking: a review. J. Chem. Inf. Model. 58, 225–233 (2018).

    CAS  PubMed  Google Scholar 

  76. Fu, D. Y. & Meiler, J. RosettaLigandEnsemble: a small-molecule ensemble-driven docking approach. ACS Omega 3, 3655–3664 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnson, D. K. & Karanicolas, J. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput. Biol. 9, e1002951 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson, D. K. & Karanicolas, J. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations. PLoS Comput. Biol. 11, e1004081 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Johnson, D. K. & Karanicolas, J. Ultra-high-throughput structure-based virtual screening for small-molecule inhibitors of protein-protein interactions. J. Chem. Inf. Model. 56, 399–411 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sircar, A., Kim, E. T. & Gray, J. J. RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res. 37, W474–W479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weitzner, B. D., Kuroda, D., Marze, N., Xu, J. & Gray, J. J. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82, 1611–1623 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Weitzner, B. D. et al. Modeling and docking of antibody structures with Rosetta. Nat. Protoc. 12, 401–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sivasubramanian, A., Sircar, A., Chaudhury, S. & Gray, J. J. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74, 497–514 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Marze, N. A., Lyskov, S. & Gray, J. J. Improved prediction of antibody VL-VH orientation. Protein Eng. Des. Sel. 29, 409–418 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Finn, J. A. et al. Improving loop modeling of the antibody complementarity-determining region 3 using knowledge-based restraints. PLoS One 11, e0154811 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Weitzner, B. D. & Gray, J. J. Accurate structure prediction of CDR H3 loops enabled by a novel structure-based C-terminal constraint. J. Immunol. 198, 505–515 (2017).

    CAS  PubMed  Google Scholar 

  87. DeKosky, B. J. et al. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc. Natl Acad. Sci. USA 113, E2636–E2645 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jeliazkov, J. R. et al. Repertoire analysis of antibody CDR-H3 loops suggests affinity maturation does not typically result in rigidification. Front. Immunol. 9, 413 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Norn, C. H., Lapidoth, G. & Fleishman, S. J. High-accuracy modeling of antibody structures by a search for minimum-energy recombination of backbone fragments. Proteins 85, 30–38 (2017).

    CAS  PubMed  Google Scholar 

  90. Lapidoth, G., Parker, J., Prilusky, J. & Fleishman, S. J. AbPredict 2: a server for accurate and unstrained structure prediction of antibody variable domains. Bioinformatics 35, 1591–1593 (2019).

    CAS  PubMed  Google Scholar 

  91. Sircar, A. & Gray, J. J. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput. Biol. 6, e1000644 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Sircar, A., Sanni, K. A., Shi, J. & Gray, J. J. Analysis and modeling of the variable region of camelid single-domain antibodies. J. Immunol. 186, 6357–6367 (2011).

    CAS  PubMed  Google Scholar 

  93. Adolf-Bryfogle, J. et al. RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLoS Comput. Biol. 14, e1006112 (2018).

    PubMed  PubMed Central  Google Scholar 

  94. North, B., Lehmann, A. & Dunbrack, R. L. Jr. A new clustering of antibody CDR loop conformations. J. Mol. Biol. 406, 228–256 (2011).

    CAS  PubMed  Google Scholar 

  95. King, C. et al. Removing T-cell epitopes with computational protein design. Proc. Natl Acad. Sci. USA 111, 8577–8582 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nivón, L. G., Bjelic, S., King, C. & Baker, D. Automating human intuition for protein design. Proteins 82, 858–866 (2014).

    PubMed  Google Scholar 

  97. Lapidoth, G. D. et al. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83, 1385–1406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Baran, D. et al. Principles for computational design of binding antibodies. Proc. Natl Acad. Sci. USA 114, 10900–10905 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vaissier Welborn, V. & Head-Gordon, T. Computational design of synthetic enzymes. Chem. Rev. 119, 6613–6630 (2019).

    CAS  PubMed  Google Scholar 

  100. Marcos, E. & Silva, D.-A. Essentials of de novo protein design: methods and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1374 (2018).

