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POINTS OF SIGNIFICANCE

The standardization fallacy
“We demand rigidly defined areas of doubt and uncertainty!” —D. Adams

Bernhard Voelkl, Hanno Würbel, Martin Krzywinski and Naomi Altman

A popular notion about experiments is 
that it is beneficial to reduce subjects’ 
biological and environmental 

variability to mitigate the influence of 
confounding factors on the response. The 
argument is that by keeping the levels of  
such factors fixed — a process called 
standardization — we increase precision 
by limiting the component of response 
variance that is not due to the experimental 
treatment. Unfortunately, although 
standardization increases power, it can 
also induce such unrealistically low 
variability that the results do not generalize 
to the population of interest and may 
thus be irreproducible — the so-called 
“standardization fallacy”1. This month, we 
show how to avoid this fallacy by balancing 
standardization, which increases power to 
detect an effect but reduces external validity, 
with controlled heterogenization, which may 
reduce power but increases external validity.

Suppose we wish to test the effect of a 
treatment factor X1 (for example, a drug) on 
some physiological response of an organism 
(for example, a mouse) in the presence of 
two other factors X2 and X3 that interact 
with X1 and whose effects are not of primary 
interest but should not be ignored. We’ll 
write the response as R = dX1 + X2 + X3 + 
X1X2 + βX1X3 + ε, where d is the treatment 
effect and ε is random error. To account  
for the X1X2 interaction2 in the analysis, 
subjects will be grouped into blocks,  
each with a fixed level of X2, and assigned 
randomly to control and treatment  
within a block3.

Let’s assume that X3 is continuous, as is 
the case for most confounding variables. 
Relatively few are discrete, and those that 
are, such as lab or batch of reagent, often 
represent a proxy for a large number of 
unmeasured (often unknown) continuous 
covariates. How can we deal with this  
factor and its potential interaction with X1 
(when β ≠ 0)?

First, we can use an agnostic design 
(AGN) that simply ignores X3 and relies on 
randomization to balance its effect across 
treatment and blocks (Fig. 1b). Here, X3 will 
vary unpredictably and its effect will be part 
of random unexplained variation, which is 
now the sum of variance of X3, βX1X3 and ε. 

This increase in variance reduces power4 to 
detect a treatment effect (Fig. 2a).

Second, we can standardize X3 by keeping 
its level constant (Fig. 1c) so that it no 
longer contributes to response variation 
(Fig. 2a). Power will be increased but 
the variation may be artificially low. For 
example, observations from mice of a given 
strain or age or kept under specific housing 
conditions may not apply to all mice. The 
design may still be internally valid but is 
no longer externally valid. If we ignore this 
in favor of increased power, we risk falling 
victim to the standardization fallacy.

Critically, this standardized (STD) design 
does not allow us to determine whether 
X3 interacts with X1. In the absence of 
an interaction, the choice of X3 = k does 
not affect power or the observed effect. 
However, if interaction is present, the 
observed effect φ = d + βk will be a biased 
estimate of d and depend on both β and k 
(Fig. 2b). Because STD removes variability 
within experiments but does nothing to 
mitigate its effects across experiments  
(or labs), reproducibility of the observed 
effect is poor.

Third, we can use one of two 
heterogenized designs in which X3 is 
systematically varied: randomized complete 
block (RCB) or fully crossed factorial  
(FCF) design2. In RCB (Fig. 1d), two  
levels of X3 are selected and aligned  
with X2 blocks. Statistical significance of  
the treatment effect is determined by 
comparing the variation between treatment 
and control groups to within-group 
variation within blocks. Because RCB 
accounts for variance of X2 and X3, it has 
higher power than AGN.

However, RCB cannot untangle the 
effects of the X1X2 and X1X3 interaction 
terms because the levels of X2 and X3 are 
not sampled independently. This can be 
achieved in a FCF design (Fig. 1e), which 
can decompose variance into components 
attributed to each factor as well as any 
interactions and, given replicates within a 
block, can isolate and measure unexplained 
residual variation. Because each block 
requires more subjects, contributing to a 
reduction in power unless sample size is 
increased4, the number of factors that can be 

controlled by using FCF is usually limited by 
economic, ethical and logistic costs.

We will illustrate the implications of 
these designs and the consequences ofthe 
standardization fallacy by exploring how 
power and reproducibility vary with design 
and treatment effect size and how the 
observed effect φ relates to the underlying 
treatment effect d. We will explore scenarios 
with d > 0 and use one-sided tests that 
require φ > 0 to avoid considering opposite 
observed effects (negative) as significant. 
However, since in a real experiment we 
would not know the direction of the true 
effect, we will also keep track of φns, φ–*  
and φ+* to indicate effect estimates that  
are non-significant, significant and  
negative (opposite to d) or significant and 
positive, respectively.

Let’s simulate 25,000 experiments with 
sample size n = 8 across a range of effect 
sizes d = 0–5 in the absence (β = 0) and 
presence (β = –2) of an interaction between 
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Fig. 1 | A confounding factor can be ignored, 
standardized or heterogenized. a, In an 
experimental design that compares the response 
to a treatment factor X1 in control and treatment 
groups (rows) in the presence of a blocking 
factor X2 (columns), a third confounding 
factor X3 with continuous levels (circle fill) can 
be either b, ignored and subject to random 
variation (agnostic), c, standardized to a fixed 
laboratory-specific level, or heterogenized with 
two (or more) levels either d, aligned with X2 
(randomized complete block, RCB) or e, fully 
crossed (independently sampled) with X2.
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X1 and X3. We use X1 = –0.5 and 0.5 for 
control and treatment, X2 = –0.5 or 0.5 
for blocks; this maintains a zero mean and 
unit difference between levels. In AGN, 
X3 is sampled from a standard normal 
distribution. In STD, a fixed value of X3 is 

selected randomly from one of the values 
in AGN. In RCB, the two levels of X3 are 
determined by the minimum and maximum 
values in AGN. Because FCF performs 
similarly to RCB, albeit with lower power,  
we will not consider it further. Finally, 
random error ε is sampled from the 
standard normal distribution.

We will use linear regression (analysis 
of variance, or ANOVA) to fit R and 
determine the significance (α = 0.05) and 
the magnitude and direction of the estimate 
φ of the treatment effect. Power, P, will 
indicate the probability of a significant 
positive estimate (φ+*), which corresponds 
to rejecting the null hypothesis that there is 
no positive treatment effect. Reproducibility 
will be the probability of making the  
same inference (rejecting or not rejecting 
the null) twice.

Without interaction between treatment 
X1 and confounder X3 (β = 0), the STD 
and RCB designs perform equivalently 
because the impact of X3 on the control 
and treatment groups is the same and 
cancels out (Fig. 3a). As expected, the AGN 
design overall has the lowest power because 
variation in X3 is not controlled and adds to 
unexplained residual variation (Fig. 3a).

In the presence of an interaction, 
differences in power to detect φ > 0 arise 
because now the effect of X3 no longer 
cancels out (it depends on the treatment and 
control via βX1X3). The larger the magnitude 
of β (or variance of X3), the greater the 
impact of the interaction on power. As 
before, AGN has the lowest power for all 
d in our range, but now STD has higher 
power than RCB — but only for d < 1.8. 

This can be explained by elimination (in 
STD) or reduction (in RCB) of variance due 
to X3. For insight into why STD has higher 
power than RCB for low d but lower power 
at high d, let’s look at the distributions of the 
observed effect, φ, for each design (Fig. 3b).

At d = 0, significant estimates of either 
sign (φ–*, φ+*) are false positives. STD has 
the highest power (P = 0.20) because it has 
the largest variance in φ, making it more 
likely to cross the significance threshold 
by grossly under- or overestimating the 
actual effects — thereby illustrating the 
standardization fallacy. It produces the  
most inflated effect size estimates, with an 
average φ+* of 2.82.

For a small treatment effect, d = 1, STD 
still has the highest power (P = 0.35) and 
continues to misestimate the effect size and 
its direction, since negative values of φ still 
occur at substantial rates. Although AGN 
and RCB have lower power, they almost 
never yield φ < 0, so the directions of the 
estimated effects are consistent with d 
among experiments.

As the treatment effect size d increases, 
the distributions of φ continue to shift and 
narrow. Simultaneously, the bias in the 
estimate of d decreases: the average of φ+* 
gets closer to true d. However, both the width  
and the bias of the φ+* distribution decrease 
very slowly in STD, making it perform 
poorly. Note that even at large d = 4, STD 
results in a strong right skew in φ+*.

Of the three designs, in the presence of 
interaction, RCB has an excellent balance 
of high power and low bias (the average of 
φ+* is closest to true d). Importantly, the 
reproducibility is better with RCB than STD 
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Fig. 2 | Standardization increases power but 
leads to higher variation between labs if an 
interaction between treatment and confounder 
is present. a, When X3 with variance Var(X3) is 
fixed (X3 = k), power to detect main effect d is 
increased because variance of control (C) and 
treatment (T) response (R) is reduced. b, In the 
absence of an X1X3 interaction (β = 0), power 
is unchanged across labs that standardize X3 
differently (for example, X3 = k = 0, 1 or 3) and 
all three labs observe the true treatment effect 
d = 3. With interaction (β = –2), the observed 
effect will vary on average by βX1X3 = –2k, so the 
observed effect may now be negative. Differences 
in k result in inconsistent power and decreased 
reproducibility.
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Fig. 3 | Confounder interaction can increase power to detect a treatment effect but reduce reproducibility. a, Power and reproducibility profiles for AGN,  
STD and RCB designs for true treatment effects d = 0–5 and sample size n = 8. b, Distributions of the observed effect φ (gray line) for true effect d = 0, 1 and  
4 for each design in the presence of interaction. Histograms with solid fill color indicate distributions of non-significant (φns, gray), significant and negative  
(φ–*, magenta) and significant and positive (φ+*, green) estimates. Also shown are power P (ratio of areas of φ+* and φ) and the mean of φ+*.
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for all d (Fig. 3a). If we increase our sample 
size to n = 16, FCF’s power catches up to 
RCB’s and FCF becomes a viable alternative 
if we wish to measure the interaction. 
However, because a larger sample will yield 
higher power, we expect to see more false 
positives at d = 0.

In summary, by incorporating 
variation of confounding factors through 
controlled heterogenization, we can 
avoid the standardization fallacy and 
improve reproducibility. The magnitude 
of confounding effects can be analyzed 
with fractional factorial5 or fully crossed 
designs2. However, as more confounders 
are added, the number of blocks (and hence 
subjects) increases quickly, practically 
restricting this approach to scenarios with 
only a few confounders. In the presence 

of an interaction between a confounder 
and treatment, heterogenization (RCB or 
FCF) is more effective than lab-specific 
standardization in detecting small treatment 
effects. Furthermore, when the experiment 
is already run as a RCB (for example, in 
batches), further heterogenization factors 
can be introduced with no need to increase 
to sample size. Even when heterogenization 
requires more blocking and larger samples, 
the higher external validity and improved 
reproducibility will often outweigh the 
extra effort and costs of introducing more 
heterogenization factors6. ❐
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