Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Illumination guidelines for ultrafast pump–probe experiments by serial femtosecond crystallography

Abstract

Time-resolved crystallography with X-ray free-electron lasers enables structural characterization of light-induced reactions on ultrafast timescales. To be biologically and chemically relevant, such studies must be carried out in an appropriate photoexcitation regime to avoid multiphoton artifacts, a common issue in recent studies. We describe numerical and experimental approaches to determine how many photons are needed for single-photon excitation in microcrystals, taking into account losses by scattering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interaction of an incident light beam with a sample delivery jet and the crystals therein.

Similar content being viewed by others

Data availability

The source data underlying Fig. 1 are provided as a Source Data file.

Code availability

The depth-dependent photon absorption regimes inside crystals can be calculated using a Python script or an Excel analysis sheet, both of which are publicly available on GitHub (https://github.com/MGruenbein/pump-probe-experiments). The code for calculating the reflectance and for ray tracing is available on request.

References

  1. Arnlund, D. et al. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat. Methods 11, 923–926 (2014).

    Article  CAS  Google Scholar 

  2. Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser.Science 361, eaat0094 (2018).

    Article  Google Scholar 

  3. Barends, T. R. M. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015).

    Article  CAS  Google Scholar 

  4. Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    Article  CAS  Google Scholar 

  5. Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).

    Article  CAS  Google Scholar 

  6. Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177 (2019).

    Article  Google Scholar 

  7. Hutchison, C. D. M. et al. Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein. Chem. Phys. Lett. 654, 63–71 (2016).

    Article  CAS  Google Scholar 

  8. Prokhorenko, V. I., Halpin, A., Johnson, P. J., Miller, R. J. & Brown, L. S. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J. Chem. Phys. 134, 085105 (2011).

    Article  Google Scholar 

  9. Miller, R. J. D., Pare-Labrosse, O., Sarracini, A. & Besaw, J. E. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance. Nat. Commun. 11, 1240 (2020).

    Article  CAS  Google Scholar 

  10. Cervelle, B., Cesbron, F. & Berthou, J. Morphologie et propriétés optiques des cristeaux de lysozyme de poule de type quadratique et orthorhombique. Acta Crystallogr. A. 30, 645–648 (1974).

    Article  Google Scholar 

  11. Liu, W., Ishchenko, A. & Cherezov, V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc. 9, 2123–2134 (2014).

    Article  CAS  Google Scholar 

  12. Kovacsova, G. et al. Viscous hydrophilic injection matrices for serial crystallography. IUCr. J 4, 400–410 (2017).

    Article  CAS  Google Scholar 

  13. Sugahara, M. et al. Hydroxyethyl cellulose matrix applied to serial crystallography. Sci. Rep. 7, 703 (2017).

    Article  Google Scholar 

  14. Conrad, C. E. et al. A novel inert crystal delivery medium for serial femtosecond crystallography. IUCr. J 2, 421–430 (2015).

    Article  CAS  Google Scholar 

  15. Sugahara, M. et al. Grease matrix as a versatile carrier of proteins for serial crystallography. Nat. Methods 12, 61–63 (2015).

    Article  CAS  Google Scholar 

  16. Claesson, E. et al. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. Elife 9, e53514 (2020).

    Article  Google Scholar 

  17. Kubo, M. et al. Nanosecond pump-probe device for time-resolved serial femtosecond crystallography developed at SACLA. J. Synchrotron Radiat. 24, 1086–1091 (2017).

    Article  CAS  Google Scholar 

  18. Woodhouse, J. et al. Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nat. Commun. 11, 741 (2020).

    Article  CAS  Google Scholar 

  19. Birge, R. R. et al. Biomolecular electronics: protein-based associative processors and volumetric memories. J. Phys. Chem. B. 103, 10746–10766 (1999).