    Google Scholar 

  101. Marcos, E. et al. Principles for designing proteins with cavities formed by curved β sheets. Science 355, 201–206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, J., Panaitiu, A. E. & Grigoryan, G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc. Natl Acad. Sci. USA 117, 1059–1068 (2020).

    CAS  PubMed  Google Scholar 

  103. Jacobs, T. M. et al. Design of structurally distinct proteins using strategies inspired by evolution. Science 352, 687–690 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for requirement-driven protein design in the Rosetta modeling program. J. Chem. Inf. Model. 58, 895–901 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lapidoth, G. et al. Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nat. Commun. 9, 2780 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. Huang, P.-S. et al. RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS One 6, e24109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Leaver-Fay, A., Jacak, R., Stranges, P. B. & Kuhlman, B. A generic program for multistate protein design. PLoS One 6, e20937 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sevy, A. M., Jacobs, T. M., Crowe, J. E. Jr. & Meiler, J. Design of protein multi-specificity using an independent sequence search reduces the barrier to low energy sequences. PLoS Comput. Biol. 11, e1004300 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Sevy, A. M. et al. Multistate design of influenza antibodies improves affinity and breadth against seasonal viruses. Proc. Natl Acad. Sci. USA 116, 1597–1602 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sauer, M. F., Sevy, A. M., Crowe, J. E. & Meiler, J. Multi-state design of flexible proteins predicts sequences optimal for conformational change. PLoS Comput. Biol. 16, e1007339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonet, J. et al. Rosetta FunFolDes — a general framework for the computational design of functional proteins. PLoS Comput. Biol. 14, e1006623 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Kroncke, B. M. et al. Documentation of an imperative to improve methods for predicting membrane protein stability. Biochemistry 55, 5002–5009 (2016).

    CAS  PubMed  Google Scholar 

  114. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–14121 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kortemme, T., Kim, D. E. & Baker, D. Computational alanine scanning of protein-protein interfaces. Sci. STKE 2004, pl2 (2004).

    PubMed  Google Scholar 

  116. Conchúir, Ó. et al. Web resource for standardized benchmark datasets, metrics, and Rosetta protocols for macromolecular modeling and design. PLoS One 10, e0130433 (2015).

    Google Scholar 

  117. Barlow, K. A. et al. Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation. J. Phys. Chem. B 122, 5389–5399 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J. Mol. Biol. 380, 742–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).

    CAS  Google Scholar 

  120. Dang, B. et al. De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. Proc. Natl Acad. Sci. USA 114, 10852–10857 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Alam, N. et al. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput. Biol. 13, e1005905 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Kozakov, D., Brenke, R., Comeau, S. R. & Vajda, S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392–406 (2006).

    CAS  PubMed  Google Scholar 

  123. Raveh, B., London, N. & Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78, 2029–2040 (2010).

    CAS  PubMed  Google Scholar 

  124. Pacella, M. S., Koo, C. E., Thottungal, R. A. & Gray, J. J. Using the RosettaSurface algorithm to predict protein structure at mineral surfaces. Methods Enzymol. 532, 343–366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lubin, J. H., Pacella, M. S. & Gray, J. J. A parametric Rosetta energy function analysis with LK peptides on SAM surfaces. Langmuir 34, 5279–5289 (2018).

    CAS  PubMed  Google Scholar 

  126. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D. & DiMaio, F. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, R. Y.-R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Labonte, J. W., Adolf-Bryfogle, J., Schief, W. R. & Gray, J. J. Residue-centric modeling and design of saccharide and glycoconjugate structures. J. Comput. Chem. 38, 276–287 (2017).

    CAS  PubMed  Google Scholar 

  129. Frenz, B. et al. Automatically fixing errors in glycoprotein structures with Rosetta. Structure 27, 134–139.e3 (2019).

