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Bench pressing with genomics benchmarkers
Some -omics tools can be more accurate, sensitive or efficient than others. Yet benchmarking is no tell-all.

Vivien Marx

Celebration is in order: a lab’s new 
software tool is testing well and ready 
for wider distribution. Then, it fares 

poorly in a tool comparison by another  
lab. Later, in a larger competition, the tool 
ranks near the bottom. Gone is the lab’s 
celebratory mood.

A tool might not rank as best overall, but 
if “it’s really precise,” that can be motivation 
to tweak the tool, says Serghei Mangul, a 
bioinformatician at the University of Southern 
California. Poorly chosen parameters can 
skew a comparison, says Kasper Lage, a 
computational biologist at Massachusetts 
General Hospital and the Broad Institute 
of MIT and Harvard. But even with well-
established methods, optimized parameter 
settings can be hard to find. Some tools are 
too hard to set up. “You never get them to 
run,” says Wolfgang Enard from Ludwig 
Maximilian University of Munich (LMU).

In a review1, Mangul and colleagues note 
that 72% of benchmarking studies they 
surveyed exclude information about how 
computationally efficient a method is. “I was 
really surprised,” says Mangul. In addition 
to knowing how precise or sensitive a tool 
is, it helps to know about its computational 
needs, such as how much memory is needed 
for it to work optimally. Often, bioinformatics 
methods are developed by postdoctoral 
fellows or students less familiar with best 
software engineering practices, says Lage.  
“So obviously there will be a certain ‘spaghetti 
code’ aspect to the pipelines,” he says. Labs are 
on their own to untangle poorly organized 
and hard-to-debug code. Benchmarkers have 
some suggestions for users and developers, 
even those with pasta issues.

Gold, copper, truth
It’s challenging to have a gold standard on 
hand for assessing what is ‘good’, says Justin 
Guinney, who directs the competition 
Dialogue on Reverse-Engineering Assessment 
and Methods (DREAM). He also heads 
computational biology at the non-profit 
Sage Bionetworks, on whose platform 
DREAM is run, and teaches at the University 
of Washington. Sometimes, says Gustavo 
Stolovitzky, the previous DREAM director 
and a researcher at IBM and Columbia 
University, the absence of a gold standard 
can be addressed by letting teams make 

predictions. Then the challenge organizers 
verify those on data that include additional 
measurements, as has happened in a challenge 

on RNA splice isoforms. The absence of gold 
standards leads organizers to think about 
“how to create good, even if imperfect, gold 
standards, which we sometime call ‘copper’ 
standards,” says Stolovitzky.

Ground-truth networks are “still a 
very thorny problem,” says T. M. Murali, a 
bioinformatics researcher at Virginia Tech. 
As he and his group explored ways to infer 
gene regulatory networks from single-cell 
transcriptional data, they were dissatisfied 
and began benchmarking methods, which 
“mushroomed into the BEELINE2 project,” 
says Murali. It’s a pipeline for labs to 
evaluate how accurate, robust and efficient 
algorithms are. The team’s prep work 
included dockerizing all the algorithms to 
also enable uniform access in spite of the 
tools’ language diversity: R, Matlab, Python, 
Julia and F#. Murali’s group needed ground-
truth networks to simulate datasets. Those 
ground truths had to be compiled: the team 
used fully synthetic networks curated from 
the literature, such as a comparison and 
pipeline of single-cell trajectory inference 
methods with datasets from researchers at 
Ghent University and elsewhere3; they also 

User Reports

Benchmarking and access to benchmarking results for scientific tools should be easier, perhaps more 
qualitative and humanly informative, says Marc Salit, who is at SLAC National Accelerator Laboratory. 
“So long as benchmarking is difficult to access and esoteric, the methods will be limited in their impact,” 
he says. Credit: TCmake_photo / iStock / Getty Images Plus

Bioinformatics tools and pipelines can have a 
certain ‘spaghetti code’ aspect to them, says 
Kasper Lage, MGH/Broad Institute, since they are 
often not written by people who know software-
engineering best practices. Credit: Zhemchuzhina 
/ iStock / Getty Images Plus
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curated various models of cellular processes 
from the scientific literature; and they built 
BoolODE, a computational environment in 
which a Boolean function describes every 
gene in the network. When they simulated 
single-cell transcriptional data from these 
networks and tested the algorithms, some 
were more accurate than others. The ranking 
of algorithms according to how well they did 
on simulated datasets “sort of flipped when 
we ranked them on the Boolean networks,” he 
says. The ranking of the methods on Boolean 
models was similar to rankings achieved with 
experimental single-cell RNA-seq datasets, 
which suggests the Boolean models are 
similar to “the real ground-truth networks,” 
he says. There’s a need for methods in this 
space, even though “the ground truth is still 
very hard to define.”

