Single-cell multimodal omics: the power of many

Advances in single-cell genomics technologies have enabled investigation of the gene regulation programs of multicellular organisms at unprecedented resolution and scale. Development of single-cell multimodal omics tools is another major step toward understanding the inner workings of biological systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Methods for single-cell multimodal omics analysis.
Fig. 2: Challenges and opportunities in single-cell multimodal omics.

References

  1. 1.

    Stuart, T. & Satija, R. Nat. Rev. Genet. 20, 257–272 (2019).

  2. 2.

    Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Nat. Biotechnol. 33, 285–289 (2015).

  3. 3.

    Macaulay, I. C. et al. Nat. Methods 12, 519–522 (2015).

  4. 4.

    Angermueller, C. et al. Nat. Methods 13, 229–232 (2016).

  5. 5.

    Hu, Y. et al. Genome Biol. 17, 88 (2016).

  6. 6.

    Hou, Y. et al. Cell Res. 26, 304–319 (2016).

  7. 7.

    Luo, C. et al. Preprint at bioRxiv https://doi.org/10.1101/434845 (2018).

  8. 8.

    Guo, F. et al. Cell Res. 27, 967–988 (2017).

  9. 9.

    Pott, S. Elife 6, e23203 (2017).

  10. 10.

    Clark, S. J. et al. Nat. Commun. 9, 781 (2018).

  11. 11.

    Wang, Y. et al. Preprint at bioRxiv https://doi.org/10.1101/803890 (2019).

  12. 12.

    Liu, L. et al. Nat. Commun. 10, 470 (2019).

  13. 13.

    Reyes, M., Billman, K., Hacohen, N. & Blainey, P. C. Advanced Biosystems 3, 1900065 (2019).

  14. 14.

    Satpathy, A. T. et al. Nat. Med. 24, 580–590 (2018).

  15. 15.

    Li, G. et al. Nat. Methods 16, 991–993 (2019).

  16. 16.

    Lee, D. S. et al. Nat. Methods 16, 999–1006 (2019).

  17. 17.

    Mateo, L. J. et al. Nature 568, 49–54 (2019).

  18. 18.

    Dixit, A. et al. Cell 167, 1853–1866.e1817 (2016).

  19. 19.

    Adamson, B. et al. Cell 167, 1867–1882.e1821 (2016).

  20. 20.

    Jaitin, D. A. et al. Cell 167, 1883–1896.e1815 (2016).

  21. 21.

    Rubin, A. J. et al. Cell 176, 361–376.e317 (2019).

  22. 22.

    Stoeckius, M. et al. Nat. Methods 14, 865–868 (2017).

  23. 23.

    Peterson, V. M. et al. Nat. Biotechnol. 35, 936–939 (2017).

  24. 24.

    Mimitou, E. P. et al. Nat. Methods 16, 409–412 (2019).

  25. 25.

    Cao, J. et al. Science 361, 1380–1385 (2018).

  26. 26.

    Zhu, C. et al. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

  27. 27.

    Chen, S., Lake, B.B. & Zhang, K. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0290-0 (2019).

  28. 28.

    Kaya-Okur, H. S. et al. Nat. Commun. 10, 1930 (2019).

  29. 29.

    Rodriques, S. G. et al. Science 363, 1463–1467 (2019).

  30. 30.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Science 348, aaa6090 (2015).

  31. 31.

    Shah, S., Lubeck, E., Zhou, W. & Cai, L. Neuron 94, 752–758.e751 (2017).

Download references

Author information

Correspondence to Bing Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat Methods 17, 11–14 (2020). https://doi.org/10.1038/s41592-019-0691-5

Download citation