    CAS  PubMed  Google Scholar 

  130. Nerli, S. & Sgourakis, N. G. CS-ROSETTA. Methods Enzymol. 614, 321–362 (2019).

    PubMed  Google Scholar 

  131. Rohl, C. A. & Baker, D. De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. J. Am. Chem. Soc. 124, 2723–2729 (2002).

    CAS  PubMed  Google Scholar 

  132. Yagi, H. et al. Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21, 883–890 (2013).

    CAS  PubMed  Google Scholar 

  133. Schmitz, C., Vernon, R., Otting, G., Baker, D. & Huber, T. Protein structure determination from pseudocontact shifts using ROSETTA. J. Mol. Biol. 416, 668–677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Pilla, K. B., Otting, G. & Huber, T. Pseudocontact shift-driven iterative resampling for 3d structure determinations of large proteins. J. Mol. Biol. 428, 522–532 (2016). 2 Pt B.

    CAS  PubMed  Google Scholar 

  135. Lange, O. F. & Baker, D. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80, 884–895 (2012).

    CAS  PubMed  Google Scholar 

  136. Bowers, P. M., Strauss, C. E. M. & Baker, D. De novo protein structure determination using sparse NMR data. J. Biomol. NMR 18, 311–318 (2000).

    CAS  PubMed  Google Scholar 

  137. Meiler, J. & Baker, D. Rapid protein fold determination using unassigned NMR data. Proc. Natl Acad. Sci. USA 100, 15404–15409 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Raman, S. et al. NMR structure determination for larger proteins using backbone-only data. Science 327, 1014–1018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lange, O. F. et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc. Natl Acad. Sci. USA 109, 10873–10878 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Reichel, K. et al. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints. Proteins 85, 812–826 (2017).

    CAS  PubMed  Google Scholar 

  141. Sgourakis, N. G. et al. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J. Am. Chem. Soc. 133, 6288–6298 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rossi, P. et al. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 83, 309–317 (2015).

    CAS  PubMed  Google Scholar 

  143. Demers, J.-P. et al. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat. Commun. 5, 4976 (2014).

    CAS  PubMed  Google Scholar 

  144. Thompson, J. M. et al. Accurate protein structure modeling using sparse NMR data and homologous structure information. Proc. Natl Acad. Sci. USA 109, 9875–9880 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Braun, T., Koehler Leman, J. & Lange, O. F. Combining evolutionary information and an iterative sampling strategy for accurate protein structure prediction. PLoS Comput. Biol. 11, e1004661 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Evangelidis, T. et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 9, 384 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Lange, O. F. Automatic NOESY assignment in CS-RASREC-Rosetta. J. Biomol. NMR 59, 147–159 (2014).

    CAS  PubMed  Google Scholar 

  148. Kuenze, G., Bonneau, R., Koehler Leman, J. & Meiler, J. Integrative protein modeling in RosettaNMR from sparse paramagnetic restraints. Structure 27, 1721–1734.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Aprahamian, M. L., Chea, E. E., Jones, L. M. & Lindert, S. Rosetta protein structure prediction from hydroxyl radical protein footprinting mass spectrometry data. Anal. Chem. 90, 7721–7729 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Aprahamian, M. L. & Lindert, S. Utility of covalent labeling mass spectrometry data in protein structure prediction with Rosetta. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.9b00101 (2019).

  151. Hauri, S. et al. Rapid determination of quaternary protein structures in complex biological samples. Nat. Commun. 10, 192 (2019).

    PubMed  PubMed Central  Google Scholar 

  152. Watkins, A. M. et al. Blind prediction of noncanonical RNA structure at atomic accuracy. Sci. Adv. 4, eaar5316 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Sripakdeevong, P., Kladwang, W. & Das, R. An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling. Proc. Natl Acad. Sci. USA 108, 20573–20578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Das, R. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz. PLoS One 8, e74830 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chou, F.-C., Sripakdeevong, P., Dibrov, S. M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    CAS  PubMed  Google Scholar 

  156. Chou, F.-C., Echols, N., Terwilliger, T. C. & Das, R. RNA structure refinement using the ERRASER-Phenix pipeline. in Nucleic Acid Crystallography 269–282 (Springer, 2016); https://doi.org/10.1007/978-1-4939-2763-0_17

  157. Kappel, K. & Das, R. Sampling native-like structures of RNA-protein complexes through Rosetta folding and docking. Structure 27, 140–151.e5 (2019).

    CAS  PubMed  Google Scholar 

  158. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Thyme, S. B. et al. Exploitation of binding energy for catalysis and design. Nature 461, 1300–1304 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ashworth, J. et al. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res. 38, 5601–5608 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Havranek, J. J. & Harbury, P. B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

    CAS  PubMed  Google Scholar 

  163. Thyme, S. B. et al. Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res. 42, 2564–2576 (2014).

    CAS  PubMed  Google Scholar 

  164. Thyme, S. B., Baker, D. & Bradley, P. Improved modeling of side-chain—base interactions and plasticity in protein—DNA interface design. J. Mol. Biol. 419, 255–274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yanover, C. & Bradley, P. Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. 39, 4564–4576 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ashworth, J. & Baker, D. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Nucleic Acids Res. 37, e73 (2009).

    PubMed  PubMed Central  Google Scholar 

  167. Thyme, S. B. et al. Massively parallel determination and modeling of endonuclease substrate specificity. Nucleic Acids Res. 42, 13839–13852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  PubMed  Google Scholar 

  169. Koehler Leman, J., Ulmschneider, M. B. & Gray, J. J. Computational modeling of membrane proteins. Proteins 83, 1–24 (2015).

    CAS  PubMed  Google Scholar 

  170. Yarov-Yarovoy, V., Schonbrun, J. & Baker, D. Multipass membrane protein structure prediction using Rosetta. Proteins 62, 1010–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Barth, P., Schonbrun, J. & Baker, D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl Acad. Sci. USA 104, 15682–15687 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Alford, R. F. et al. An integrated framework advancing membrane protein modeling and design. PLoS Comput. Biol. 11, e1004398 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Baugh, E. H., Lyskov, S., Weitzner, B. D. & Gray, J. J. Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One 6, e21931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Koehler Leman, J., Mueller, B. K. & Gray, J. J. Expanding the toolkit for membrane protein modeling in Rosetta. Bioinformatics 33, 754–756 (2017).

    PubMed  Google Scholar 

  175. Koehler Leman, J., Lyskov, S. & Bonneau, R. Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP. BMC Bioinformatics 18, 115 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Koehler Leman, J. & Bonneau, R. A novel domain assembly routine for creating full-length models of membrane proteins from known domain structures. Biochemistry https://doi.org/10.1021/acs.biochem.7b00995 (2017).

  177. Lai, J. K., Ambia, J., Wang, Y. & Barth, P. Enhancing structure prediction and design of soluble and membrane proteins with explicit solvent-protein interactions. Structure 25, 1758–1770.e8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Alford, R. F., Fleming, P. J., Fleming, K. G. & Gray, J. J. Protein structure prediction and design in a biologically realistic implicit membrane. Biophys. J. 118, 2042–2055 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    CAS  PubMed  Google Scholar 

  180. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, 2009).

  181. Nivedha, A. K., Thieker, D. F., Makeneni, S., Hu, H. & Woods, R. J. Vina-Carb: improving glycosidic angles during carbohydrate docking. J. Chem. Theory Comput. 12, 892–901 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Gray, J. J., Chaudhury, S., Lyskov, S. & Labonte, J. W. The PyRosetta interactive platform for protein structure prediction and design: a set of educational modules. (CreateSpace, 2014).

  183. Schenkelberg, C. D. & Bystroff, C. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite. Bioinformatics 31, 4023–4025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kleffner, R. et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 33, 2765–2767 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Cooper, S., Sterling, A. L. R., Kleffner, R., Silversmith, W. M. & Siegel, J. B. Repurposing citizen science games as software tools for professional scientists. in Proc. 13th Int. Conf. Foundations of Digital Games – FDG ’18 https://doi.org/10.1145/3235765.3235770 (ACM Press, 2018).

  186. Lyskov, S. et al. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 8, e63906 (2013).

    PubMed  PubMed Central  Google Scholar 

  187. Moretti, R., Lyskov, S., Das, R., Meiler, J. & Gray, J. J. Web-accessible molecular modeling with Rosetta: the Rosetta Online Server that Includes Everyone (ROSIE). Protein Sci. 27, 259–268 (2018).

    CAS  PubMed  Google Scholar 

  188. Institute for Protein Design. Audacious Project. https://www.ipd.uw.edu/audacious/ (2019).

  189. Mulligan, V.K. et al. Designing peptides on a quantum computer. Preprint at bioRxiv https://doi.org/10.1101/752485 (2019).

  190. Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS One 6, e23294 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Marcos, E. et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat. Struct. Mol. Biol. 25, 1028–1034 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. DeLuca, S., Khar, K. & Meiler, J. Fully flexible docking of medium sized ligand libraries with RosettaLigand. PLoS One 10, e0132508 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Davis, I. W. & Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol. 385, 381–392 (2009).

    CAS  PubMed  Google Scholar 

  194. Gowthaman, R. et al. DARC: mapping surface topography by ray-casting for effective virtual screening at protein interaction sites. J. Med. Chem. 59, 4152–4170 (2016).

    CAS  PubMed  Google Scholar 

  195. Khar, K. R., Goldschmidt, L. & Karanicolas, J. Fast docking on graphics processing units via Ray-Casting. PLoS One 8, e70661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Gowthaman, R., Lyskov, S. & Karanicolas, J. DARC 2.0: improved docking and virtual screening at protein interaction sites. PLoS One 10, e0131612 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Toor, J. S. et al. A recurrent mutation in anaplastic lymphoma kinase with distinct neoepitope conformations. Front. Immunol. 9, 99 (2018).

    PubMed  PubMed Central  Google Scholar 

  198. Gowthaman, R. & Pierce, B. G. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res. 46 W1, W396–W401 (2018).

    Google Scholar 

  199. Blacklock, K. M., Yang, L., Mulligan, V. K. & Khare, S. D. A computational method for the design of nested proteins by loop-directed domain insertion. Proteins 86, 354–369 (2018).

    CAS  PubMed  Google Scholar 

  200. Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. Raveh, B., London, N., Zimmerman, L. & Schueler-Furman, O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Sedan, Y., Marcu, O., Lyskov, S. & Schueler-Furman, O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res. 44 W1, W536–W541 (2016).

    Google Scholar 

  203. Rubenstein, A. B., Pethe, M. A. & Khare, S. D. MFPred: rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory. PLoS Comput. Biol. 13, e1005614 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Pacella, M. S. & Gray, J. J. A benchmarking study of peptide–biomineral interactions. Cryst. Growth Des. 18, 607–616 (2018).

    CAS  Google Scholar 

  205. Wang, R. Y.-R. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat. Methods 12, 335–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. DiMaio, F. et al. Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods 10, 1102–1104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. DiMaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7, 291–294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Cheng, C. Y., Chou, F.-C. & Das, R. Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol. 553, 35–64 (2015).

    CAS  PubMed  Google Scholar 

  210. Sripakdeevong, P. et al. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat. Methods 11, 413–416 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Chou, F. C., Kladwang, W., Kappel, K. & Das, R. Blind tests of RNA nearest-neighbor energy prediction. Proc. Natl Acad. Sci. USA 113, 8430–8435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ford, A. S., Weitzner, B. D. & Bahl, C. D. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation. Protein Sci. 29, 43–51 (2020).