Real data, simulated data
“Simulated data is imperfect,” says Guinney, 
but it’s been essential in many of the DREAM 
Challenges, especially for genomics tool 
evaluations. With simulated data, one 
has to carefully state all the assumptions 
that went into data generation so the tool 
developers and users can understand the 
limitations of what is known and what can be 
evaluated. The data used for benchmarking 
should represent the problems faced by 
people interested in the solutions, says the 
Broad Institute’s Juan Caicedo, who has 
run a competition in micrograph image 
analysis. “Simulated data is not good for 
benchmarking, but sometimes there is no 
other option because the data is expensive 
to create or cannot be made public,” he says. 
Data availability is definitely a limitation with 
comprehensive benchmarks. There are roles 
for real data and for simulated data, “but the 
limitations of both should be understood,” 
says Justin Zook, who co-leads the public–
private consortium Genome in a Bottle 
(GIAB), hosted by the National Institute 
of Standards and Technology (NIST) and 
focused on genomics reference materials  
and data. Purely simulated data usually 
cannot represent all the biases and errors  
that occur in real data, he says, though  

there are approaches that modify real data.  
That includes introducing variants into 
reads or mixing real data from two 
samples together. Those do a better job of 
representing the biases and errors that occur 
in real data. The disadvantages of real data are 
that the truth may not be known, says Zook, 
such as in the ‘truth’ about the most difficult 
regions of the genome. Scientists might not 
be able to get real data from samples that 
have the variants of interest to a lab, such 
as “rare, clinically interesting variants.” Not 
only should performance from real and 
simulated data be interpreted with care, a 
method’s true performance will likely be 
worse than the performance benchmarked 
with real or simulated data. The discussion of 
whether or not to use synthetic data has been 
present since the first DREAM Challenges 
discussions, says Stolovitzky, “and given the 
complexities of biology, it will continue to 
play a role in the foreseeable future.” Before 
launching the first DREAM competition he 
and his colleagues thought about consensus, 
and in a paper4 on the subject they point out 
that in silico networks offer an “ideal model.” 
“However, even the most biologically inspired 
among synthetic models is far removed from 
an actual biological counterpart,” they noted. 
But given the role those networks play in  
the assessment of reverse-engineering 
methods, they decided to include them in  
the DREAM Challenges.

Mangul thinks labs should try to use 
both simulated and experimental data, if 
available. With simulated data, labs can 
explore many parameters, such as different 
levels of genomic coverage or parameters 
related to the sequencer instrument itself. 
If experimental data are not available, one 
can try to use the properties of the real 
data to give the simulated data some of 
those properties. One can insert mutations 
into simulated reads and, with high-
coverage whole-genome data, one can use 
the many reads to call single-nucleotide 
polymorphisms at 1× coverage. “That can 

potentially be a gold standard,” he says. 
Then one can computationally ‘subsample’: 
reduce the coverage to 1× so labs can 
benchmark tools on how well they call SNPs 
at 1× coverage. “You need both,” says LMU 
researcher Ines Hellmann of simulated and 
real data. “We tried to make simulations as 
realistic as possible,” she says. The team used 
powsimR to estimate, simulate and evaluate 
single-cell RNA-seq experiments. A lab will 
want to check whether the algorithm can do 
what the developers expect it to do and assess 
simulations to check which real situations are 
captured. One needs a ground truth — a true-
positive rate and a false-negative rate. But, 
she says, in single-cell techniques it’s difficult 
to get replicates for a single cell, so there’s no 
way to get around simulations.

It’s still early days for the single-cell 
field, says Guinney. At some point the 
field may coalesce in a way that mirrors 
events with microarrays over a decade ago. 
The MicroArray Quality Control project 
addressed issues related to reliability and 
reproducibility. “Right now, it feels like 
there are too many degrees of freedom to 
robustly benchmark single-cell pipelines, 
but hopefully these will reduce in time to 
make the comparison problem tractable,” 
he says. He and his colleagues are running 
single-cell challenges today, but these focus 
on a downstream question using single-cell 
datasets derived from a common platform.

Making benchmarks
Especially in genomics, with its wide tool-
range, users save time when a benchmark 
includes metrics such as accuracy, 
running speed, ease of use or deployment, 
reproducibility and stability, says Caicedo. 
Benchmarks need rigor, and if whoever 
ran the benchmark “forgot to incorporate 
realistic assumptions in the experiments, 
then the benchmark may not be completely 
useful,” he says. For an individual lab’s 
focused needs, flexible benchmarks might 
work well. All benchmarks are good, he 
says, but results need to be interpreted 
within a benchmark’s scope. That avoids 
faulty generalizations about a software tool. 
There are software benchmarks, benchmark 
samples and combinations thereof. When 
using benchmark samples, labs can use 
their analysis method of choice and then 
test software tools to see how they perform 
against the benchmark set, says Zook. For 
variant calling, labs can use NIST GIAB 
reference materials, analyze with their 
preferred software tools, then compare using 
a benchmarking framework for ‘calling’ 
genomic variants developed by the Global 
Alliance for Genomics and Health (GA4GH) 
and others including GIAB5,6. Illumina offers 
a ‘truth set’ called Platinum Genomes, a 

For assessing what is good, one does not always 
have a gold standard on hand, says Justin Guinney, 
who directs the DREAM Challenges. Credit:  
F. Ramspott / DigitalVision Vectors / Getty
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whole genome sequenced at 50× depth. There 
are ‘small variant truth sets’ from GIAB and 
Platinum Genomes, such as variant calls from 
a pedigree of 17 people from 3 generations 
in the so-called CEPH/UTAH Pedigree 
1463. Academics, government agencies and 
companies, too, can join in on benchmarking. 
As Zook explains, both for GIAB and for the 
GA4GH Benchmarking Team, companies 
have contributed valuable data analyses 
and expertise. “They also help us minimize 
biases in our benchmarks against particular 
technologies,” he says. When GIAB evaluates 
draft benchmarks, the team asks community 
members to compare results obtained with 
their method to the benchmark and manually 
curate differences. “This helps ensure the 
benchmark accurately identifies errors in 
results from a variety of methods,” he says.

Backstage peek
As Stolovitzky explains, a member of his 
group took part in a DREAM Challenge  
only after leaving the group. He was  
confident his tool would rank well, but its 
placement was mediocre. “He told me that  
the experience made him appreciate the 
pitfalls of overfitting,” says Stolovitzky,  
who invented DREAM. Stolovitzky hopes  
that all participants, independent of  
ranking, can enjoy that the competition’s 
collective experience usually leads to a  
high-profile paper.

Lage says that a benchmarking 
competition does not always capture the 
diversity of a tool’s value, which is comparable 
to asking how good a baseball player is 
by testing how quickly he or she hits or 
runs under very controlled circumstances. 
One needs realistic expectations about 
benchmarking and data challenges, says 

Guinney. Both are good when posing specific 
questions with a set of associated metrics. 
Whether the question is a good one or 
metrics are correct or weighted appropriately 
“will always be open to criticism,” he says. 
Around 70% of DREAM Challenge prep, 
he says, is spent on metrics, because the 
organizers know these will heavily determine 
how people approach the question’s solution 
and the expected learning from the challenge. 
“Many participants are very good at ‘gaming’ 
the metrics,” says Guinney. They optimize 
tools to perform well in a challenge, but 
“it doesn’t always reflect ‘real life,’ as there 
are often many other factors to consider 
that cannot be captured in one — or even 
several — metrics.” Designing a challenge, 
he says, “gets people thinking deeply about 
what ‘good’ performance means and how 
it can be evaluated in a specific domain.” 
As an unbiased assessment, it convenes a 
community at a specific time and place to 
define and to try to exceed the state of the art.