    Article  CAS  Google Scholar 

  20. Nango, E. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016).

    Article  CAS  Google Scholar 

  21. Ujj, L. et al. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys. J. 75, 406–412 (1998).

    Article  CAS  Google Scholar 

  22. Tenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014).

    Article  CAS  Google Scholar 

  23. Sankaranarayanan, S., De Angelis, D., Rothman, J. E. & Ryan, T. A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  Google Scholar 

  24. Ng, M. et al. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463–474 (2002).

    Article  CAS  Google Scholar 

  25. Colletier, J. P. et al. Serial femtosecond crystallography and ultrafast absorption spectroscopy of the photoswitchable fluorescent protein IrisFP. J. Phys. Chem. Lett. 7, 882–887 (2016).

    Article  CAS  Google Scholar 

  26. Fenchel, T. & Patterson, D. J. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar. Microb. Food Webs 3, 9–19 (1988).

    Google Scholar 

  27. Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540, 288–291 (2016).

    Article  CAS  Google Scholar 

  28. Barends, T. R. et al. De novo protein crystal structure determination from X-ray free-electron laser data.Nature 505, 244–247 (2014).

    Article  CAS  Google Scholar 

  29. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).

    Article  CAS  Google Scholar 

  30. Gorel, A. et al. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat. Commun. 8, 1170 (2017).

    Article  Google Scholar 

  31. Grunbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9, 3487 (2018).

    Article  Google Scholar 

  32. Nogly, P. et al. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCr. J 2, 168–176 (2015).

    Article  CAS  Google Scholar 

  33. Craig F. Bohren & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, 2004).

  34. He, G. S., Qin, H.-Y. & Zheng, Q. Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: wavelength, size, and angle dependences. J. Appl. Phys. 105, 023110 (2009).

    Article  Google Scholar 

  35. Vastberg, A. & Lundborg, B. Signal intensity in the geometrical optics approximation for the magnetized ionosphere. Radio Sci. 31, 1579–1588 (1996).

    Article  Google Scholar 

  36. Weierstall, U., Spence, J. C. H. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Revi. Sci. Instr. 83, 035108 (2012).

    Article  CAS  Google Scholar 

  37. Amestoy, P. R., Duff, I. S. & L’Excellent, J. Y. Multifrontal parallel distributed symmetric and unsymmetric solvers. Computer Methods Appl. Mech. Eng. 184, 501–520 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Hartmann for providing the SEP10 sample, M. Fischer for the flagellates and R. Schlesinger for the purple membranes of bR. We thank T. Domratcheva, C. Brieke, T. Barends, M. Sliwa and B. Marekha for stimulating discussions, and O. Crégut for expert laser assistance. We thank R. Dümpert (Ceratonia) for advice on the microdiamonds. Funding was provided by the Max Planck Society (I.S.), the ANR-DFG project FEMTO-ASR (ANR- 14-CE35-0015-01, to S.H.) and by the Labex NIE (ANR-11-LABX-0058_NIE, to S.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.L.G., J.R. and I.S. designed experiments. G.N.K. and I.S. prepared microcrystalline samples. G.N.K. and M.K. embedded the samples in viscous media. M.L.G., G.N.K. and M.S. performed bleaching experiments. M.L.G., G.N.K., R.L.S., I.S. and S.H. performed ultrafast transient UV–vis spectroscopy. S.H. and R.B.D. contributed to the analysis. M.L.G., M.S., G.N.K., I.S. and S.H. analyzed the light scattering contribution. M.L.G. and S.L. performed calculations. R.B.D., R.L.S., J.R., S.H. and I.S. contributed discussions. M.L.G., R.B.D. and I.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Ilme Schlichting.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Arunima Singh and Allison Doerr were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–7, Tables 1–4 and References.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grünbein, M.L., Stricker, M., Nass Kovacs, G. et al. Illumination guidelines for ultrafast pump–probe experiments by serial femtosecond crystallography. Nat Methods 17, 681–684 (2020). https://doi.org/10.1038/s41592-020-0847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0847-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing