Supplementary Figure 1: HipSci data sparsity, replicates, and genotyping. | Nature Methods

Supplementary Figure 1: HipSci data sparsity, replicates, and genotyping.

From: Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes

Supplementary Figure 1

a, Distribution of the number of cells expressing a variant as well as b, the distribution of the number of alleles observed per cell that were used in souporcell clustering for HipSci mixture replicate 1 (replicates 2 and 3 are very similar, so not shown). c, Expression PCA of HipSci mixture replicate 2 (4832 cells) colored by genotype clusters from souporcell. d, and e, PCAs of the normalized cell-by-cluster loss matrix of HipSci mixture replicate 2 also colored by genotype cluster. f, Expression PCA of HipSci mixture replicate 3 (5144 cells) colored by genotype clusters. g and h, PCAs of normalized cell-by-cluster loss matrix of HipSci mixture replicate 3 colored by genotype cluster. i, Assessing genotype calling across souporcell, vireo, and scSplit. We plot true positive versus false positive genotype calls while sweeping the threshold on genotype likelihood. These are compared to a truth set obtained from variant calls on the WGS data j, Each method’s genotype calls versus the true genotype of each tool for a synthetic mixture of five HipSci lines with 6% doublets and 10% ambient RNA with a 0.95 probability threshold for each tool. The facets are the genotype calls made by each tool and the x-axis shows the correct assignments according to the WGS data. We observe that a major error mode for both vireo and scSplit compared to souporcell is that homozygous reference variants are mis-called as heterozygous because ambient RNA is not accounted for in these methods.

Back to article page