Benchmarking competitions, challenges, 
and benchmark dataset and tool development 
complement one another, says Zook. The 
work in GIAB and GA4GH is about building 
ways for the community to assess and 
optimize the performance of sequencing and 
analysis tools, be it for an individual lab or 
for a benchmarking competition. “At their 
best, benchmarking competitions energize 
the community to represent the state of the 
art at a point in time, but it is challenging to 
keep up to date with continually evolving 
sequencing technologies and analysis 
methods,” he says. A limitation of both 
approaches — benchmarking competitions 
and challenges and benchmark set and tool 
development — is that “they tend to ignore 
the most challenging regions of the genome, 
where no benchmarks yet exist,” he says, 
“so results should be interpreted critically.” 
There is a need for ongoing benchmark set 
and benchmark tool development as new 
technologies and analysis methods enable 

characterization of increasingly challenging 
variants and genomic regions.

Small-lab perspective
Benchmarking is not what Enard, Hellmann 
and then-PhD student Beate Vieth and 
colleagues set out to do. The young technique 
of single-cell RNA sequencing intrigued 
them, says Enard, as a way of exploring 
differentially expressed genes relevant to 
brain development and characterizing 
induced pluripotent stem cells. Their 
assessment of tools7 converted them, a small 
team without a server farm, to benchmarkers 
for a little over two years. “We just kind of 
did it somehow,” says Hellmann. The LMU 
team took both computational and wet-lab 
aspects into account as they evaluated a total 
of around 3,000 potential analysis pipelines 
used to analyze scRNA-seq data, including 
mapping, imputation, normalization and 
differential expression approaches. The 
choice of normalization method turned out 
to have the largest effect on performance, 
the magnitude of which was unexpected, 
says Hellmann. “Using a bad normalization 
method is similar to having to sequence four 
times more cells,” says Enard.

Benchmarking can yield results that go 
against the intuition of a wet-lab biologist 
like himself, says Enard. A lab might pick the 
most sensitive method. But if the sensitive 
one is twice as sensitive yet ten times pricier, 
the same sum of money gives the lab five 
times more cells. When researchers look at 
genes expressed at low levels, one method 
might detect the genes in ten percent of the 
cells and the other method in five percent 
of the cells. That’s when it’s better to make 
measurements in more cells, he says. Wet-
lab intuition might not lead to the best 
decisions — for example, about sample 
size or choice of method. The process gave 
them a deep understanding of tools for 
processing scRNA-seq data, says Enard, 

A benchmarking competition does not always 
capture the diversity of a tool’s value. It’s like 
asking how good a baseball player is by testing 
how quickly he or she hits or runs in very controlled 
circumstances, says Kasper Lage, MGH/Broad 
Institute. Credit: E. Dewalt / Springer Nature

Ines Hellmann, a computer scientist, and 
Wolfgang Enard, a biologist, enjoy working 
together. He feels like the luckier one. Hellmann 
could work with any experimental biologist, but 
he would have a harder time finding the right 
computational colleague. Credit: C. Bleese

The most expensive method might not always 
be the best one in all situations, and wet-lab 
intuitions don’t always work, says Wolfgang 
Enard, LMU Munich. Credit: F. Ramspott / 
DigitalVision Vectors / Getty
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which is relevant for individual labs. A user 
wants to know what question a tool was 
developed for and know about assumptions 
built into the tool, says Hellmann. “That’s 
why I got into benchmarking, because I 
don’t like to use things I don’t understand,” 
she says. Most tools will have their benefits 
and applications, she says. “There might be a 
niche for most of them.” When a technology 
begins to emerge, benchmarking is crucial for 
individual labs, says Enard. Over time, usage 
converges on standards. Then big consortia 
enter the picture, as has happened with 
RNA-sequencing, and they can do large-scale 
comparisons that small labs cannot.

Hellmann points out that many in the 
computational space like methods that 
run faster than others. But some labs have 
precious samples, which is when it makes 
little difference if a method takes a few 
extra hours, she says. Enard, a biologist, and 
Hellmann, a computer scientist, say they 
enjoy working together. In benchmarking 
both skill sets are needed, especially as tools 
get more complex, he says. He feels like 
the luckier one. Hellmann could choose to 
work with any experimental biologist, but he 
would have a harder time finding the right 
computational colleague.

