Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ structure determination at nanometer resolution using TYGRESS

Abstract

The resolution of subtomogram averages calculated from cryo-electron tomograms (cryo-ET) of crowded cellular environments is often limited owing to signal loss in, and misalignment of, the subtomograms. By contrast, single-particle cryo-electron microscopy (SP-cryo-EM) routinely reaches near-atomic resolution of isolated complexes. We report a method called ‘tomography-guided 3D reconstruction of subcellular structures’ (TYGRESS) that is a hybrid of cryo-ET and SP-cryo-EM, and is able to achieve close-to-nanometer resolution of complexes inside crowded cellular environments. TYGRESS combines the advantages of SP-cryo-EM (images with good signal-to-noise ratio and contrast, as well as minimal radiation damage) and subtomogram averaging (three-dimensional alignment of macromolecules in a complex sample). Using TYGRESS, we determined the structure of the intact ciliary axoneme with up to resolution of 12 Å. These results reveal many structural details that were not visible by cryo-ET alone. TYGRESS is generally applicable to cellular complexes that are amenable to subtomogram averaging.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of the TYGRESS workflow.
Fig. 2: Comparison of doublet microtubules and MIPs visualized using different methods.
Fig. 3: Filamentous structures and subunit architecture of the N-DRC visualized by TYGRESS.
Fig. 4: MIP structures in the intact Tetrahymena axonemes resolved by TYGRESS.

Data availability

The TYGRESS reconstructions have been deposited in the Electron Microscopy Data Bank under accession code EMD-9023. All other data that support the findings of this study are available in the manuscript or its Supplementary Information. Raw image data (that is, HD images and corresponding tilt series) used to generate the TYGRESS average and figures in this study are available from the corresponding author upon request.

Code availability

TYGRESS source code and documentation are available on Code Ocean (https://doi.org/10.24433/CO.2034333.v1). The TYGRESS program is also available at https://www.utsouthwestern.edu/labs/nicastro/tygress/. A user manual is available as a Supplementary Protocol (https://doi.org/10.21203/rs.2.16083/v1).

References

  1. Bai, X. C., McMullan, G. & Scheres, S. H. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    CAS  PubMed  Google Scholar 

  2. Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 161, 450–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Herzik, M. A. Jr., Wu, M. & Lander, G. C. Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat. Methods 14, 1075–1078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartesaghi, A. et al. Atomic resolution cryo-EM structure of β-galactosidase. Structure 26, 848–856 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartesaghi, A., Lecumberry, F., Sapiro, G. & Subramaniam, S. Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20, 2003–2013 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schur, F. K. et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508 (2016).

    CAS  PubMed  Google Scholar 

  7. Wan, W. et al. Structure and assembly of the ebola virus nucleocapsid. Nature 551, 394–397 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicastro, D. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313, 944–948 (2006).

    CAS  PubMed  Google Scholar 

  10. Briggs, J. A. Structural biology in situ—the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23, 261–267 (2013).

    CAS  PubMed  Google Scholar 

  11. Fu, G. et al. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol. Biol. Cell 29, 1048–1059 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Briegel, A. et al. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 53, 1575–1585 (2014).

    CAS  PubMed  Google Scholar 

  13. Crowther, R. A., Derosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Ser. A 317, 319–340 (1970).

    Google Scholar 

  14. Brilot, A. F. et al. Beam-induced motion of vitrified specimen on holey carbon film. J. Struct. Biol. 177, 630–637 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Himes, B. A. & Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955–961 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, L., Snapp, R. R., Ruiz, T. & Radermacher, M. Projection-based volume alignment. J. Struct. Biol. 182, 93–105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Pazour, G. J., Agrin, N., Leszyk, J. & Witman, G. B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol. 170, 103–113 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, J. & Nicastro, D. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360, eaar1968 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Lin, J., Okada, K., Raytchev, M., Smith, M. C. & Nicastro, D. Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16, 479–485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, J. et al. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat. Commun. 5, 5727 (2014).

    CAS  PubMed  Google Scholar 

  23. Oda, T., Yanagisawa, H., Kamiya, R. & Kikkawa, M. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857–860 (2014).

    CAS  PubMed  Google Scholar 

  24. Pigino, G. et al. Cryoelectron tomography of radial spokes in cilia and flagella. J. Cell Biol. 195, 673–687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ichikawa, M. et al. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins. Nat. Commun. 8, 15035 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Zhang, R., Alushin, G. M., Brown, A. & Nogales, E. Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162, 849–859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Owa, M. et al. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc. Natl Acad. Sci. USA 111, 9461–9466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oda, T., Abe, T., Yanagisawa, H. & Kikkawa, M. Docking-complex-independent alignment of Chlamydomonas outer dynein arms with 24-nm periodicity in vitro. J. Cell Sci. 129, 1547–1551 (2016).

    CAS  PubMed  Google Scholar 

  29. Heuser, T., Raytchev, M., Krell, J., Porter, M. E. & Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921–933 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, B., Ramanis, Z. & Luck, D. J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 28, 115–124 (1982).

    CAS  PubMed  Google Scholar 

  31. Summers, K. E. & Gibbons, I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc. Natl Acad. Sci. USA 68, 3092–3096 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alford, L. M. et al. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme. Cytoskeleton 73, 331–340 (2016).

    CAS  PubMed  Google Scholar 

  33. Song, K. et al. In situ localization of N and C termini of subunits of the flagellar nexin–dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography. J. Biol. Chem. 290, 5341–5353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. von der Ecken, J. et al. Structure of the F-actin–tropomyosin complex. Nature 519, 114–117 (2015).

    PubMed  Google Scholar 

  35. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Lin, J. et al. Building blocks of the nexin–dynein regulatory complex in Chlamydomonas flagella. J. Biol. Chem. 286, 29175–29191 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bower, R. et al. DRC2/CCDC65 is a central hub for assembly of the nexin–dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol. Biol. Cell 29, 137–153 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wirschell, M. et al. The nexin–dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat. Genet. 45, 262–268 (2013).

    CAS  PubMed  Google Scholar 

  39. Linck, R. et al. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J. Biol. Chem. 289, 17427–17444 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nicastro, D. et al. Cryo-electron tomography reveals conserved features of doublet microtubules in flagella. Proc. Natl Acad. Sci. USA 108, E845–E853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dymek, E. E. et al. PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility. Mol. Biol. Cell 30, 1805–1816 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sui, H. & Downing, K. H. Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography. Nature 442, 475–478 (2006).

    CAS  PubMed  Google Scholar 

  43. Maheshwari, A. et al. α- and β-tubulin lattice of the axonemal microtubule doublet and binding proteins revealed by single particle cryo-electron microscopy and tomography. Structure 23, 1584–1595 (2015).

    CAS  PubMed  Google Scholar 

  44. Owa, M. et al. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat. Commun. 10, 1143 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    CAS  PubMed  Google Scholar 

  46. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Turonova, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199, 187–195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    CAS  PubMed  Google Scholar 

  49. Harauz, G. & Van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik 73, 146–156 (1986).

    Google Scholar 

  50. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  51. Witman, G. B., Carlson, K., Berliner, J. & Rosenbaum, J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell Biol. 54, 507–539 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Iancu, C. V. et al. Electron cryotomography sample preparation using the vitrobot. Nat. Protoc. 1, 2813–2819 (2006).

    CAS  PubMed  Google Scholar 

  53. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  54. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  55. Grigorieff, N. FREALIGN: high-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007).

    CAS  PubMed  Google Scholar 

  56. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed  Google Scholar 

  57. Fernandez, J. J., Luque, D., Caston, J. R. & Carrascosa, J. L. Sharpening high resolution information in single particle electron cryomicroscopy. J. Struct. Biol. 164, 170–175 (2008).

    CAS  PubMed  Google Scholar 

  58. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  60. Sigworth, F. J. Principles of cryo-EM single-particle image processing. Microscopy 65, 57–67 (2016).

    PubMed  Google Scholar 

  61. Rickgauer, J. P., Grigorieff, N. & Denk, W. Single-protein detection in crowded molecular environments in cryo-EM images. eLife 6, e25648 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Jensen, K. H., Brandt, S. S., Shigematsu, H. & Sigworth, F. J. Statistical modeling and removal of lipid membrane projections for cryo-EM structure determination of reconstituted membrane proteins. J. Struct. Biol. 194, 49–60 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Narita, A., Mizuno, N., Kikkawa, M. & Maeda, Y. Molecular determination by electron microscopy of the dynein–microtubule complex structure. J. Mol. Biol. 372, 1320–1336 (2007).

    CAS  PubMed  Google Scholar 

  64. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Bykov, Y. S. et al. The structure of the COPI coat determined within the cell. eLife 6, e32493 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Zanetti, G. et al. The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2, e00951 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Bartesaghi, A., Merk, A., Borgnia, M. J., Milne, J. L. & Subramaniam, S. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat. Struct. Mol. Biol. 20, 1352–1357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bock, D. et al. In situ architecture, function, and evolution of a contractile injection system. Science 357, 713–717 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Cai, S., Bock, D., Pilhofer, M. & Gan, L. The in situ structures of mono-, di-, and trinucleosomes in human heterochromatin. Mol. Biol. Cell 29, 2450–2457 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Xu for training and for maintaining the electron microscopy facility at Brandeis University; J. Heumann and D. Mastronarde for technical advice concerning cryo-ET and subtomogram averaging; A. Rohou and S. C. Harrison for helpful discussions; T. Ni, J. Pinskey and G. Riddihough for critically reading the manuscript; and R. Zhang for providing the EM structure of the tubulin dimer for docking. This work was supported by funding from the National Institutes of Health (grant R01 GM111506 to D.N.) and the Cancer Prevention and Research Institute of Texas (grant RR140082 to D.N.). N.G. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.N. conceived the study and designed experiments; Z.S. and X.F. programmed; K.S. collected and processed the data with Z.S; N.G. contributed scientific and technical insights throughout the project; and Z.S., K.S., X.L., N.G. and D.N. wrote the manuscript. All authors contributed to discussions and revisions of the manuscript.

Corresponding author

Correspondence to Daniela Nicastro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Fig. 1 Particle picking from HD image, guided by LD-tomogram.

(a and b) A typical HD image of a single axoneme (a) and one of its particles (b, a single 96 nm repeat, cut out and zoomed-in from the red box in a) show no clear features to enable particle picking because of the overlap of many structures in the projection image. (c-f) In the corresponding tomogram slice, many prominent particle features, such as radial spokes and microtubule walls (‘RS’ and ‘MT’ in f) are well-defined to help pick repeating particles (orange dot in f) in 3D (red box area in e). In (c and d) the locations for all picked particles are shown as colored dots. Each color represents one of the 9 DMTs. (g and h) After the conversion of 3D coordinates into 2D, all particles can be picked on the HD image (g); the particle shown in (f) is centered at the upper orange dot (h). Scale bars: 100 nm (a, c, e, and g); 50 nm (b, f, and h).

Supplementary Fig. 2 The determination of the defocus value succeeded for TYGRESS HD images but failed for regular cryo-ET LD images.

(a-c) An HD image of Tetrahymena thermophila axonemes recorded at 0° tilt with a defocus setting of −2.5 µm (a), its Fourier transform (FT) (b), and its averaged power spectrum (c, right), fitting to the theoretical Thon rings (c, left). (d-e) A corresponding LD image (0° tilt, defocus setting −8 µm) (d) and its Fourier transform (e). The electron dose of each image is indicated in the bottom left corner of the images. Strong layer lines diffracted from the repeating structures of the axoneme and dark Thon rings (indicated by dashed lines) are visible in the HD image (b) but not in the LD image of the same sample (d and e). This causes the defocus detection to fail for the LD image. Scale bar: 200 nm.

Supplementary Fig. 3 Schematic diagram of the axoneme structure.

(a-c) Diagrams of intact axoneme (a) and a selected DMT with associated complexes (b) viewed in cross-section (viewed from proximal). The nexin-dynein regulatory complex (N-DRC) links neighboring DMTs. (c) A longitudinal diagram of a 96-nm-long axonemal unit that repeats along the DMT; each repeat unit contains four outer dynein arms (ODAs), six single-headed inner dynein arms (IDAs: a, b, c, d, e and g), and one double-headed IDA (I1 or dynein f) anchored to the A-tubule (At). Other labels: B-tubule (Bt), central pair complex (CPC), and radial spokes (RSs 1–3); microtubule polarity from proximal to distal.

Supplementary Fig. 4 Filamentous structures outside the DMT and the inner junction (IJ).

(a) Cross-sectional slices of isosurface renderings of the 96-nm axonemal repeat at three different locations showing the locations of the ODA ruler-like structure (OA-R, dark red), 96-nm axonemal ruler (AR, red), and the IDA ruler-like structure (IA-R, magenta), as well as their interactions between radial spokes (RS1-3, light blue) and inner dynein arms (IDA, rose). (b-g) EM slices (b-d) and 3D isosurface renderings (e-g) of the TYGRESS reconstructed 96-nm axonemal repeat (b, c, e and f) and a 16-nm DMT repeat (d and g) show e.g. the inner junction (IJ) that consists of FAP20 (gray arrowheads and coloring) and PACRG (black arrowheads and coloring) that repeat with 8 nm periodicity, whereas their connections with protofilament A13 have a 16 nm periodicity (as indicated in c), as well as an additional density extending from the N-DRC base plate (purple arrowheads and coloring). The white line in (b) indicates the location of the EM slices shown in (c and d). The microtubule protofilaments numbers of the A- and B-tubules are labelled with black and white numbers in (b and c), respectively. The hole in the IJ is indicated by white arrowheads. The MAPs and MIPs in (e and f) are colored according to the coloring used in Figs. 3 and 4. Scale bars: 10 nm.

Supplementary Fig. 5 Structural characteristics of MIPs 1-9 in intact axonemes resolved using TYGRESS.

Cross-sectional (left column) and longitudinal (middle column) EM slices, and longitudinal views of 3D isosurface renderings (right column) of the 96-nm axonemal repeat show MIPs 1-9. The MIPs are colored and numbered according to their locations in the cross-section (see Fig. 4d, e). MIPs present at similar locations in the cross-sectional view but in various locations in longitudinal views are further distinguished by letters (a-e). MIP periodicities are indicated by numbers in brackets on the left. White lines in the cross-sections indicate the locations of the EM slices shown in the middle column. The protofilament numbers of the A- and B-tubules are indicated by black and white labels, respectively. Scale bars: 10 nm.

Supplementary Fig. 6 Filamentous MIPs in intact axonemes resolved using TYGRESS.

Cross-sectional (left column) and longitudinal (middle column) EM slices of the 96-nm axonemal repeat show the eleven resolved filamentous MIPs. The protofilament numbers of the A- and B-tubules are indicated by black and white labels, respectively. The dark blue arrows highlight the corresponding MIPs. White lines in the cross-sections show the locations of the corresponding longitudinal EM slices. Scale bars: 10 nm.

Supplementary Information

Supplementary Information

Supplementary Figs. 1–6, Supplementary Tables 1–2 and Supplementary Protocol.

Reporting Summary

Supplementary Video 1

The TYGRESS reconstruction of the 96-nm axonemal repeat from Tetrahymena thermophila cilia. The TYGRESS reconstruction of the 96-nm axonemal repeat from Tetrahymena thermophila cilia shows unprecedented details of the microtubule doublet and associated complexes, including the MIPs. The video starts with longitudinal electron-microscopy slices followed by cross-sectional electron-microscopy slices through the 3D reconstructed axonemal repeat from intact ciliary axonemes. The video ends in an isosurface rendering representation that visualizes the doublet microtubule and MIPs in 3D. AR, axonemal ruler; MIP10, filamentous microtubule inner protein 10 .

Supplementary Video 2

Three-dimensional visualization by isosurface rendering of the 96-nm axonemal repeat from Tetrahymena thermophila cilia; 3D visualization by isosurface rendering of the 96-nm axonemal repeat from Tetrahymena thermophila cilia that were averaged using the TYGRESS method. At the beginning of the video, the proximal end of the axonemal repeat is on the left side. Radial spokes (RSs; blue); inner junction (IJ, gray); axonemal ruler (AR, red); ODA ruler-like structure (OA-R, dark red); IDA ruler-like structure (IA-R, magenta); nexin–dynein regulatory complex (N-DRC, purple, yellow, dark green and blue).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, K., Shang, Z., Fu, X. et al. In situ structure determination at nanometer resolution using TYGRESS. Nat Methods 17, 201–208 (2020). https://doi.org/10.1038/s41592-019-0651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0651-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing