Purification and enrichment of specific chromatin loci

Abstract

Understanding how chromatin is regulated is essential to fully grasp genome biology, and establishing the locus-specific protein composition is a major step toward this goal. Here we explain why the isolation and analysis of a specific chromatin segment are technically challenging, independently of the method. We then describe the published strategies and discuss their advantages and limitations. We conclude by discussing why significant technology developments are required to unambiguously describe the composition of small single loci.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The potential information gained from locus-specific research depends on the target sample enrichment.
Fig. 2: Signal-to-noise ratio issues.
Fig. 3: Different approaches for locus-specific chromatin characterization.
Fig. 4: Major limitations of the CRISPR-dCas9- and TALE-based targeting systems.

References

  1. 1.

    Kornberg, R. D. & Lorch, Y. Chromatin rules. Nat. Struct. Mol. Biol. 14, 986–988 (2007).

    CAS  Google Scholar 

  2. 2.

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  3. 3.

    Engelen, E. et al. Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry. Nat. Commun. 6, 7155 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ji, X. et al. Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc. Natl Acad. Sci. USA 112, 3841–3846 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Mohammed, H. et al. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat. Protoc. 11, 316–326 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Rafiee, M. R., Girardot, C., Sigismondo, G. & Krijgsveld, J. Expanding the circuitry of pluripotency by selective isolation of chromatin-associated proteins. Mol. Cell 64, 624–635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    van den Berg, D. L. et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 6, 369–381 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Soldi, M. & Bonaldi, T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol. Cell. Proteom. 12, 764–780 (2013).

    CAS  Google Scholar 

  9. 9.

    Kadonaga, J. T. & Tjian, R. Affinity purification of sequence-specific DNA binding proteins. Proc. Natl Acad. Sci. USA 83, 5889–5893 (1986).

    CAS  PubMed  Google Scholar 

  10. 10.

    Mittler, G., Butter, F. & Mann, M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 19, 284–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    CAS  PubMed  Google Scholar 

  13. 13.

    Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Boffa, L. C., Carpaneto, E. M. & Allfrey, V. G. Isolation of active genes containing CAG repeats by DNA strand invasion by a peptide nucleic acid. Proc. Natl Acad. Sci. USA 92, 1901–1905 (1995).

    CAS  PubMed  Google Scholar 

  15. 15.

    Higashinakagawa, T., Wahn, H. & Reeder, R. H. Isolation of ribosomal gene chromatin. Dev. Biol. 55, 375–386 (1977).

    CAS  PubMed  Google Scholar 

  16. 16.

    Workman, J. L. & Langmore, J. P. Nucleoprotein hybridization: a method for isolating specific genes as high molecular weight chromatin. Biochemistry 24, 7486–7497 (1985).

    CAS  PubMed  Google Scholar 

  17. 17.

    Zhang, X. Y. & Hörz, W. Analysis of highly purified satellite DNA containing chromatin from the mouse. Nucleic Acids Res. 10, 1481–1494 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Déjardin, J. & Kingston, R. E. Purification of proteins associated with specific genomic Loci. Cell 136, 175–186 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Byrum, S. D., Raman, A., Taverna, S. D. & Tackett, A. J. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2, 198–205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Pourfarzad, F. et al. Locus-specific proteomics by TChP: targeted chromatin purification. Cell Rep. 4, 589–600 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Hamperl, S. et al. Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res. 42, e2 (2014).

    CAS  PubMed  Google Scholar 

  22. 22.

    Waldrip, Z. J. et al. A CRISPR-based approach for proteomic analysis of a single genomic locus. Epigenetics 9, 1207–1211 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Guillen-Ahlers, H. et al. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae. Genomics 107, 267–273 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    van Holde Kensal, E. Chromatin (Springer, 1989).

  25. 25.

    Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. J. Biol. Chem. 290, 26404–26411 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Müller-Ott, K. et al. Specificity, propagation, and memory of pericentric heterochromatin. Mol. Syst. Biol. 10, 746 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 4, 2848 (2013).

    PubMed  Google Scholar 

  28. 28.

    Majerská, J., Redon, S. & Lingner, J. Quantitative telomeric chromatin isolation protocol for human cells. Methods 114, 28–38 (2017).

    PubMed  Google Scholar 

  29. 29.

    Marzec, P. et al. Nuclear-receptor-mediated telomere insertion leads to genome instability in ALT cancers. Cell 160, 913–927 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Feng, X. et al. The telomere-associated homeobox-containing protein TAH1/HMBOX1 participates in telomere maintenance in ALT cells. J. Cell Sci. 126, 3982–3989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kappei, D. et al. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment. EMBO J. 32, 1681–1701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Conomos, D., Reddel, R. R. & Pickett, H. A. NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat. Struct. Mol. Biol. 21, 760–770 (2014).

    CAS  PubMed  Google Scholar 

  33. 33.

    Gong, Y., Handa, N., Kowalczykowski, S. C. & de Lange, T. PHF11 promotes DSB resection, ATR signaling, and HR. Genes Dev. 31, 46–58 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Li, J. S. et al. TZAP: A telomere-associated protein involved in telomere length control. Science 355, 638–641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Saksouk, N. et al. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56, 580–594 (2014).

    CAS  PubMed  Google Scholar 

  36. 36.

    Gauchier, M. et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci. Adv. 5, eaav3673 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Ide, S. & Dejardin, J. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. Nat. Commun. 6, 6674 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kennedy-Darling, J. et al. Discovery of chromatin-associated proteins via sequence-specific capture and mass spectrometric protein identification in Saccharomyces cerevisiae. J. Proteome Res. 13, 3810–3825 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Buxton, K. E. et al. Elucidating protein-DNA interactions in human alphoid chromatin via hybridization capture and mass spectrometry. J. Proteome Res. 16, 3433–3442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Dai, Y. et al. Multiplexed sequence-specific capture of chromatin and mass spectrometric discovery of associated proteins. Anal. Chem. 89(15), 7841–7846 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Fujita, T. & Fujii, H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem. Biophys. Res. Commun. 439, 132–136 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tsui, C. et al. dCas9-targeted locus-specific protein isolation method identifies histone gene regulators. Proc. Natl Acad. Sci. USA 115, E2734–E2741 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    CAS  PubMed  Google Scholar 

  46. 46.

    Byrum, S. D., Taverna, S. D. & Tackett, A. J. Purification of a specific native genomic locus for proteomic analysis. Nucleic Acids Res. 41, e195 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Fujita, T. et al. Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci. Rep. 3, 3171 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Griesenbeck, J., Boeger, H., Strattan, J. S. & Kornberg, R. D. Affinity purification of specific chromatin segments from chromosomal loci in yeast. Mol. Cell. Biol. 23, 9275–9282 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Fujita, T. & Fujii, H. Direct identification of insulator components by insertional chromatin immunoprecipitation. PLoS One 6, e26109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Roux, K. J., Kim, D. I. & Burke, B. BioID: a screen for protein-protein interactions. Curr. Protoc. Protein Sci. 74, 19.23.1–19.23.14 (2013).

    Google Scholar 

  51. 51.

    Schmidtmann, E., Anton, T., Rombaut, P., Herzog, F. & Leonhardt, H. Determination of local chromatin composition by CasID. Nucleus 7, 476–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Garcia-Exposito, L. et al. Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep. 17, 1858–1871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Qiu, W. et al. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system. Nucleic Acids Res. 47, e52 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gao, X. D. et al. C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat. Methods 15, 433–436 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Myers, S. A. et al. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 15, 437–439 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Korthout, T. et al. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biol. 16, e2005542 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Solomon, M. J. & Varshavsky, A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc. Natl Acad. Sci. USA 82, 6470–6474 (1985).

    CAS  PubMed  Google Scholar 

  58. 58.

    Schmiedeberg, L., Skene, P., Deaton, A. & Bird, A. A temporal threshold for formaldehyde crosslinking and fixation. PLoS One 4, e4636 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Festuccia, N. et al. Transcription factor activity and nucleosome organization in mitosis. Genome Res. 29, 250–260 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    O’Neill, L. P. & Turner, B. M. Immunoprecipitation of native chromatin: NChIP. Methods 31, 76–82 (2003).

    PubMed  Google Scholar 

  61. 61.

    Belov, M. E., Gorshkov, M. V., Udseth, H. R., Anderson, G. A. & Smith, R. D. Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal. Chem. 72, 2271–2279 (2000).

    CAS  PubMed  Google Scholar 

  62. 62.

    Keller, B. O. & Li, L. Detection of 25,000 molecules of Substance P by MALDI-TOF mass spectrometry and investigations into the fundamental limits of detection in MALDI. J. Am. Soc. Mass Spectrom. 12, 1055–1063 (2001).

    CAS  Google Scholar 

  63. 63.

    Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    CAS  PubMed  Google Scholar 

  64. 64.

    Searle, B. C. et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat. Commun. 9, 5128 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Pfammatter, S., Bonneil, E. & Thibault, P. Improvement of quantitative measurements in multiplex proteomics using high-field asymmetric waveform spectrometry. J. Proteome Res. 15, 4653–4665 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Baker, E. S. et al. Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Pfammatter, S. et al. A novel differential ion mobility device expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements. Mol. Cell. Proteom. 17, 2051–2067 (2018).

    CAS  Google Scholar 

  68. 68.

    Furlan, C. et al. Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nat. Commun. 10, 1525 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the Déjardin lab is supported by grants from ARC équipe labelisée 2016, from the ERC CoG METACHROM, from INCA, from the Fondation Schlumberger pour l’éducation et la recherche and from Merck (MSD Gnostic). M.G. is supported by the University of Montpellier and by ARC. The Vermeulen lab is part of the Oncode Institute, which is partly funded by the Dutch Cancer Society.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Michiel Vermeulen or Jérôme Déjardin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gauchier, M., van Mierlo, G., Vermeulen, M. et al. Purification and enrichment of specific chromatin loci. Nat Methods 17, 380–389 (2020). https://doi.org/10.1038/s41592-020-0765-4

Download citation

Further reading