Continuous benchmarking
Marc Salit, a colleague of Zook’s, says that 
benchmarking is hard because “we have 
no ‘perfect’ samples or datasets.” Salit used 
to be at NIST and now directs the Joint 
Initiative for Metrology in Biology at SLAC 
National Accelerator Laboratory and teaches 
in Stanford University’s departments of 
bioengineering and pathology. Synthetic data 
may be redundant but are also not perfect. 
Many aspects of performance need to be 
measured and benchmarked in genomics, 
and sometimes those aspects are mutually 
exclusive. There is plenty that makes 
benchmarking imperfect: that lack of perfect 
samples or data, he says, and the fact that “the 
metrics aren’t very predictive of performance 
on an arbitrary sample being queried for  
an arbitrary question.” Another factor is  
“a constantly shifting landscape,” he says. 
Some benchmarks reported at a single point 
in time become obsolete quickly. This has led 
to the concept of ongoing evaluation.

Ongoing benchmarking is tough but 
something to strive for, says Murali. He 
is setting up a continuous integration 
framework such that BEELINE can integrate 
a new dataset or algorithm and generate 
results. Some methods involve many 
parameter searches. Add in the number of 
datasets and algorithms and “it’s a pretty 
massive computation,” he says. “I hope by  
the end of this semester we will have 
something up and ready.” Given that new 

technologies and analysis methods enable 
characterization of increasingly challenging 
variants and genomic regions, ongoing 
benchmark set and benchmark tool 
development is needed, says Zook.

At DREAM, Guinney says he and his 
colleagues are developing ways to set up 
continuous benchmarking. For example, they 
ask participants to submit their algorithm 
as a re-runnable Docker container. “This 
allows us to evaluate old algorithms over 
time as new data become available,” he says. 
“Similarly, we can evaluate new algorithms 
on old data.” They call this approach “model-
to-data” (M2D). Cloud-ready software 
packages can help to avoid issues such as 
the diversity of software architectures or file 
formats, which can make it hard to reproduce 
and reuse methods in a given competition. 
With M2D data, the underlying dataset is 
not visible to users and the computing runs 
in environments that, for example, heed 
data privacy rules so they can still get an 
assessment of an algorithm’s performance 
while maintaining data privacy. DREAM has 
run several M2D challenges and encountered 
a bundle of logistical and technical 
issues, such as estimating computational 
resources the methods need. Continuous 
benchmarking avoids frozen-in-time 
benchmarked results. The Kaggle imaging 
competition that Caicedo and colleagues 
run is “never ending,” says Caicedo. As labs 
develop methods, people can try new things 
and the leaderboard updates continuously. 
“You wake up one morning and your method 
is not in the top of the list anymore,” he says. 
The field of computer vision has a few live 
benchmarks, “but I’m not aware of such 
benchmarks in biology.” Perhaps this is 

because biologists do not like to reuse data 
to optimize methods, and there is a danger 
of overfitting algorithms to data. Fresh data 
might present difficulties for methods, he 
says. That means one would need to keep 
adding new test cases to the challenge to keep 
it alive and prevent saturation.

Die-hard habits
Sometimes habits die hard. TopHat was  
long a highly used tool, a spliced read  
mapper for RNA-seq reads. But it was highly 
used even after the developers released a 
successor. The developers clearly advise to 
use TopHat’s successor, HISAT. They note  
on their web page that TopHat is in a  
“low maintenance, low support stage as  
it is now superseded by HISAT2,” which 
serves the same purpose more efficiently.  
“I just had a paper to review,” says Hellmann. 
“They use TopHat.” It’s not the fault of the 
TopHat developers, says Enard. It’s that  
other scientists are using it. Perhaps it’s  
on a Galaxy server and someone neglected  
to check for the release of a newer tool  
or a different version of the tool, says 
Hellmann. “At some point they probably 
installed TopHat when it was still the tool  
of choice.”

Bioinformatics does not talk much about 
tool retirement, says Mangul, and labs use 
TopHat, which may or may not be the best 
tool. At one time it, or any tool, was perhaps 
the best or only available one and people liked 
the results. He believes that bioinformatics 
can shape science in a methodological way, 
especially now that so many public datasets 
are available. These data can be used to 
make the kinds of discoveries possible in 
a wet lab. “In that sense, benchmarking 
is crucial because we want to use the best 
tools.” Many aspects can get in the way, such 
as the “self-assessment trap,” which is when 
the developers of a tool test it themselves 
in an unsystematic way. “Best,” he says, can 
be defined in many different ways in many 
matrices, but there will be a “most suitable” 
tool for a given task. ❐

Vivien Marx
Technology editor for Nature Methods.  
e-mail: v.marx@us.nature.com
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