Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Visualizing the genome in high resolution challenges our textbook understanding

Abstract

The relationship between the 4D folding of the genome and its function is an outstanding question in biology. A range of methods that probe the folding of the genome in space and time with unprecedented resolution have been developed. These methods, including chromosome conformation capture and high-resolution light and electron microscopy, are shedding new light on genome architecture and function. Here, we review the emerging picture of genome organization revealed by super-resolution and live-cell imaging. We compare and contrast population-based chromosome conformation capture approaches and imaging-based approaches and highlight future challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artist’s rendering of the different levels of genome organization and the methodologies that have identified each organizational unit.
Fig. 2: Super-resolution imaging of histone and DNA organization.
Fig. 3: Artist’s rendering of the methods for visualizing specific genomic sites.

Similar content being viewed by others

References

  1. Olins, A. L. & Olins, D. E. Spheroid chromatin units (v bodies). Science 183, 330–332 (1974).

    CAS  PubMed  Google Scholar 

  2. Woodcock, C. L. & Ghosh, R. P. Chromatin higher-order structure and dynamics. Cold Spring Harb. Perspect. Biol. 2, a000596 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Breiling, A., Turner, B. M., Bianchi, M. E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001).

    CAS  PubMed  Google Scholar 

  7. Cremer, T. & Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Padeken, J. & Heun, P. Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr. Opin. Cell Biol. 28, 54–60 (2014).

    CAS  PubMed  Google Scholar 

  9. Boyle, S. et al. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211–219 (2001).

    CAS  PubMed  Google Scholar 

  10. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Grob, S. & Cavalli, G. Technical Review: A hitchhiker’s guide to chromosome conformation capture. Methods Mol. Biol. 1675, 233–246 (2018).

    CAS  PubMed  Google Scholar 

  12. Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet. 13, 840–852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30, 90–98 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    CAS  PubMed  Google Scholar 

  17. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    PubMed  Google Scholar 

  18. Guo, Y. et al. CRISPR Inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944.e922 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS  PubMed  Google Scholar 

  25. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    CAS  PubMed  Google Scholar 

  27. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    CAS  PubMed  Google Scholar 

  28. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, F. et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

    CAS  PubMed  Google Scholar 

  30. Scheffer, M. P., Eltsov, M. & Frangakis, A. S. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc. Natl Acad. Sci. USA 108, 16992–16997 (2011).

    CAS  PubMed  Google Scholar 

  31. McDowall, A. W., Smith, J. M. & Dubochet, J. Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 5, 1395–1402 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maeshima, K. & Eltsov, M. Packaging the genome: the structure of mitotic chromosomes. J. Biochem. 143, 145–153 (2008).

    CAS  PubMed  Google Scholar 

  33. König, P., Braunfeld, M. B., Sedat, J. W. & Agard, D. A. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116, 349–372 (2007).

    PubMed  Google Scholar 

  34. Fussner, E. et al. Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep. 13, 992–996 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ricci, M. A., Manzo, C., García-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  36. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Lakadamyali, M. & Cosma, M. P. Advanced microscopy methods for visualizing chromatin structure. FEBS Lett. 589(20 Pt A), 3023–3030 (2015).

    CAS  PubMed  Google Scholar 

  38. Oddone, A., Vilanova, I. V., Tam, J. & Lakadamyali, M. Super-resolution imaging with stochastic single-molecule localization: concepts, technical developments, and biological applications. Microsc. Res. Tech. 77, 502–509 (2014).

    CAS  PubMed  Google Scholar 

  39. Otterstrom, J. et al. Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Res. 47, 8470–8484 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Fang, K. et al. Super-resolution imaging of individual human subchromosomal regions in situ reveals nanoscopic building blocks of higher-order structure. ACS Nano 12, 4909–4918 (2018).

    CAS  PubMed  Google Scholar 

  41. Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293.e287 (2017).

    CAS  PubMed  Google Scholar 

  42. Xu, J. et al. Super-resolution imaging of higher-order chromatin structures at different epigenomic states in single mammalian cells. Cell Rep. 24, 873–882 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferrai, C., de Castro, I. J., Lavitas, L., Chotalia, M. & Pombo, A. Gene positioning. Cold Spring Harb. Perspect. Biol. 2, a000588 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e1510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    CAS  PubMed  Google Scholar 

  46. Beliveau, B. J. et al. In situ super-resolution imaging of genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods Mol. Biol. 1663, 231–252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Imakaev, M. V., Fudenberg, G. & Mirny, L. A. Modeling chromosomes: beyond pretty pictures. FEBS Lett. 589(20 Pt A), 3031–3036 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marti-Renom, M. A. & Mirny, L. A. Bridging the resolution gap in structural modeling of 3D genome organization. PLOS Comput. Biol. 7, e1002125 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ozer, G., Luque, A. & Schlick, T. The chromatin fiber: multiscale problems and approaches. Curr. Opin. Struct. Biol. 31, 124–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nicodemi, M. & Pombo, A. Models of chromosome structure. Curr. Opin. Cell Biol. 28, 90–95 (2014).

    CAS  PubMed  Google Scholar 

  57. Mirny, L. A. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsukamoto, T. et al. Visualization of gene activity in living cells. Nat. Cell Biol. 2, 871–878 (2000).

    CAS  PubMed  Google Scholar 

  59. Germier, T., Audibert, S., Kocanova, S., Lane, D. & Bystricky, K. Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 142, 16–23 (2018).

    PubMed  Google Scholar 

  60. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miyanari, Y., Ziegler-Birling, C. & Torres-Padilla, M. E. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20, 1321–1324 (2013).

    CAS  PubMed  Google Scholar 

  62. Chen, B., Zou, W., Xu, H., Liang, Y. & Huang, B. Efficient labeling and imaging of protein-coding genes in living cells using CRISPR-Tag. Nat. Commun. 9, 5065 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002–3007 (2015).

    CAS  PubMed  Google Scholar 

  64. Neguembor, M. V. et al. (Po)STAC (Polycistronic SunTAg modified CRISPR) enables live-cell and fixed-cell super-resolution imaging of multiple genes. Nucleic Acids Res. 46, e30 (2018).

    PubMed  Google Scholar 

  65. Qin, P. et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat. Commun. 8, 14725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8, e41769 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Mazza, D., Ganguly, S. & McNally, J. G. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol. Biol. 1042, 117–137 (2013).

    CAS  PubMed  Google Scholar 

  70. Liu, Z. & Tjian, R. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 217, 1181–1191 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    CAS  PubMed  Google Scholar 

  72. Cho, W. K. et al. RNA Polymerase II cluster dynamics predict mRNA output in living cells. Elife 5, e13617 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife 6, e25776 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Luppino, J.M. et al. Cohesin promotes stochastic domain intermingling to ensure proper regulation of boundary-proximal genes. Preprint at https://doi.org/10.1101/649335 (2019).

  77. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hilbert, L. et al. Transcription organizes euchromatin similar to an active microemulsion. Preprint at https://doi.org/10.1101/234112 (2018).

  79. Gibson, B. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e421 (2019).

    CAS  PubMed  Google Scholar 

  80. Williamson, I. et al. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 28, 2778–2791 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Gómez-García, P. A., Garbacik, E. T., Otterstrom, J. J., Garcia-Parajo, M. F. & Lakadamyali, M. Excitation-multiplexed multicolor superresolution imaging with fm-STORM and fm-DNA-PAINT. Proc. Natl Acad. Sci. USA 115, 12991–12996 (2018).

    PubMed  Google Scholar 

  83. Wade, O. K. et al. 124-color super-resolution imaging by engineering DNA-PAINT blinking kinetics. Nano Lett. 19, 2641–2646 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).

    CAS  PubMed  Google Scholar 

  85. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    CAS  PubMed  Google Scholar 

  86. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, J. H. et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell 175, 224–238.e215 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gwosch, K.C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods (2020).

  89. Kim, J. H. et al. LADL: light-activated dynamic looping for endogenous gene expression control. Nat. Methods 16, 633–639 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Pennsylvania Epigenetics Pilot Award (to M.L.), the Center for Engineering and Mechanobiology (CEMB), an NSF Science and Technology Center Pilot Award under grant agreement CMMI 15-48571 (to M.L.), a Linda Pechenik Montague Investigator Award (to M.L.), the European Union’s Horizon 2020 Research and Innovation Programme (CellViewer No 686637 to M.L. and M.P.C.), Ministerio de Ciencia e Innovación, grant BFU2017-86760-P (AEI/FEDER, UE), and an AGAUR grant from Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (2017 SGR 689 to M.P.C.). We acknowledge the support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme / Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Lakadamyali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakadamyali, M., Cosma, M.P. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 17, 371–379 (2020). https://doi.org/10.1038/s41592-020-0758-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-020-0758-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing