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There are currently no general models that can reliably predict 
the phenotypic impact of a specific genetic change, and there-
fore broad screens of genetic perturbations (see definition in 

Box 1) will be with us for the foreseeable future. Such screens come 
in two flavors: those that aim to figure out how cells work and those 
that aim to build new genetic circuits or protein functions for medi-
cal or biotechnological applications; however, the challenge of map-
ping genotype to phenotype is usually similar. Typical approaches 
include (1) knocking in/out each gene and detecting changes in 
the phenotype of interest, (2) altering the regulatory or coding 
sequence of a specific gene and monitoring the resulting change 
in expression dynamics or function, or (3) labeling all proteins or 
genomic loci and studying how these move or localize in response 
to an environmental signal.

Classic genetic screening techniques, such as randomly mutat-
ing cells and seeing what survives, are rapidly being replaced by 
newer strategies. In the last ten years, our capability to make precise 
genomic changes has transcended our wildest expectations, mainly 
owing to CRISPR–Cas9 (refs. 1–3). At the same time, microscopy 
has experienced a revolution in what temporal and spatial resolu-
tion can be achieved in living cells4,5. In this Perspective, we will 
focus on different approaches that combine these methods to study 
the impact of specific genetic changes by high-throughput live-cell 
imaging. To keep this piece focused, we have restricted ourselves to 
the imaging of synthetic libraries, which excludes the large body of 
literature that deals with imaging of the natural cell-to-cell varia-
tion in tissues, such as spatial transcriptomics6 or lineage tracing7, 
although these methods are closely related to our scope.

Arrayed libraries studied with imaging
The first examples of imaging-based screens used arrayed libraries 
(Box 1), where genetically modified cell strains (Box 1) were stored 
in physical isolation (for example, in a series of 96- or 384-well 
plates; Fig. 1a). Sampling the libraries in a way that preserves this 
order allows high-content time-lapse microscopy of many strains 
in one experiment.

The need for large-scale phenotypic screens was already appar-
ent when the technology for whole-genome sequencing became 
available8. Sequencing the yeast genome9 allowed for genome-scale 
targeted studies to replace random mutagenesis in these organisms.  
An international multi-laboratory consortium generated both 
haploid and diploid knockouts of 2,026 open reading frames 

(ORFs) in the yeast genome10, generating an impressive resource 
that allowed for repeated pooled experiments or individual study 
of each knockout. A proof-of-principle demonstration of a strat-
egy to replace genes with a unique 20-nucleotide genetic barcode  
(Box 1) was also described11. Taking advantage of the ability to 
cross haploid strains, arrayed libraries of double knockouts were 
also constructed12,13.

In two studies, libraries were constructed that would allow phe-
notyping by subcellular localization. One was a mixed library of 
plasmids and transposon-generated epitope tags of ORFs14. In the 
other, chromosomal green fluorescent protein (GFP) fusions to the 
end of all yeast ORFs15 were created. The latter approach allows for 
live-cell imaging. While the authors crossed in a red fluorescent 
protein (RFP) fusion with a defined spatial pattern as a landmark to 
aid analysis, cells were manually scored for each strain until over a 
decade later when machine learning took over16.

On the bacterial side, Taniguchi et al. quantified the expression of 
>1,000 fluorescent protein (FP) fusions by live-cell single-molecule 
microscopy in microfluidic chips. The imaging was followed by 
smFISH (see Box 1) against the FP transcript, thus quantifying both 
transcription and translation levels in the same cell17. Alternatively, 
it is possible to spot individual bacterial clones from an arrayed 
library on agarose18 or agar pads19,20. This approach was applied  
to the ASKA library of FP fusions21 to generate high-resolution 
space–time maps of protein locations18.

While the scale of the arrayed libraries and the data produced 
from these studies are impressive, the methods themselves are lim-
ited by the labor involved in performing the screens. Another general 
drawback of arrayed libraries is that the strains have to be cultured 
separately, which makes it hard to perform experiments under identi-
cal conditions. This may, in turn, limit which phenotypic differences 
can be resolved.

Pool-synthesized cell libraries
Pool-generated (pooled) libraries (Box 1) present an alternative 
approach to arrayed libraries. Early examples were created by ran-
domly mutagenizing yeast with transposons, wherein the strains 
were screened on the basis of fitness22 or even subcellular localiza-
tion of a transposon-generated fusion epitope for immunofluores-
cence23 (although, for the latter, we note that when cells were imaged 
in pools only population-level statistics about spatial patterns could 
be gathered).
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Mapping a genetic perturbation to a change in phenotype is at the core of biological research. Advances in microscopy have 
transformed these studies, but they have largely been confined to examining a few strains or cell lines at a time. In parallel, there 
has been a revolution in creating synthetic libraries of genetically altered cells with relative ease. Here we describe methods that 
combine these powerful tools to perform live-cell imaging of pool-generated strain libraries for improved biological discovery.

NAturE MEthods | VOL 18 | APrIL 2021 | 358–365 | www.nature.com/naturemethods358

mailto:lawsonjmichael@gmail.com
mailto:johan.elf@icm.uu.se
http://orcid.org/0000-0002-2868-733X
http://orcid.org/0000-0001-5522-1810
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-01053-8&domain=pdf
http://www.nature.com/naturemethods


PersPectiveNAture MetHods

Targeted pooled approaches to scale up strain generation are 
based on leveraging designable DNA oligonucleotide pools24. 
Pooled library synthesis makes it significantly easier and more 
affordable to generate many strains than with the arrayed approach, 
but the genetic identity of each cell is unknown until the individual 
cells are genotyped. At present, libraries of hundreds of thousands 
of designed oligonucleotide sequences, up to 200 nucleotides in 
length, can be generated for US$10,000–40,000. Smaller libraries 
(~10,000 oligonucleotides) cost approximately US$1,000, which 
makes approaches based on this technology affordable. Currently, 
the most common approaches are to (1) make genome-wide altera-
tions or perturbations using CRISPR-based technology with pools 
of guide RNAs (gRNAs) or (2) focus on depth by varying a specific 
genomic locus or a mobile genetic vector. The former allows for 
wide screens to find targets for follow-up studies25. The latter is typi-
cally used to draw precise conclusions about the effect of variation 
in a specific sequence, such as the contribution of each nucleotide 
to protein–DNA binding26, or for optimization of protein proper-
ties (for example, fluorescent proteins (FPs)27,28, recombination  
machinery29 and the SARS-CoV-2 receptor-binding domain30).

In terms of altering a specific DNA locus, Kinney et al.26 devel-
oped a pioneering assay in which they built a library of bacterial 
strains with different promoter regions in front of a gene for an FP. 
By sorting the library into different bins using flow cytometry and 
sequencing the promoter regions of the cells in each bin, they could 
precisely quantify the contribution of any base in each sequence 
position to the promoter activity (Fig. 1b). This simple but elegant 
screen works because the phenotypic readout is fluorescence level. 
To quantify expression of any gene of interest, the approach has 
been extended and generalized by replacing flow cytometry with 
single-cell RNA sequencing (scRNA-seq) and fluorescence intensity 
with transcript expression levels31.

A similar experimental workflow was used to measure expres-
sion of an FP under the regulation, first, of 75 transcription factors 
in yeast32 and, later, of all combinations of 114 promoters with 111 
ribosome-binding sites in Escherichia coli33. Johns et al.34 extended 
the concept to a wide range of organisms by barcoding the expres-
sion of >29,000 regulatory regions from 184 different bacterial 

species. They determined both the transcriptional efficiency, using 
the RNA-to-DNA ratio for each barcode, and the translational effi-
ciency, using SORT-seq. In all cases, barcoding of bins leverages the 
power of next-generation sequencing to analyze pool-generated 
libraries of variants in one experiment.

Straightforward screens can also be made when the pheno-
typic readout is the fitness of a strain in a selective environment  
(Fig. 1c). In such experiments, the phenotype is typically the  
relative frequency of each genetic barcode (and thus each genotype) 
in the population before and after the fitness competition. This 
approach was the basis for the first generation of CRISPR libraries 
to multiplex mapping of a perturbation to the corresponding fitness 
phenotype for knockout35–37, knockdown38,39 and activation38,40 in 
mammalian cell lines. Before CRISPR, conceptually similar fitness 
screens were made with transposons41–44 or RNA interference45.

Going beyond counting the frequency of certain barcodes in the 
population, single-cell sequencing can be used in multiple ways to 
assess the phenotype of individually perturbed cells (Fig. 1d), to deter-
mine the transcriptional state of each individual cell (e.g., droplet-based 
scRNA-seq46–48) or the state of the chromosome (e.g., scHi-C49 or 
scATAC-seq50). A combination of both approaches has also been 
demonstrated (scNMT-seq51 and sci-CAR52). Pool-generated CRISPR 
libraries phenotyped by single-cell sequencing have been used in con-
texts ranging from immortalized mammalian cell lines53–55 to primary 
immune cells from Cas9-transgenic mice55 and even in cells collected 
from Cas9- and GFP-transgenic mice transduced with single guide 
RNA (sgRNA) vectors and then injected into a new host mouse56.

screening pooled libraries with live-cell imaging
The major limitation of phenotyping based on sequencing is that 
the cells are lysed in the process, and, as a consequence, all spatial, 
morphological and dynamic information is lost. This is unfortunate 
because many of the phenotypes of interest to cell biologists and 
microbiologists require this type of data.

In the following section, we discuss approaches for 
microscopy-based screening of pooled cell libraries, which allow for 
high-resolution imaging and time-lapse microscopy. These methods 
overcome most of the challenges of the arrayed imaging screens, 
such as the amount of work needed and the challenge of maintaining 
identical experimental conditions for all strains. However, because 
all strains are handled the same, one may need to run the whole 
experiment under different conditions to maintain the dynamic 
range. For example, if a reporter protein is expressed at very different 
levels across a pooled library, imaging conditions that are optimal for 
capturing variation in intensity for one strain may result in saturated 
pixel values for another strain with a higher expression level.

First, we will describe some selected recent methods,  
divided by the approach to genotyping: selection of a few cells with 
desired phenotypes (Fig. 1e) or in situ genotyping of the entire 
library (Fig. 1f). Next, we will discuss the relative advantages of the 
different approaches.

Selection of a few cells out of many for genotyping. Some of 
the earliest methods to visually select individual cells from a het-
erogeneous population used photoinducible chemistry (which 
fits naturally with microscopy for phenotyping) to mark cells of 
interest. Photostick57 was one of the first such methods (Fig. 2a). 
In this approach, a small molecule cross-links the selected cells to 
the imaging substrate upon light exposure. Non-selected cells are 
washed away, and the remaining cells are identified, for example, by 
sequencing. The authors used the method to successfully engineer 
hippocampal neurons with a specific firing pattern.

Rather than sticking the cells in place, photo-cross-linking can be 
used to fluorescently label cells, which can then be sorted with flow 
cytometry. For example, biotin-4-fluorescein was photo-cross-linked 
to selected cells58, and, similarly, photoconvertible quantum dots 

Box 1 | Important concepts

Genetic perturbation. Any change to a DNA sequence or its 
expression in a cell, such as chromosomal editing, RNA interfer-
ence or the introduction of extrachromosomal DNA.

Cell strains. Here used to describe genetically different cells in a 
library of cell lines, primary cells or bacterial strains.

Arrayed library. A library of genetically different cells that 
are stored separately such that one knows where each strain  
is located.

Pooled library. A library of genetically different cells that 
are made in a batch such that the individual cells need to be 
genotyped to determine which cell has which genetic variant.

Genetic barcode. A DNA or RNA sequence that can be uniquely 
mapped to the genotype of the strain.

smFISH. Single-molecule fluorescence in situ hybridization: a 
method where several fluorescent oligonucleotides are bound 
to individual DNA or RNA molecules, allowing them to be 
identified and counted optically as diffraction-limited spots.

CRISPRi. Use of a CRISPR system to perform targeted 
knockdown, typically with a variant of Cas9 with deactivated 
nuclease activity (dCas9)78.
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were attached to cells before selective photoactivation59. The dem-
onstrated throughput of these methods is, however, limited to  
several hundred selected cells.

A next step along these lines is to have cells constitutively express 
a photoconvertible FP, convert the FP in cells that display a desired 
phenotype and then use flow cytometry to sort out cells of inter-
est (Fig. 2b). This enabled selection of cells from tissues60 or from 
a large heterogeneous library61. The latter approach was used to 
study the efficiency of different nuclear localization signal peptides. 
In recent studies, where machine learning was used for character-
ization of phenotypes and automation for selecting and photoac-
tivating cells, it was possible to scale the approach to thousands 
of gRNAs and millions of cells62. Yan et al.63 also showed that they  
can sort out many populations of cells in the same experiment by 
different degrees of photoactivation.

Multiple rounds of library imaging and selection of adherent 
cells were used by Piatkevich et al.64 to evolve proteins on the basis of 
complex criteria (Fig. 2c). In each round, a computer vision-guided 
automated micropipette was used to screen 300,000 cells expressing 
different protein constructs in ~4 h. In particular, Piatkevich et al. 
evolved a genetically encoded fluorescent voltage indicator, simulta-
neously optimizing its brightness and membrane localization.

A similar approach was taken by Wheeler et al.65. The researchers 
seeded a pool-generated CRISPR-edited human cell library at low den-
sity in polydimethylsiloxane (PDMS)/magnetic microwells to ensure 
one founder cell per microwell. The cells were observed by confocal 
imaging, and the microwells with interesting phenotypes were manu-
ally removed with a motorized microneedle for further studies65. In 
the screen, the authors identified RNA-binding proteins related to the 
stress-induced formation of punctate protein–RNA assemblies.

Microfluidics approaches66–69 are rapidly becoming the standard 
solution for bacterial imaging, as they allow for exponential growth 
over many generations, excellent imaging conditions, high repro-
ducibility and highly controlled medium switches. A high-precision 
method for selecting individual strains from a microfluidic chip was 
presented by Luro et al.70 (Fig. 2d), who performed targeted muta-
genesis on a genetic oscillator71. The researchers then loaded the 
resulting pool of strains into a microfluidic chip where they could 
be phenotyped for hours. Strains presenting desired characteristics 
(that is, more robust oscillations) were identified and individually 
selected with optical tweezers.

In situ genotyping of all cells in a screen. Selection-based  
methods are favorable when the goal is to extract a few interesting 
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Fig. 1 | different approaches to phenotype a library of genetically different cells. a, Arrayed libraries have a high cost in labor to construct and spot them 
on plates for phenotyping, but each strain in the library can be phenotyped completely in any modality (imaging, sequencing, etc.). b, Pooled libraries 
where fluorescence intensity serves as the readout. Cells can be sorted by flow cytometry into bins on the basis of fluorescence intensity, and each bin is 
then barcoded and sequenced. The result is histograms of intensity for each perturbation in the library. c, In a competition screen, a pool-generated library 
has some selection pressure applied, and the populations before and after application of the pressure are then identified by sequencing and compared to 
determine enrichment or depletion. d, Another sequencing option is to isolate individual cells with droplet microfluidics and perform scrNA-seq, with the 
result being data that map a perturbation to changes in a transcriptional profile. e,f, Cells can be phenotyped on the fly, with a handful of strains of interest 
isolated for downstream analysis (e), or all strains can be phenotyped and fixed in place for genotyping (f). The former has the advantage of not requiring 
a barcode, making library construction simpler, whereas the latter approach allows larger-scale mapping of genotype to phenotype.
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strains from a large pool. If, on the other hand, the aim is to map 
each genotype to its resulting phenotype, such methods quickly 
become impractical because of the laborious process of picking 
individual cells.

Imaging-based phenotyping of a pool-synthesized library fol-
lowed by in situ genotyping72–75 of the whole library was described 
in 2014 (ref. 76); however, practical implementation of the approach 
was first demonstrated in two studies published in 2017 (refs. 27,77). 
Emanuel et al.27 developed a method to screen for novel FPs (Fig. 2e),  
where a large library of mutated FPs were expressed from plas-
mids in bacterial cells and imaged on a coverslip. The cells were 
fixed, and the fluorescence properties of the proteins were con-
nected to the corresponding genotype through an expressed bar-
code RNA identified by multiplexed FISH74. The coverslip format 
allows for the screening of large libraries, but for a limited time span 
because the bacteria are not kept in a state of exponential growth. 
Simultaneously, our group77 implemented a microfluidic culture sys-
tem that allows single-molecule microscopy in bacterial cells grow-
ing exponentially for many generations (Fig. 2f), named Dynamic 
u‐fluidic Microscopy‐based Phenotyping of a Library before In situ 
Genotyping (DuMPLING). The microfluidic design also facilitates 
direct spatial mapping between the phenotyped cell and the RNA 
FISH-based genotype barcodes. This proof-of-principle demon-
stration was implemented on a very small CRISPR interference 
(CRISPRi78; Box 1) library constructed with barcoded plasmids. 
CRISPRi makes it possible to target genes anywhere on the chromo-
some while the gRNA is expressed from one position. This simpli-
fies in situ genotyping enormously because the genetic alteration is 
in the same place in all strains.

We later used the microfluidic format to identify genes related to 
synchronization of the division and replication cycles in E. coli79. In 
this study, a pooled CRISPRi library was used to monitor the effect 
of different gene knockdowns on DNA replication by time-lapse 
imaging of replication forks throughout multiple division cycles in 

hundreds of different strains. As in the previous study77, phenotypes 
were mapped to genotypes in situ by sequential FISH probing of 
an RNA barcode. The structure of the microfluidic system accom-
modates many physically isolated strains in the same field of view, 
making it possible to perform time-lapse microscopy on tens of 
thousands of bacteria with 1-min time resolution.

Implementation of a large-scale imaging-based pooled screen 
in human cells was performed by Feldman et al.80, who stud-
ied knockouts of 1,000 different genes with 4,000 distinct bar-
codes (Fig. 2e). In total, 20 million cells were analyzed across 
these screens, where cell nuclei were tracked using a DNA stain 
and the nuclear translocation of p65–mNeonGreen was assessed 
at each time point. Following live-cell phenotyping, cells were 
fixed and the identity of the disrupted gene was determined by 
in situ sequencing of the sgRNA sequences, as well as barcodes, 
using an extension of the gap-fill padlock rolling circle amplifi-
cation approach72. The gap-fill approach requires that the ends 
of the hybridization probe bind on each side of the barcode (the 
remainder of the probe sequence loops out and is not hybridized), 
such that the polymerization reaction can integrate the barcode 
sequence into the circular template. The template is next amplified 
by rolling circle amplification. Another example of an application 
in eukaryotes was demonstrated by Wang et al.81, who studied the 
effect of 54 CRISPRi knockdowns on RNA localization to nuclear 
compartments. In this study, fixed cells were used for phenotyping 
with FISH probes and antibodies, and the genotypes were assessed 
by multiplexed FISH.

When to use what: comparing the strengths and 
weaknesses of the different methods
In the following subsections, we contrast the relative strengths and 
weaknesses of different imaging-based methods and give practi-
cal guidance on how to pick the appropriate approach for different 
applications. Please also see the roadmap in Fig. 3.
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Fig. 2 | different ways to connect imaging-based phenotypes to genotypes. a, Cells are selectively attached to the substrate using photochemistry57.  
b, Photoconvertible molecules in or adjacent to cells are photoconverted, and the cells are sorted by flow cytometry59,61. c, Selected cells are mechanically 
moved to new locations64,65. d, Cells are grown and phenotyped in a microfluidic chip and moved to an exit channel by optical tweezers70. e, Cells are 
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genotyping76,77,79.
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Pooled library generation. The relative ease and flexibility of library 
generation for selection-based methods follow from the fact that the 
cells can be cultured and manipulated downstream of the imaging 
step (Fig. 2c,d). In this way, essentially any DNA variation can be 
identified by nucleic acid sequencing. In principle, even a mixed 
population of unknown cell types can be analyzed, for example, in 
an environmental sample. In contrast, if the experiment requires 
identification of all the different clones in the library, genotyping 
in situ is usually necessary and generally requires a barcode nucleic 
acid sequence that is separate from the sequence that defines the 
variation or perturbation (Fig. 2e,f). Most applications use an RNA 
barcode so that many copies of the barcode can be generated before 
fixing the cells (although we note exciting recent work that allows 
for amplification of a desired sequence after fixation82).

A common problem for methods with barcode sequences physi-
cally distant from the genetic perturbation is the formation of mis-
matched barcodes (chimeras). In the CRISPRi setting, for example, 
there is generally a short sequence that acts as a linker between the 
promoter for the barcode RNA and the sgRNA gene. This linker 
sequence is ripe for recombination, for example, during amplifica-
tion of the oligonucleotide pool (that is, chimera formation during 
PCR). A solution to the issue of barcode–perturbation mismatch was 
proposed in the context of CRISPRi screening with scRNA-seq read-
out54. The authors devised a construct with two promoters upstream 
of the sgRNA sequence resulting in two transcripts with different 
functions: (1) a CRISPR gRNA that is generated by RNA polymerase 
III and (2) a polyadenylated transcript that is generated by RNA poly-
merase II, which can be captured for identification by scRNA-seq.

Phenotyping: what is the time scale of the process? For pheno-
types that can be determined by a single image, like cell morphol-
ogy or spatial distribution of molecules, fixed cells on a coverslip 
offer an easy and viable approach. However, as has been discussed 
elsewhere, static distributions can result in an ambiguous picture of 
the underlying mechanism83. In such cases, it is essential that the 
same cell be observed at multiple time points. For short time scales 
(shorter than a cell division), cells adhered to or sandwiched on a 
coverslip may be sufficient80. However, a microfluidic approach is 
indispensable when studying processes on a longer time scale, that 
is, more than one cell generation70,77,79.

Connecting phenotypes to genotypes: breadth versus depth. 
Selection-based methods have the advantage that the identified 

cells can be separated and cultured for downstream analysis (such as 
scRNA-seq or Hi-C to assay the state of the transcriptome or chro-
mosome conformation, respectively) and to make stocks for later use 
(Fig. 2c,d). This naturally enables a more complete and deeper view 
of the phenotype resulting from each selected perturbation. In situ 
identification methods have not yet been successfully combined 
with other phenotyping assays downstream of the imaging phase, 
but, theoretically, they are compatible with transcriptome-scale 
in situ methods such as seqFISH84,85 and MERFISH86.

The obvious limitation of the selection approaches is throughput. 
The selected cells must be isolated either one at a time, for example, 
by optical tweezers70, or in a batch, for example, by photoactiva-
tion and sorting by flow cytometry. By contrast, in situ genotyping 
methods generally reveal the genotype of all cells that are imaged 
(Fig. 2e,f), giving far greater breadth to the results.

A method to increase throughput of selection-based genotyping 
is imaging-activated cell sorting, where cells briefly pass the micro-
scope (for example, see refs. 87,88). However, imaging resolution 
has remained insufficient for phenotyping beyond distinguishing 
coarse differences in cell types. A recent microfluidic solution for 
improved image resolution uses a PDMS valve to transiently press 
cells against a coverslip. The trapped cells are then either kept or 
discarded89. While this approach allows for single-molecule fluores-
cence microscopy, the throughput is relatively low, and, as several 
cells are trapped together, additional selection steps would likely  
be required for most applications.

Genotyping in situ: sequencing or hybridization. A division 
within in situ identification approaches is the method of geno-
typing: sequencing or hybridization. The sequencing methods 
are generally extensions or adaptations of sequencing-by-ligation 
protocols72,73, whereas the hybridization methods are adaptations 
of combinatorial RNA FISH74,75. The advantage of the sequenc-
ing methods is that the barcode can be very compact, and diver-
sity scales as 4(barcode length). For some library designs, such as in an 
operator library, it is even possible to read out the genetic varia-
tion directly. However, these methods require multiple enzymatic 
steps in situ, which has proven to be difficult in microfluidic set-
tings77. Hybridization methods are generally less experimentally 
challenging. While FISH methods require longer target regions 
(typically 15–20 nucleotides per probe), they have been demon-
strated to scale up to 60,000 variants, with a million barcodes 
being a viable extension29.
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Future directions
The methods presented in this piece have three methodological con-
cepts in common: library construction, genotyping and phenotyping. 
While great advances have been made, some aspects of the current 
methods have wide space for improvement. The tools for cloning 
and genome engineering are rapidly progressing and moving past 
most conceivable obstacles, even in a pooled format. In eukaryotes, 
new tools are moving library-scale gene editing with CRISPR toward 
reliable, specific and targeted gene edits (for example, by improv-
ing template delivery90,91). Methods for robust in situ identification 
of chromosomal barcodes at the single-cell level have been limiting, 
but important progress in this direction has been reported82.

Methods for imaging-based phenotyping have few limitations in 
enabling the study of intracellular dynamic processes in perturbed 
libraries beyond the usual microscopy caveats of labeling, resolu-
tion and cell toxicity. A logical phenotyping modality to combine 
with large knockout screens is high-dimensional unbiased imaging 
of cellular morphologies, such as Cell Painting92. Imaging-based 
screens can also be taken into the dizzyingly large combinatorial 
space of drug combinations93 or interactions of different combina-
tions of cell types94,95.

The major limitation of live-cell phenotyping of libraries is 
throughput: it is not possible to move the microscope stage and 
image with sufficient speed to capture more than a few frames 
per second, which introduces a trade-off between the number of 
strains imaged and time resolution. Large field-of-view setups96 will 
be at least part of the solution. However, in the near future, it is 
likely that these experimental challenges will be small compared to 
those related to handling and analyzing the data. As an example, 
we are already acquiring 1 TB of relevant physiological data per day 
in DuMPLING screens79. The staggering volumes of high-quality 
data are an obvious match for machine learning approaches, as has 
been covered elsewhere97,98. As an early example, a support vector 
machine was used to derive meaningful phenotypic information 
from fluorescence microscopy data for 20 million cells representing 
an arrayed library of 5,000 genetically altered yeast strains99.

As with all machine learning applications, image analysis may 
be sensitive to biases in manually curated reference datasets; thus, 
in building standardized tools, it is important to test for such sub-
jectivity in the final results100. Much work is still needed to avoid 
the pitfall where each laboratory designs a tool for their own data-
set, making standardization of analysis nearly impossible. Starfish 
is an effort by the Chan–Zuckerberg Institute to combat this by 
standardizing dot detection in single-molecule spatial transcrip-
tomics experiments101, which is relevant for genotyping in situ and 
likely will produce tools that are useful for phenotyping where dot 
detection is involved. Another institutional effort is CellProfiler, an 
endeavor to fill the space of general phenotyping tools102.

discussion
We will soon be at a state in biological research where our capacity 
for making genetic perturbation and detailed imaging of complex 
phenotypes in individual cells will have few real limitations, except 
for practicalities such as cost, storage space, and imaging and analy-
sis speed. For a long time, biological research has been akin to try-
ing to understand how a commercial airliner works by removing 
one part at a time and observing when it crashes. We now have the 
tools to gently turn the knobs in the cockpit and at the same time 
monitor the flaps on the wings. However, because the number of 
possible genetic alterations, even in a small bacterial genome, mas-
sively exceeds the number of atoms in the universe, and the num-
ber of phenotypes that can be studied is even more bewildering, the 
real challenge still lies in making clever and specific experimental 
designs and developing the tools to analyze the data generated. So, 
in conclusion, focus on the biological question of interest, look at 
the relevant flap and turn the right knobs gently.
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