Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-cell multimodal omics: the power of many

Advances in single-cell genomics technologies have enabled investigation of the gene regulation programs of multicellular organisms at unprecedented resolution and scale. Development of single-cell multimodal omics tools is another major step toward understanding the inner workings of biological systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for single-cell multimodal omics analysis.
Fig. 2: Challenges and opportunities in single-cell multimodal omics.

References

  1. Stuart, T. & Satija, R. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  Google Scholar 

  2. Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Nat. Biotechnol. 33, 285–289 (2015).

    Article  CAS  Google Scholar 

  3. Macaulay, I. C. et al. Nat. Methods 12, 519–522 (2015).

    Article  CAS  Google Scholar 

  4. Angermueller, C. et al. Nat. Methods 13, 229–232 (2016).

    Article  CAS  Google Scholar 

  5. Hu, Y. et al. Genome Biol. 17, 88 (2016).

    Article  Google Scholar 

  6. Hou, Y. et al. Cell Res. 26, 304–319 (2016).

    Article  CAS  Google Scholar 

  7. Luo, C. et al. Preprint at bioRxiv https://doi.org/10.1101/434845 (2018).

  8. Guo, F. et al. Cell Res. 27, 967–988 (2017).

    Article  CAS  Google Scholar 

  9. Pott, S. Elife 6, e23203 (2017).

    Article  Google Scholar 

  10. Clark, S. J. et al. Nat. Commun. 9, 781 (2018).

    Article  Google Scholar 

  11. Wang, Y. et al. Preprint at bioRxiv https://doi.org/10.1101/803890 (2019).

  12. Liu, L. et al. Nat. Commun. 10, 470 (2019).

    Article  Google Scholar 

  13. Reyes, M., Billman, K., Hacohen, N. & Blainey, P. C. Advanced Biosystems 3, 1900065 (2019).

    Article  Google Scholar 

  14. Satpathy, A. T. et al. Nat. Med. 24, 580–590 (2018).

    Article  CAS  Google Scholar 

  15. Li, G. et al. Nat. Methods 16, 991–993 (2019).

    Article  CAS  Google Scholar 

  16. Lee, D. S. et al. Nat. Methods 16, 999–1006 (2019).

    Article  CAS  Google Scholar 

  17. Mateo, L. J. et al. Nature 568, 49–54 (2019).

    Article  CAS  Google Scholar 

  18. Dixit, A. et al. Cell 167, 1853–1866.e1817 (2016).

    Article  CAS  Google Scholar 

  19. Adamson, B. et al. Cell 167, 1867–1882.e1821 (2016).

    Article  CAS  Google Scholar 

  20. Jaitin, D. A. et al. Cell 167, 1883–1896.e1815 (2016).

    Article  CAS  Google Scholar 

  21. Rubin, A. J. et al. Cell 176, 361–376.e317 (2019).

    Article  CAS  Google Scholar 

  22. Stoeckius, M. et al. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  23. Peterson, V. M. et al. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  Google Scholar 

  24. Mimitou, E. P. et al. Nat. Methods 16, 409–412 (2019).

    Article  CAS  Google Scholar 

  25. Cao, J. et al. Science 361, 1380–1385 (2018).

    Article  CAS  Google Scholar 

  26. Zhu, C. et al. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  Google Scholar 

  27. Chen, S., Lake, B.B. & Zhang, K. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0290-0 (2019).

    Article  CAS  Google Scholar 

  28. Kaya-Okur, H. S. et al. Nat. Commun. 10, 1930 (2019).

    Article  Google Scholar 

  29. Rodriques, S. G. et al. Science 363, 1463–1467 (2019).

    Article  CAS  Google Scholar 

  30. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Science 348, aaa6090 (2015).

    Article  Google Scholar 

  31. Shah, S., Lubeck, E., Zhou, W. & Cai, L. Neuron 94, 752–758.e751 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat Methods 17, 11–14 (2020). https://doi.org/10.1038/s41592-019-0691-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0691-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research