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            Abstract
Dopamine (DA) plays a critical role in the brain, and the ability to directly measure dopaminergic activity is essential for understanding its physiological functions. We therefore developed red fluorescent G-protein-coupled receptor-activation-based DA (GRABDA) sensors and optimized versions of green fluorescent GRABDA sensors. In response to extracellular DA, both the red and green GRABDA sensors exhibit a large increase in fluorescence, with subcellular resolution, subsecond kinetics and nanomolar-to-submicromolar affinity. Moreover, the GRABDA sensors resolve evoked DA release in mouse brain slices, detect evoked compartmental DA release from a single neuron in live flies and report optogenetically elicited nigrostriatal DA release as well as mesoaccumbens dopaminergic activity during sexual behavior in freely behaving mice. Coexpressing red GRABDA with either green GRABDA or the calcium indicator GCaMP6s allows tracking of dopaminergic signaling and neuronal activity in distinct circuits in vivo.
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                    Fig. 1: Development of red fluorescent DA sensors and second-generation green fluorescent DA sensors.[image: ]


Fig. 2: Characterization of GRABDA sensors in HEK293T cells and cultured rat cortical neurons.[image: ]


Fig. 3: GRABDA sensors can be used to measure DA release in acute mouse brain slices.[image: ]


Fig. 4: In vivo two-photon imaging of DA dynamics in Drosophila using GRABDA sensors.[image: ]


Fig. 5: GRABDA sensors can detect optogenetically induced nigrostriatal DA release in freely moving mice.[image: ]


Fig. 6: GRABDA sensors can be used to measure dopaminergic activity in the mouse NAc during sexual behavior.[image: ]
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                Data availability

              
              Plasmids for expressing the sensors used in this study and the sequences were available from Addgene (https://www.addgene.org/Yulong_Li/, catalog nos. 140553, 140554, 140555, 140556, 140557, 140558). Source data are provided with this paper.
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Extended data

Extended Data Fig. 1 The development of red fluorescent DA sensors and second-generation green fluorescent DA sensors.
a, Schematic illustration showing the design and optimization of the red fluorescent GRABDA sensors. b, The response to 100â€‰Î¼M DA measured for red fluorescent DA sensor variants during steps 1â€’3. The variant with the highest fluorescence change (named rDA0.5) was then sequentially mutated as shown to generate rDA1m, rDA1h, and rDA-mut. c, Schematic illustration showing the design and optimization of the green fluorescent GRABDA sensors. d, Normalized Î”F/F0 in response to 100â€‰Î¼M DA measured for green fluorescent DA sensor variants, normalized to the first-generation DA1h sensor. DA2h was then mutated as shown to generate DA2m and DA-mut. The superscripts in the insets of b,d are based on the Ballesterosâ€“Weinstein numbering scheme54, indicating the mutation sites in the D2R.
Source data


Extended Data Fig. 2 The sequences of GRABDA sensors and the residues related to affinity-tuning, cpRFP and cpEGFP optimization.
a,b, The sequences of rGRABDA1m (a) and GRABDA2m (b). The residues related to affinity-tuning, cpRFP (a) and cpEGFP (b) optimization are marked.


Extended Data Fig. 3 Characterization of the sensors in HEK293T cells.
a, b, Schematic illustration showing the local perfusion system. Scale bars, 10â€‰Î¼m. c,d, Representative traces showing the response to DA (left) and subsequent addition of Halo (right). The traces were the average of 3 different regions of interest (ROIs) on the scanning line, shaded with Â± s.e.m.. Each trace was fitted with a single-exponential function to determine Ï„on (left) and Ï„off (right). Similar results were observed for 7â€“10 cells. e,f, Group summary of Ï„on and Ï„off. nâ€‰=â€‰10, 7, 9, 8, 10, 8, 10, 8 cells for rDA1m (Ï„on), rDA1m (Ï„off), rDA1h (Ï„on), rDA1h (Ï„off), DA2m (Ï„on), DA2m (Ï„off), DA2h (Ï„on), DA2h (Ï„off). gâ€“i, Excitation and emission spectra for the indicated sensors in the absence and presence of DA. j, Photostability of rDA1m and rDA1h (in the presence of 100â€‰Î¼M DA) and the indicated fluorescent proteins was measured using 1-photon and 2-photon microscopy. Each photobleaching curve was fitted with a single-exponential function to determine the time constant. 1-photon, nâ€‰=â€‰12 cells each. 2-photon, nâ€‰=â€‰10, 10, 9, 10 cells for rDA1m, rDA1h, jRGECO1a, tdTomato. Two-tailed Studentâ€™s t-test was performed. 1-photon, P = 0.9755 between rDA1m and rDA1h; Pâ€‰=â€‰2.72â€‰Ã—â€‰10âˆ’5 between rDA1m and mCherry; Pâ€‰=â€‰7.10â€‰Ã—â€‰10âˆ’9 between rDA1m and mRuby3; Pâ€‰=â€‰7.90â€‰Ã—â€‰10âˆ’10 between rDA1m and tdTomato; Pâ€‰=â€‰1.95â€‰Ã—â€‰10âˆ’9 between rDA1m and mScarlet; Pâ€‰=â€‰1.28â€‰Ã—â€‰10âˆ’5 between rDA1h and mCherry; Pâ€‰=â€‰2.50â€‰Ã—â€‰10âˆ’9 between rDA1h and mRuby3; Pâ€‰=â€‰2.66â€‰Ã—â€‰10âˆ’10 between rDA1h and tdTomato; Pâ€‰=â€‰6.75â€‰Ã—â€‰10âˆ’10 between rDA1h and mScarlet. 2-photon, P = 0.0963 between rDA1m and rDA1h; Pâ€‰=â€‰0.0511 between rDA1m and jRGECO1a; Pâ€‰=â€‰0.0139 between rDA1h and jRGECO1a; Pâ€‰=â€‰2.82â€‰Ã—â€‰10âˆ’11 between rDA1m and tdTomato; Pâ€‰=â€‰1.71â€‰Ã—â€‰10âˆ’10 between rDA1h and tdTomato; Pâ€‰=â€‰2.96â€‰Ã—â€‰10âˆ’6 between jRGECO1a and tdTomato. Data are presented as the mean Â± s.e.m. in e,f,j (bar graph). *P â€‰<â€‰0.05; ***Pâ€‰<â€‰0.001.
Source data


Extended Data Fig. 4 The response of GRABDA sensors to different compounds.
a, The normalized dose-response curves for DA and NE in sensor-expressing HEK293T cells. nâ€‰=â€‰3 wells with 200â€’800 cells/well. b, The Î”F/F0 in sensor-expressing cells in response to the indicated compounds applied at 1â€‰Î¼M. nâ€‰=â€‰3 wells for rDA1h in response to NE, 5-HT, Oct, Gly and l-DOPA. nâ€‰=â€‰4 wells for the others. Each well contains 200â€“1200 cells. Data are presented as the mean Â± s.e.m.. Data replotted from Fig. 2a.
Source data


Extended Data Fig. 5 The minimal coupling of GRABDA sensors to downstream Gi pathway and Î²-arrestin pathway.
a,b, Normalized Î”F/F0 in sensor-expressing cells in response to DA, with or without the pre-bathing of GTPÎ³S. nâ€‰=â€‰3 wells with 500â€’3000 cells/well. c,d, The representative trace of Î”F/F0 (c) and the group summary of normalized Î”F/F0 (d) in rDA1m-expressing neurons during a 2-hour treatment of 100â€‰Î¼M DA. nâ€‰=â€‰9 neurons. For the group summary, the averaged Î”F/F0 of each neuron during the 2-hour DA treatment is normalized to 1. Two-tailed Studentâ€™s t-test was performed. Pâ€‰=â€‰2.10â€‰Ã—â€‰10âˆ’21 between baseline and 0â€‰min; Pâ€‰=â€‰2.99â€‰Ã—â€‰10âˆ’17 between 120â€‰min and Halo; P = 1.24â€‰Ã—â€‰10âˆ’5 between 0â€‰min and 120â€‰min. e,f, Similar to c and d except that rDA1h was expressed in cultured neurons. nâ€‰=â€‰11 neurons. Two-tailed Studentâ€™s t-test was performed. Pâ€‰=â€‰1.87â€‰Ã—â€‰10âˆ’6 between baseline and 0â€‰min; Pâ€‰=â€‰3.43â€‰Ã—â€‰10âˆ’17 between 120â€‰min and Halo; Pâ€‰=â€‰0.1519 between 0â€‰min and 120â€‰min. g,h, Similar to c and d except that DA2m was expressed in cultured neurons. nâ€‰=â€‰15 neurons. Two-tailed Studentâ€™s t-test was performed. Pâ€‰=â€‰2.48â€‰Ã—â€‰10âˆ’39 between baseline and 0â€‰min; Pâ€‰=â€‰7.42â€‰Ã—â€‰10âˆ’35 between 120â€‰min and Halo; Pâ€‰=â€‰0.3322 between 0â€‰min and 120â€‰min. i,j, Similar to c and d except that DA2h was expressed in cultured neurons. nâ€‰=â€‰17 neurons. Two-tailed Studentâ€™s t-test was performed. Pâ€‰=â€‰1.14â€‰Ã—â€‰10âˆ’52 between baseline and 0â€‰min; Pâ€‰=â€‰9.80â€‰Ã—â€‰10âˆ’38 between 120â€‰min and Halo; Pâ€‰=â€‰0.0061 between 0â€‰min and 120â€‰min. k, Top, schematic illustration depicting the in vivo perfusion experiment. Bottom, the fluorescence image of a transgenic fly expressing DA2m in MB KCs. Scale bar, 50â€‰Î¼m. l,m, Representative images (l, top), trace (l, bottom) and group summary (m) of Î”F/F0 in response to the 1-hour perfusion of 1â€‰mM DA followed by 100â€‰Î¼M Halo in a transgenic fly expressing DA2m in MB KCs. nâ€‰=â€‰3 flies. Scale bar, 25â€‰Î¼m. Two-tailed Studentâ€™s t-test was performed. P = 0.0382 between baseline and 10â€‰min; Pâ€‰=â€‰0.0293 between 60â€‰min and Halo; Pâ€‰=â€‰0.5289, 0.5593, 0.9559, 0.8537, 0.6346, 0.6530, 0.2760, 0.1649, 0.1547, 0.1152, 0.1044 between 5â€‰min and 10â€‰min, 15â€‰min, 20â€‰min, 25â€‰min, 30â€‰min, 35â€‰min, 40â€‰min, 45â€‰min, 50â€‰min, 55â€‰min, 60â€‰min, respectively. Data are presented as the mean Â± s.e.m.. in a,b,d,f,h,j,m. *P â€‰<â€‰0.05; **Pâ€‰<â€‰0.01; ***Pâ€‰<â€‰0.001.
Source data


Extended Data Fig. 6 Comparison between dLight and GRABDA.
a, Representative bright-field and fluorescence images acquired before (baseline) and after application of DA in sensor-expressing HEK293T cells. Similar results were observed for more than 20 cells. Scale bar, 50â€‰Î¼m. b, Representative traces of Î”F/F0 in response to 100â€‰Î¼M DA followed by either 10â€‰Î¼M SCH or 10â€‰Î¼M Halo. Similar results were observed for more than 30 cells. c, Normalized dose-response curves. nâ€‰=â€‰3 wells with 100â€’500 cells/well. dâ€“f, Group summary of the peak Î”F/F0 (d), relative brightness (green/red ratio, GR ratio) (e), and signal-to-noise ratio (SNR) (f) in response to 100â€‰Î¼M DA. d, nâ€‰=â€‰73, 62, 61, 20 cells for dLight1.1, dLight1.2, DA2m, dLight1.3b. e, nâ€‰=â€‰77, 66, 20, 60 cells for dLight1.1, dLight1.2, dLight1.3b, DA2m. f, nâ€‰=â€‰74, 63, 61 cells for dLight1.1, dLight1.2, DA2m. Two-tailed Studentâ€™s t-test was performed. d, Pâ€‰=â€‰2.10â€‰Ã—â€‰10âˆ’48 between dLight1.1 and DA2m; Pâ€‰=â€‰1.31â€‰Ã—â€‰10âˆ’12 between dLight1.2 and DA2m; Pâ€‰=â€‰1.22â€‰Ã—â€‰10âˆ’10 between dLight1.3 and DA2m. f, Pâ€‰=â€‰4.09â€‰Ã—â€‰10âˆ’22 between dLight1.1 and DA2m; Pâ€‰=â€‰1.13â€‰Ã—â€‰10âˆ’33 between dLight1.2 and DA2m. gâ€“i, Dose-response curves (g), relative brightness (h), and fold change of SNR (i) for dLight1.3b and DA2m. nâ€‰=â€‰20 cells each. j-m, Similar to a-f, except that dLight1.1 and DA2m were expressed in cultured neurons. m, left, nâ€‰=â€‰30, 28 cells for dLight1.1, DA2m. m, right, nâ€‰=â€‰30 cells each. Scale bar, 50â€‰Î¼m. Two-tailed Studentâ€™s t-test was performed. m, left, Pâ€‰=â€‰4.43â€‰Ã—â€‰10âˆ’8; right, Pâ€‰=â€‰3.59â€‰Ã—â€‰10âˆ’8. n, Schematic illustration depicting the location of the Drosophila olfactory mushroom body (MB). o, Fluorescence images of the MB using 2-photon microscopy at the indicated laser power settings. Enhanced-contrast images at 15% laser power are shown. Fluorescence is shown in grayscale, with saturated pixels shown in red. Similar results were observed for 4â€“5 flies. Scale bars, 10â€‰Î¼m. p-r, Representative traces (top) and group summary of relative brightness during odorant application (p), body shock (q), and DA perfusion (r). p,r, nâ€‰=â€‰5 flies each. q, nâ€‰=â€‰5, 4 flies for DA2m, dLight1.3b. Average traces (bold) overlaid with single-trial traces (light) from one fly are shown for representation in p,q. Data are presented as the mean Â± s.e.m. in c,d,e,f,g,h,i,l,m,p,q,r. ***Pâ€‰<â€‰0.001.
Source data


Extended Data Fig. 7 Expressing GRABDA2m or GRABrDA1m sensors shows no significant effect on cAMP or calcium signaling respectively in vivo.
a, Schematic illustration depicting the experimental setup. bâ€“e, Schematic illustrations depicting the experimental strategy (b,d), representative fluorescence images and Î”F/F0 traces (c,e) in flies expressing the cAMP sensor Pink-Flamindo (b,c) or co-expressing Pink-Flamindo and DA2m (d,e) in MB KCs. The ROIs for measuring the Î³2-Î³3 compartments in the MB are indicated by dashed white lines. Scale bars, 25â€‰Âµm. f, Group summary of peak Î”F/F0. nâ€‰=â€‰9, 7 flies for Pink Flamindo alone, Pink Flamindo & DA2m. Two-tailed Studentâ€™s t-test was performed. Pâ€‰=â€‰0.7332. gâ€“j, Schematic illustrations depicting the experimental strategy (g, i), representative fluorescence images and Î”F/F0 traces (h,j) in flies expressing the calcium sensor GCaMP5 (g,h) or co-expressing GCaMP5 and rDA1m (i,j) in MB KCs. The ROIs for measuring the MB media lobe are indicated by dashed white lines. Similar results were observed for 7 flies. Scale bars, 25â€‰Âµm. k,l, Group summary of GCaMP5 peak Î”F/F0 and time constants. nâ€‰=â€‰7 flies each. Two-tailed Studentâ€™s t-test was performed. k, Pâ€‰=â€‰0.607. l, Pâ€‰=â€‰0.601, 0.735 for Ï„on, Ï„off. Average traces (bold) overlaid with single-trial traces (light) from one fly are shown for representation in c, e,h,j. Data are presented as the mean Â± s.e.m. in f,k,l.
Source data


Extended Data Fig. 8 Optogenetically induced nigrostriatal DA release in freely moving mice is not affected by desipramine or yohimbine.
aâ€“c, Average traces of Î”F/F0 in mice expressing rDA1m and EGFP (a), rDA1h and EGFP (b), or DA2h and tdTomato (c) in the dorsal striatum. Where indicated, the experiments were conducted in mice treated with either the norepinephrine transporter blocker desipramine or the Î±2-adrenergic receptor antagonist yohimbine. dâ€“f, Group summary of Î”F/F0 and Ï„off for the experiments shown in a-c, respectively. nâ€‰=â€‰30 trials from 6 hemispheres of 6 mice for rDA1m. nâ€‰=â€‰15 trials from 3 hemispheres of 3 mice for rDA1h, nâ€‰=â€‰25 trials from 5 hemispheres of 4 mice for DA2h. Two-tailed Studentâ€™s t-test was performed. d, left, Pâ€‰=â€‰0.1614; right, Pâ€‰=â€‰0.9836. e, left, Pâ€‰=â€‰0.9018; right, Pâ€‰=â€‰0.6605. f, left, Pâ€‰=â€‰0.6489; right, Pâ€‰=â€‰0.2322. Average traces shaded with Â± s.e.m. are shown in aâ€“c. Data are presented as the mean Â± s.e.m. in d-f.
Source data


Extended Data Fig. 9 Dual-color recording of DA dynamics and striatal neural activity using DA2m and jRGECO1a in freely moving mice.
a, Schematic illustration depicting the experimental strategy. b, Representative traces showing the fluorescence responses of DA2m and jRGECO1a. c, The zoom-in traces from b during a 25â€‰s recording. d, The cross-correlation between the fluorescence responses of DA2m and jRGECO1a during a 2â€‰min recording. nâ€‰=â€‰8 hemispheres of 5 mice. Average traces shaded with Â± s.e.m. are shown.
Source data


Extended Data Fig. 10 The DA signal in the mouse NAc during sexual behavior.
a, Schematic illustration depicting the experimental strategy. b, c, Representative traces (b) and group summary (c) of Î”F/F0 measured from left and right hemispheres during the indicated stages of mating. nâ€‰=â€‰3 mice. F4,16â€‰=â€‰80.92, P < 10âˆ’6 for row factor and F1,4â€‰=â€‰0.1224, P = 0.7441 for column factor by two-way ANOVA. Bonferroniâ€™s multiple comparisons test was performed between groups, P > 0.9999, P > 0.9999, P > 0.9999, P > 0.9999, Pâ€‰>â€‰0.9999. d, Representative traces of the concurrent Z-score signals of rDA1m and DA2h during the indicated stages of sexual behavior. Similar results were observed for 3 mice. e, Average post-stimulus histograms showing the Z-score signals of rDA1m and DA2h aligned to the onset of the indicated mating events. nâ€‰=â€‰3 mice. Average traces shaded with Â± s.e.m. are shown. f, Group summary of the Z-scores measured for rDA1m and DA2h during the indicated mating events. nâ€‰=â€‰3 mice. F4,16â€‰=â€‰13.02, Pâ€‰=â€‰6.6â€‰Ã—â€‰10âˆ’5 for row factor and F1,4â€‰=â€‰0.001, Pâ€‰=â€‰0.9797 for column factor by two-way ANOVA. Bonferroniâ€™s multiple comparisons test was performed, P > 0.99, P > 0.99, P > 0.99, P > 0.99, P > 0.99. g,h, The representative fluorescence signal (g) and group analysis (h) in the green channel when the excitation light is delivered at 470â€‰nm alone (g, left), at 590â€‰nm alone (g, center) or at 470â€‰nm and 590â€‰nm simultaneously (g, right). nâ€‰=â€‰3 mice. F2,4â€‰=â€‰531.6, Pâ€‰=â€‰3.1â€‰Ã—â€‰10âˆ’5 by one-way ANOVA. Tukeyâ€™s multiple comparisons test was performed between groups, Pâ€‰=â€‰3.1â€‰Ã—â€‰10âˆ’5, Pâ€‰=â€‰2.6â€‰Ã—â€‰10âˆ’5, Pâ€‰=â€‰0.4904. i,j, Similar to g and h except the fluorescence signal in the red channel is analyzed. nâ€‰=â€‰3 mice. F2,4â€‰=â€‰414.2, Pâ€‰=â€‰2.3â€‰Ã—â€‰10âˆ’5 by one-way ANOVA. Tukeyâ€™s multiple comparisons test was performed between groups, Pâ€‰=â€‰4.8â€‰Ã—â€‰10âˆ’5, Pâ€‰=â€‰4.6â€‰Ã—â€‰10âˆ’5, Pâ€‰=â€‰0.9738. Data are presented as the mean Â± s.e.m. in c,f,h,j. ***Pâ€‰<â€‰0.001.
Source data
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