    CAS  PubMed  Google Scholar 

  213. Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl Acad. Sci. USA 108, 18949–18953 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Hooper, W. F., Walcott, B. D., Wang, X. & Bystroff, C. Fast design of arbitrary length loops in proteins using InteractiveRosetta. BMC Bioinformatics 19, 337 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RosettaCommons is supported by NIH R01 GM073151 to B. Kuhlman, NSF, the Packard Foundation, the Beckman Foundation, the Alfred P. Sloan Foundation and the Simons Foundation. This work was also supported by a 100,000,000 CPU-hour donation from Google Inc to P.C. and a 125,760,000 CPU-hour allocation on the Mira and Theta supercomputers through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program to D.B., F.D., A.L.-F. and V.K.M. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science user facility supported under Contract DE-AC02-06CH11357. Supported by AHA 18POST34080422 to G.K., AMED J-PRIDE JP18fm0208022h to D.K., the Biltema Foundation to B.E.C. and Boehringer Ingelheim Fonds to C.N.; computing was performed using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the United States to P.C.; DFG KU 3510/1-1 to G.K.; DP120100561 to T.H.; DP150100383 to T.H. and K.B.P.; EMBO long-term fellowship ALTF 698-2011 to A. Stein; EPFL-Fellows H2020 Marie Sklodowska-Curie to J.B.; European Research Council Grant 310873 to O.S.-F. and N.A.; European Research Council Grant 310873 to Y. Sedan and O.M.; European Research Council Starting grant 716058 to B.E.C. and A. Scheck; FT0991709 to T.H.; Foundation of Knut and Alice Wallenberg 20160023 to L.M.; a Hertz Foundation Fellowship to R.F.A.; the Howard Hughes Medical Institute to D.B.; Hyak supercomputer system supported in part by the University of Washington eScience Institute to the D.B. and F.D. labs; Israel Science Foundation 2017717 to O.S.-F. and N.A.; Japan Society for the Promotion of Science JP17K18113 to D.K.; MCB1330760 to S.D.K.; Marie Curie International Outgoing Fellowship FP7-PEOPLE-2011-IOF 298976 to E.M.; National Science Centre, Poland, 2018/29/B/ST6/01989 to D.G.; NIAID T32AI007244 to J.A.-B.; NIAID U19 AI117905 to A.M.S.; NIEHS P42ES004699 to J.B.S.; NIGMS Ruth L Kirschstein National Research Service Award T32GM008268 to P.C.; NIGMS T32 GM007628 to B.J.B.; NIH 1R35 GM122579 to R. Das; NSF DMREF award 1728858 and DMR-0820341 to R.B.; NIH 1UH2CA203780 to S.C. and F.K.; NIH 5F32GM110899-02 to T.L.; NIH F31GM123616 to J.R.J.; NIH F32CA189246 to J.W.L.; NIH P01 U19AI117905, R01 AI113867 and UM1 Al100663 to W.S.; NIH R00 GM120388 to S.H.; NIH R01 AI143997 to N.G.S.; NIH R01 DK097376, R01 GM080403, R01 HL122010 and R01 GM099842 to J. Meiler; NIH R01 GM073960, R01 GM117968 and R01067553 to B. Kuhlman; NIH R01 GM076324 to J.B.S.; NIH R01 GM127578 and R01 GM078221 to J.J.G.; NIH R01 GM084453 to R. Dunbrack; NIH R01 GM088277 and R01 GM121487 to P. Bradley; NIH R01 GM092802, R01 GM092802, R01084433 and GM092802 to D.B.; NIH R01 GM098101, R01 GM110089 and R01 GM117189 to T.K.; NIH R01 GM099959 to J.K.; NIH R01 GM123089 to F.D.; NIH R01 GM126299 to B.G.P.; NIH R01 GM099827 to C.B.; NIH R01088277 to S.B.T.; NIH R21 AI121799 to J. Meiler; NIH R21 CA219847 and R21 GM102716 to R. Das; NIH R35 GM122517 to R. Dunbrack; NIH R35 GM125034 to N.G.S.; NIH RL1CA133832 to D.B.; NIH U19 AI117905 to J. Meiler; NIH/NCI Cancer Center support grant P30 CA006927 to J.K.; NSF 1507736 and NSF DMR 1507736 to J.J.G.; NSF 1627539, 1805510 and 1827246 to J.B.S.; NSF 1629879 to S.C.; NSF CHE 1305874, CISE 1629811 and CNS-1629811 to J. Meiler; NSF CHE 1750666 to S. Lindert; NSF DBI-1262182 and DBI-1564692 to T.K.; NSF GRF DGE-1433187 to A.R.; NSF Graduate Research Fellowships to R.F.A., K.K., B. Koepnick and S.B.T.; NSF MCB1330760 and MCB1716623 to S.D.K.; Open Philanthropy to B.C.; PhRMA Informatics Pre-Doctoral Fellowship U22879-001 to S.S.; a PhRMA Foundation Predoctoral Fellowship to D.Y.F.; RosettaCommons to L.G., A.R., F.D., S.C., A.W., M.S., C.G., K.B., R. Das, S.D.K., J. Koehler Leman and K.K.; Career Award at the Scientific Interface from Burroughs Wellcome Fund to S.E.B.; Simons Foundation to V.K.M., R.B., P.D.R. and J. Koehler Leman; a Stanford Graduate Fellowship to K.K.; a Starter Grant from the European Research Council to G.L.; Swiss National Science Foundation – NCCR Molecular Systems Engineering 51NF40-141825 to B.E.C.; Swiss National Science Foundation 310030_163139 to B.E.C.; Swiss National Science Foundation SNF 200021 160188 to L.M. and H.K.; UCSF/UCB Graduate Program in Bioengineering to X.P.; USA-Israel Binational Science Foundation 2009418 to B.R., L.Z. and N.L.; USA-Israel Binational Science Foundation 2009418 and 2015207 to O.S.-F. and N.A.; USA-Israel Binational Science Foundation 2015207 to A.K.; Washington Research Foundation Innovation Postdoctoral Fellowship to B.D.W.; XSEDE, which is supported by NSF ACI-1548562; NIH R01 GM097207 to P. Barth; and the MCB120101 XSEDE allocation to P. Barth. The authors would like to thank Jason C. Klima for his work on PyRosetta.

Author information

Authors and Affiliations

Authors

Contributions

J.K.L. wrote the manuscript with help from B.D.W. All authors edited and approved the manuscript and were substantially involved in developing the methods described, either by conception of the ideas or by implementing the methods into Rosetta. The idea for this paper was conceived by R.B.

Corresponding authors

Correspondence to Julia Koehler Leman or Richard Bonneau.

Ethics declarations

Competing interests

Rosetta software has been licensed to numerous non-profit and for-profit organizations. Rosetta Licensing is managed by UW CoMotion, and royalty proceeds are managed by the RosettaCommons. Under institutional participation agreements between the University of Washington, acting on behalf of the RosettaCommons, their respective institutions may be entitled to a portion of revenue received on licensing Rosetta software including programs described here. D.B., L.M., D.G., J.M., O.S.-F., J.J.G., N.G.S., S.L., J.K., R.B., T.K. and P.B. are unpaid board members of the RosettaCommons. As members of the Scientific Advisory Board of Cyrus Biotechnology, D.B. and J.J.G. are granted stock options. Y.S., I.C.K., S.M.L., B.F., K.R.K. and R.E.P. are employed at Cyrus Biotechnology with granted stock options. Cyrus Biotechnology distributes the Rosetta software. B.D.W. and S.E.B. hold equity in Lyell Immunopharma. V.K.M. is a cofounder of and shareholder in Menten Biotechnology Labs, Inc. The content of this manuscript is relevant to work performed at Lyell and Menten. J.B.S. is a cofounder and shareholder of Digestiva, Inc. and PvP Biologics Inc. D.B. is a cofounder of, shareholder in, or advisor to the following companies: ARZEDA, PvP Biologics, Cyrus Biotechnology, Cue Biopharma, Icosavax, Neoleukin Therapeutics, Lyell Immunotherapeutics, Sana Biotechnology and A-Alpha Bio.

Additional information

Peer review information Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leman, J.K., Weitzner, B.D., Lewis, S.M. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods 17, 665–680 (2020). https://doi.org/10.1038/s41592-020-0848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0848-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing